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ABSTRACT
Packet corruption loss is a serious problem in datacenter networks.
A large-scale study by Microsoft reported that the number of pack-
ets lost due to corruption is comparable to those lost due to conges-
tion. Previous attempts to mitigate the impact of packet corruption
loss seek to avoid the faulty links by routing around them, at the
cost of reduced link capacities and disruption to the rest of the
network.

In this paper, we investigate the feasibility and tradeoffs of the
classical loss recovery strategy of link-local retransmissions in
the context of datacenter networks. We present the design and
implementation of LinkGuardian, a dataplane-based protocol that
detects the packets lost due to corruption and simply retransmits
them out-of-order. Our preliminary results show that a naïve out-of-
order retransmission strategy is effective in mitigating the impact
of packet corruption loss for both throughput-sensitive and latency-
sensitive flows. Our long-term goal is to extend LinkGuardian so
that the end hosts can be made completely oblivious to packet
corruption losses in the network.

CCS CONCEPTS
•Hardware→ Failure recovery, maintenance and self-repair;
• Networks→ In-network processing; Physical links.
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1 INTRODUCTION
In modern datacenter networks, switch-to-switch links are typically
optical [27, 30] as they can support high link speeds (10-400Gbps)
over long distances compared to electrical links. However, optical
links are susceptible to packet corruption, as the optical receiver
sometimes fails to correctly decode the transmitted bits. Optical
decoding errors can occur due to a variety of reasons such as fiber
bending, connector or fiber tip contamination by airborne dirt
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particles, decaying laser transmitters, etc. [27, 30]. When an optical
decoder decodes the bits of a packet incorrectly, the Ethernet frame
checksum (FCS) fails and the receiving MAC drops the packet. With
tens of thousands of optical links in a datacenter, packet corruption
loss can be significant.

A large-scale study consisting of 350K links across 15 Microsoft
datacenters reported that the number of packets lost due to link
corruption is on par with the number of packets lost due to con-
gestion [30]. It is well known that packet loss (regardless of the
cause) hurts application performance leading to a revenue loss of
millions of dollars [4, 28, 29]. Alibaba’s recent study of hundreds
of real-world service tickets revealed that among all the packet
drops that led to network performance anomalies and affected its
customers, 18% were due to packet corruption [28].

Packet corruption loss is different than congestion packet loss
because it does not go away even when the end hosts reduce their
transmission rates. Unless mitigated, packet corruption will con-
tinue to cause degradation to application performance and affect a
cloud provider’s SLAs (Service Level Agreements) [28]. With a cor-
ruption loss rate of 1%, throughput-intensive applications can suffer
more than 50% degradation in throughput since the TCP senders
reduce cwnd in response to the packet losses due to corruption [15].
Similarly, latency-sensitive applications incur increased flow com-
pletion times (FCTs) due to delays caused by the retransmissions of
lost packets [27, 31]. Overall, packet corruption negatively impacts
both latency-sensitive and throughput-sensitive applications.

Currently, packet corruption can only be fixed by physically
repairing the corrupting link, which could take between several
hours to days. Meanwhile, applications continue to suffer perfor-
mance degradation [30]. Until a physical repair is carried out, one
can only mitigate the effects of packet corruption on application
performance. The most common way to do so is to disable the
corrupting link(s) at the cost of reduced network capacity [27, 30].
However, the resulting re-routing of traffic can impact the rest of the
network beyond the corrupting link [27]. End-to-end redundancy
approaches [14, 26, 31] also incur similar impact due to overhead
along the entire path and often require end-host changes which
are typically beyond a cloud operator’s control. It is possible to
localize the impact of corruption by using link-local forward er-
ror correction (FEC) [15]. But this adds significant overhead (e.g.
15% overhead for 1% loss rate [15]) as redundancy is added to all
the packets, even though only a small fraction of the packets are
corrupted.

The drawbacks of previous approaches and the overheads of
FEC can be mitigated with a straightforward approach of link-local
retransmissions. It is surprising that, to the best of our knowledge,
we are the first to revisit this approach. Link-local retransmissions
have been studied extensively [7, 24] and widely used in wireless
networks [1, 2, 17, 18]. It is likely that link-local retransmission

1

https://doi.org/10.1145/3542637.3542643
https://doi.org/10.1145/3542637.3542643


APNet 2022, July 1–2, 2022, Fuzhou, China Joshi et al.

for wired networks has not been proposed earlier because it could
not be easily implemented in earlier fixed-function switches. In
this paper, we show that link-local retransmissions can be easily
implemented with modern dataplane-programmable switches.

LinkGuardian is our attempt at investigating the feasibility and
tradeoffs of a classic loss recovery strategy. Link-local retransmis-
sions are clearly desirable since they localize the impact of recov-
ering from corruption only to the corrupting link. Furthermore,
the overheads would be proportional since retransmissions happen
only when there is packet loss. They also do not require end-host
modifications and can be under a cloud operator’s control.

Our long-term goal is to not only implement a link-local re-
transmission scheme that can fully recover from packet corruption
losses, but one that also preserves packet ordering. In this paper, we
present the results of our early-stage implementation that detects
the packets lost due to corruption and naïvely retransmits them
out-of-order. Even with this basic implementation, LinkGuardian
is able to mitigate the impact of corruption for both throughput-
sensitive flows and latency-sensitive flows. We found that the key
reason why out-of-order retransmission works well is that TCP
has a built-in “reordering tolerance” i.e. a TCP sender waits until it
receives triple duplicate ACKs (or SACK-equivalent) [5, 8] before
considering a packet lost. Since we are able to retransmit packets
fast enough, we can effectively convert the packet loss events into
reordering events, thereby preventing cwnd reduction from being
triggered at the TCP sender.

Our current implementation is a work in progress that achieves
good performance for the common case but does not work so well
beyond the 95th percentile for latency-sensitive flows. We believe
that this is because we are yet to implement mechanisms to deal
with (i) consecutive losses, (ii) tail losses, and (iii) preserving packet
ordering. Moving forward, we will extend LinkGuardian so that the
end hosts can be made completely oblivious to packet corruption
losses. Doing so would require additional packet buffering and we
argue with back-of-the-envelope calculations that there is suffi-
cient packet buffer in existing dataplane-programmable switches
to support the same.

The remaining paper is organized as follows. In §2, we conduct
a small measurement study that shows that a simple out-of-order
retransmission scheme is sufficient to mitigate the impact of cor-
ruption packet loss on latency-sensitive and throughput-sensitive
flows. In §3, we describe the design and implementation of Link-
Guardian and we evaluate its performance in §4. We discuss future
directions in §5 and summarize the related work in §6. Finally, we
conclude in §7.

2 CASE FOR LINK-LOCAL RECOVERY
In this section, we investigate the effectiveness of the following
simple link-local retransmission scheme that is implemented by 2
neighboring switches: before sending a packet on the link, the send-
ing switch adds a sequence number to the packet and also retains a
copy of the transmitted packet for potential future retransmission.
Using the sequence numbers in the received packets, the receiving
switch detects if there was packet corruption loss and notifies the
sending switch. The sending switch immediately retransmits the
lost packet with high priority.
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Figure 1: Testbed Setup: 3-stage Clos network with unidirec-
tional corruption on an inter-pod path.

Recovery Delay. We define the recovery delay to be the time
between when a packet was dropped due to corruption at a par-
ticular point in the network till when the packet is recovered back
at the same point in the network. After the recovery, the packet
continues on the remaining network path. This definition of recov-
ery delay essentially captures the additional delay penalty incurred
in delivering the lost packet to the intended receiver host. In the
following subsection, we describe a simple measurement study to
estimate the recovery delay for a link-local retransmission scheme
implemented in the network dataplane.

2.1 Estimating the Recovery Delay
Our testbed setup, where we emulate an inter-pod path of a 3-
stage Clos network connecting hosts h1 and h2, is shown in Fig-
ure 1. The switches are emulated using loopback cables on a single
Wedge100BF-32X Intel Tofino switch. Each host is equipped with a
10Gbps DPDK-capable NIC. Both the hosts run Linux kernel 5.4.0-
91-lowlatency on Ubuntu 20.04.3. The network’s MTU is 1,500 byte
(maximum packet size of 1,518 byte). In all our experiments, there
is no cross traffic.

We consider a round-trip path where a packet from h1 travels
to h2 and back. We instrument the switches to record ingress and
egress timestamps which divide the RTT into 14 different time seg-
ments as shown in Figure 1. If link 3 is corrupting packets in the
sw3 →sw4 direction, then a corrupted packet would be dropped
at sw4. sw4 would then detect the loss immediately after receiving
a subsequent packet and then notify sw3 with a minimum-sized
packet. This loss notification would require seg10 (64 byte) worth
of time, as the time for each segment varies with packet size due
to the serialization. Once sw3 receives this packet, it will imme-
diately retransmit the lost packet to sw4 with high priority. Thus,
the total recovery time for the link-local scheme would then be
seg10 (64 byte) + seg4 (1,518 byte). In comparison, any end-host
based recovery scheme would require ∼1 RTT worth of recovery
time considering a 64 byte (S)ACK from h2 to h1 and a 1,518 byte re-
transmitted packet from h1 to h2. We use ping to send packets from
h1 to h2 one at a time and record the RTT reported by ping. We
use 64 byte and 1518 byte packet sizes and send ∼1M packets each.
Using the measured RTT and the timestamps from the switches,
we then estimate the link-local recovery delay. Table 1 shows the
distribution of the expected recovery delay.

In Table 1, the high end-host based recovery delays are due to
the high end-host stack latencies and we had similar results when
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Table 1: Expected recovery delay distribution (in 𝜇s) for
packet corruption loss on link 3 in Figure 1

End-host based
(kernel)

End-host based
(DPDK)

Link-local
Retransmission

mean 32.73 33.44 2.59
50% 32.50 33.52 2.59
99% 44.00 46.25 2.60

using a kernel-bypassed (DPDK-based) ping client and responder.
In contrast, the estimated link-local recovery delays are an order
of magnitude smaller and do not vary much. The recovery delays
are similar if a packet corruption loss were to happen on the other
optical links shown in Figure 1. Note that the time segments include
the switch pipeline latency which is a function of the dataplane
programming used in this experiment.

Implications for TCP. For short latency-sensitive flows, cor-
ruption loss will typically increase the FCT by an amount equal
to the recovery delay. Table 1 shows that the increase in FCT due
to packet corruption can be potentially reduced by up to 10x. For
throughput-sensitive flows, corruption loss triggers a loss event at
the TCP sender causing it to reduce its cwnd and thereby degrade
throughput. However, we note that a lost packet does not imme-
diately trigger a loss event. A TCP sender has some “reordering
tolerance” because it generally waits until it receives triple duplicate
ACKs (or SACK-equivalent) [5, 8] before considering a packet to be
lost. In other words, the TCP sender waits until ∼3MSS subsequent
bytes are delivered to the TCP receiver after the lost packet. Since
the inter-packet gap for a TCP flow saturating a 10Gbps NIC is
∼1.23 𝜇s, the TCP’s “reordering window” of 3 packets is ∼3.69𝜇s.
From Table 1, we see that the average estimated link-local recovery
delay is ∼2.59 𝜇s which is less than ∼3.69𝜇s. This means that it is
possible that the lost packet might be successfully retransmitted
before the next 3MSS bytes. In such a case, the TCP sender would
observe packet reordering instead of packet loss, and it would not
reduce its cwnd. Note that since the lost packet is retransmitted
with high priority, it preempts the subsequent packets of the TCP
flow and thereby helps in achieving link-local recovery within the
“reordering window”.

3 SYSTEM DESIGN
In this section, we present the design and implementation of Link-
Guardian. A network equipped with LinkGuardian functions nor-
mally (with LinkGuardian deactivated) as long as no link is found
to be corrupting packets beyond an operator-specified threshold
loss rate (usually ∼10-6 [30]). A state-of-art control plane-based
technique [15, 30] is used to monitor the links and when a link is
found to be corrupting packets beyond the specified threshold, Link-
Guardian is activated on the link. LinkGuardian can be configured
to protect all traffic or only a select class of traffic.

3.1 Protocol Overview
Since link corruption is typically unidirectional [30], LinkGuardian
can be viewed as a protocol running between a “sender switch”
and a “receiver switch”. For each packet that is transmitted on the
corrupting link, the sender switch adds a monotonically increasing
sequence number and creates a copy of the packet for buffering.

seqNo

latestRxSeqNo

latestRxSeqNo
pendingAck

reTxReqs

piggybacked normal pkts

ACK pkts

Loss Notification pkts
Loss Detection

PktGen

Sender Switch Receiver Switch

Figure 2: Protocol Overview: Arrows indicate the state vari-
ables read and updated by different packet types.

The receiver switch checks if the sequence numbers of the arriving
packets are in order.

In the absence of any packet loss, the sequence numbers would be
in order and the receiver switch maintains a steady stream of ACKs
informing the sender switch of the latest received sequence number.
On receiving such ACKs, the sender switch drops the buffered
packets with sequence numbers less than or equal to the latest
received sequence number. In the event of packet corruption, the
receiver switch detects which packet(s) was/were lost based on the
gaps in the sequence numbers of the arriving packets. On detecting a
loss, the receiver sends a high-priority loss notification to the sender
switch informing of the lost packets and also the latest received
sequence number. The sender switch then retransmits (with high
priority) the lost packets and drops the remaining buffered packets
with sequence numbers less than or equal to the latest received
sequence number.

LinkGuardian is implemented as 2 components: (i) loss detection
and notification, and (ii) sender-side buffering and retransmission.
Our design assumes that the switch supports capabilities such as
mirroring, multicast and recirculation as defined in the Portable
Switch Architecture (PSA) [16].

3.2 Loss Detection and Notification
In Figure 2, we list the state maintained by the sender and receiver
switches, and the different types of packets that read and update
them. The sender switch maintains a monotonically increasing
seqNowhile the receiver switchmaintains a latestRxSeqNowhich
records the latest received seqNo. A copy of the latestRxSeqNo
is also maintained at the sender switch, which the receiver switch
keeps updating. The sender switch also maintains a lookup table
called reTxReqs, which records the sequence numbers of the pack-
ets whose retransmission is requested by the receiver switch.

For each normal packet that is to be protected on the corrupting
link, the sender switch adds the current seqNo to the packet (using
a custom header) and then increments seqNo by 1. The sender
switch makes a copy of the packet along with the added sequence
number and buffers it until the receiver switch notifies that the
packet was received successfully (buffering-related details in §3.3).
On the receiver switch, when a protected packet is received, it
updates the latestRxSeqNo to the sequence number in the packet
and also sets the pendingAck to 1. pendingAck set to 1 denotes
that the copy of latestRxSeqNo on the sender switch is yet to be
updated.

No Loss Scenario. Since the corruption loss rates are typically
low, we generally expect no losses to occur on the link. In a no-
loss scenario, the latestRxSeqNo on the receiver switch would
increase by 1 on receiving a protected packet. On every update of the
latestRxSeqNo, the receiver switch updates the latestRxSeqNo
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on the sender switch so that the sender switch can drop the buffered
packets that are successfully delivered. Doing this update timely can
ensure that LinkGuardian’s use of the packet buffer at the sender
switch is kept to a minimum.

To achieve this, we use the packet generator in the receiver
switch’s dataplane to generate ACK packets at a fixed interval (𝛿)
which carries the updated latestRxSeqNo to the sender switch.
To ensure timely update while incurring minimal overhead in the
reverse direction, an ACK packet is sent only if pendingAck is 1
and then the pendingAck is reset to 0. This mechanism ensures that
an ACK packet is sent only if the latestRxSeqNo on the receiver
switch was updated after an ACK packet was previously sent.

Loss Scenario.When a protected packet gets corrupted and is
dropped by the receivingMAC, the receiver switch observes that the
latestRxSeqNo is incremented by more than 1. It then generates a
new “loss notification” packet which contains the missing sequence
number as well as the recent value of the latestRxSeqNo. This
loss notification packet is sent to the sender switch through a high-
priority queue to ensure timely recovery. On reaching the sender
switch, the missing sequence number is added to the lookup table
reTxReqs.

3.3 Sender-side Buffering & Retransmission
As described in §3.2, the receiver switch ensures that the copy
of latestRxSeqNo on the sender switch is up-to-date and it ad-
ditionally updates the lookup table reTxReqs in case of a packet
corruption loss. Meanwhile, the sender switch buffers a copy of
the protected packet along with its sequence number. This packet
buffering is realized through recirculation, i.e., the buffered copy of
the protected packet is sent to the recirculation port of the switch
dataplane. Each time the buffered packet completes a recirculation
loop, the sender switch checks two conditions: (i) if the buffered
packet’s sequence number is less than or equal to the updated
latestRxSeqNo; and (ii) whether the buffered packet’s sequence
number is present in the lookup table reTxReqs.

If the first condition is not met, it means that we do not yet know
if the packet was successfully delivered. In this case, the sender
switch continues to buffer the packet via recirculation. If the first
condition is true while the second condition is false, then it means
that the packet was successfully delivered and so the sender switch
drops the buffered packet. Finally, if both the conditions are true,
then the sender switch retransmits the buffered packet through a
high-priority queue and clears the packet’s sequence number from
the reTxReqs table.

Buffer requirement. Notice that the ACK interval (𝛿) is the
expected time for which a packet would be buffered. During this
time, if the link is fully utilized, then the additional bytes that
would be added to the buffer would be the 𝛿 ×𝐶 , where 𝐶 is the
link capacity. This is the expected buffer requirement which can be
kept low by keeping the ACK interval small.

Handling Retransmission Losses. It is plausible that a packet
retransmitted could also be dropped due to corruption. LinkGuardian
handles this situation by retransmitting 2 copies of the buffered
packet to improve the odds that the retransmission will be success-
ful. However, 2 copies are required only when the link’s corruption
loss rate is >10-3 such that the effective loss rate is ≤10-6.

Table 2: Steady-state Throughput (Gbps) on the lossy link
when protected by Wharf [15] or LinkGuardian

Loss Rate→ 0 (Baseline) 10-5 10-4 10-3 10-2

CUBIC 9.49 9.48 7.28 3.43 1.33
+Wharf [15] n/a 9.13 9.13 9.13 7.91
+ LinkGuardian 9.47 9.47 9.47 9.46 9.28

DCTCP 9.49 9.46 7.88 3.82 1.66
+ LinkGuardian 9.47 9.47 9.47 9.46 9.29

3.4 Implementation
We implement LinkGuardian on an Intel Tofino programmable
switch in ∼ 900 lines of P4 code each for the sender and receiver
switch’s protocol logic. For each protected packet, the sender switch
adds a 3-byte custom header that contains a 16-bit seqNo and the
packet type (original or retransmitted). The ACK packet is a 64 byte
packet generated by the receiver switch’s packet generator every
5 𝜇s. Since the sequence number is of a fixed bit width, it will
periodically wrap around and restart at zero. Therefore, to correctly
compare the sequence numbers, we need an additional bit – which
we call an “era bit” – that toggles between 0 and 1 after each wrap
around. This “era bit” is sufficient for us to detect when the sequence
number overflows and react accordingly.

The sender switch uses egress mirroring to create a copy of the
protected packet. For creating multiple copies of the retransmitted
packet (in case of a high loss rate), it uses the multicast primitive.
For generating the loss notification, the receiver switch uses ingress
mirroring.

4 EVALUATION
In this section, we attempt to answer the following questions: (i)
How well does LinkGuardian mitigate the effects of packet cor-
ruption for latency-sensitive and throughput-sensitive flows? and
(ii) What is the overhead incurred? For evaluation, we use the
same testbed setup shown in Figure 1 except that 𝑠𝑤3 and 𝑠𝑤4 are
two independent physical switches functioning as LinkGuardian
sender and receiver switches, respectively. In all experiments, h1
uses iperf to send CUBIC or DCTCP [4] flows to h2 with TSO
and SACK enabled. 𝑅𝑇𝑂𝑚𝑖𝑛 is set to 1ms as is the current prac-
tice [21, 23], while the ECN marking threshold for DCTCP is set
to 100 KB [11]. On sw4, we use Tofino’s random number generator
(similar to Wharf [15]) to emulate unidirectional corruption loss at
different rates in the sw3→sw4 direction. To accurately track the
“affected” TCP flows, sw4 redirects the to-be-dropped packets to a
monitoring server.

4.1 Mitigating the effects of Corruption
For throughput-sensitive CUBIC flows, we compare LinkGuardian
to Wharf [15], a link-local FEC scheme. We reproduce Wharf’s
results numerically by picking the FEC parameters that gave the
best throughput for each loss rate (c.f. Figure 8 in [15]). We could
not reproduce Wharf’s results experimentally because we did not
have access to the required FPGA hardware.

In Table 2, we present the steady-state throughput achieved by
DCTCP/CUBIC for different loss rates (measured over 90 seconds).
We see that LinkGuardian achieves consistently better throughput
for all loss rates. Further, the throughput for LinkGuardian degrades
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Table 3: FCT distribution (in 𝜇s) for 45KB “affected” DCTCP
flows with and without LinkGuardian (LG)

Loss rate 0 10-4 10-3 10-2

(Base) Lossy LG Lossy LG Lossy LG

min 113 198 174 193 143 180 155
mean 197 701 389 707 375 730 401
50% 180 423 268 419 258 427 267
90% 311 2016 442 2421 424 2472 434
95% 315 3182 500 3216 455 3294 484
99% 329 4114 3412 4192 3540 4271 3682

gradually with increasing loss rate as LinkGuardian does not add
constant redundancy, unlike Wharf. At 10-2 (1%) loss rate, Link-
Guardian retransmits 2 copies for every lost packet and therefore
incurs a proportional degradation of ∼2% compared to the baseline.

Next, for latency-sensitive (≤100KB [3]) flows, we consider 3
representative sizes of 15 KB, 45 KB, and 105 KB as these represent
flows requiring 1, 2, and 3 RTTs to complete (under no loss con-
ditions). Table 3 shows the distribution of FCTs (in 𝜇s) for 45 KB
DCTCP flows that were affected by corruption loss. Compared to
a lossy link, we see that LinkGuardian reduces the 50th and 95th
percentile FCT by ∼35% and ∼85% respectively, for all the loss rates.
However, for the same percentiles, the FCT after LinkGuardian’s
protection is still higher compared to the baseline. On investigat-
ing, we found that, when a TCP sender detects reordering, it stops
increasing its cwnd until it receives an ACK indicating that the
reordering has been resolved. For short flows, since the TCP sender
is typically in the slow-start state, such a momentary pause in
the increase of cwnd leads to a momentary pause in data trans-
mission, thereby increasing the FCT. Also, at the 99th percentile,
LinkGuardian cannot mitigate the increase in FCT since it does not
currently handle tail packet loss. The overall FCT distribution does
not vary significantly across the loss rates since we consider only
the “affected” flows which typically face a single packet loss for all
the loss rates. The FCT results for CUBIC are similar since both
CUBIC and DCTCP follow similar TCP slow-start [4]. For other
flow sizes, we observe qualitatively similar results.

4.2 Overheads
LinkGuardian maintains state for each port on the switch and re-
quires ∼2% of the total SRAM memory when provisioned for 256
ports per switch. In the direction of corruption, LinkGuardian in-
curs a throughput overhead of ∼0.2% due to the custom header (see
Table 2 baseline). In the reverse direction, the 64 byte ACK packets
sent every 5 𝜇s add a maximum throughput overhead of ∼100Mbps
(1%). Across all the throughput experiments, the buffered packets
at the sender switch consumed a maximum of 5.44 KB (3-4 packets)
packet buffer. Overall, our current implementation of LinkGuardian
is able to keep the overheads low.

5 DISCUSSION AND FUTUREWORK
LinkGuardian is amenable to incremental deployment. Operators
can prioritize the deployment at specific network locations where
a corrupting link could impact many paths in the network. Link-
Guardian does not eliminate the need to physically repair a corrupt-
ing link but instead buys time for the repair while locally mitigating

the impact of corruption and reducing the likelihood of violating
SLAs. A system like CorrOpt [30] would still be needed to ensure
that the network capacity requirements are met during the physical
repair and LinkGuardian can be used in combination with it.

Current limitations and path forward. LinkGuardian is a
work in progress and currently focuses on the common cases, i.e.
we seek not to completely eliminate packet corruption loss but
to reduce it to a tolerable level. In particular, we assume that the
packets from the receiver switch are not corrupted since corruption
loss is unidirectional ∼90% of the time [30]. In the future, for a
link with bi-directional corruption, we could protect the normal
traffic in the reverse direction by implementing an independent
instance of LinkGuardian working in the reverse direction. The loss
notification packets in the reverse direction can be ensured to reach
the sender switch by creating multiple copies of them.

LinkGuardian also does not currently handle the loss of consecu-
tive packets or tail packets (in case of short flows). Our preliminary
measurements of corruption loss characteristics using a Variable
Optical Attenuator (VOA) suggest such occurrences to be uncom-
mon. However, as observed in Table 3, LinkGuardian would need
to handle tail losses to prevent violation of higher levels of service
guarantees. The main challenge in handling tail losses is in detect-
ing them. We plan to detect tail losses by injecting dummy packets
on the link each time the link is idle.

Preserving packet ordering. In §4.1, we see that LinkGuardian
can only partially mitigate the impact of packet corruption for
latency-sensitive flows. To completely eliminate the impact of
packet corruption, LinkGuardian would need to preserve packet
ordering so that the corruption loss recovery is completely trans-
parent to the TCP endpoints. This would require the receiver switch
to buffer the out-of-order packets and to retransmit them in order.
Since link-local recovery delays are small (see §2), considering other
overheads, we estimate the receiver switch to require ∼12.5 KB (∼8
packets) of packet buffer to temporarily hold the out-of-order pack-
ets for a 10G link. As this is a very small fraction of the packet buffer
available on switches [25], we foresee that in-order packet recovery
is perfectly plausible. Once we achieve this, LinkGuardian can then
also be employed to make RDMA traffic, which is more sensitive to
loss and reordering, resilient to packet corruption losses.

Scalability. LinkGuardian works locally at an individual link
and is therefore agnostic to the overall size of a network. In other
words, LinkGuardian will work for a large petabit-scale network
if we can get it to work fast enough for an individual corrupting
link. Although datacenter links are becoming faster, the sending
rate of an individual TCP flow determines whether LinkGuardian’s
out-of-order retransmission is able to mitigate the impact of packet
corruption loss. For example, our current results suggest that Link-
Guardian’s out-of-order retransmission mechanism is able to miti-
gate the impact of packet corruption loss even on a 400G link, as
long as the sending rate of each of the individual TCP flows is not
greater than 10Gbps. We plan to determine the maximum TCP
sending rate that our current out-of-order retransmission mecha-
nism can support and explore the option of in-order packet recovery
(discussed above) and its trade-offs for throughput-sensitive TCP
flows.
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Efficient packet buffering in the dataplane. LinkGuardian
currently implements packet buffering via recirculation which in-
curs dataplane pipeline processing overhead. This overhead is in-
curred only for packets that are sent on the corrupting links, and a
very small number of links connected to the same switch pipeline
could be corrupting packets at the same time [30]. Since switch
pipelines typically have extra processing headroom [20], we expect
this overhead to be acceptable. In the future, this overhead could
be avoided if we could programmatically hold and release packets
from the switch’s packet buffer without having to recirculate them.
This is possible with the next generation programmable switches
such as the Intel Tofino2 [22] and we plan to validate this approach
once we are able to secure the hardware.

Monitoring links for corruption. In order to activate Link-
Guardian, we currently rely on existing techniques [15, 30] to mon-
itor and detect when a link starts corrupting packets. In particular,
Wharf’s link monitoring agent [15] infers corruption by polling net-
work port counters locally in the switch control plane and running
a protocol between two neighboring switches. While we plan to
investigate link monitoring techniques in the future, we expect the
detection latency for such link-local techniques to be in the order
of a few milliseconds. This is a one-time cost and a small fraction of
the total time between when the packet corruption starts and when
the link’s physical repair is performed. LinkGuardian mitigates the
impact of corruption packet loss for the entire duration after packet
corruption is detected.

Serialization and propagation delays. In our analysis in §2,
we ignored the propagation delay for simplicity. Strictly speaking,
for out-of-order retransmission to work, it is necessary for the
serialization delay of the subsequent two TCP data packets to be
greater than the sum of the propagation and serialization delays
of the loss notification packet. While this holds true in our testbed,
the propagation delay is expected to increase with longer fibers and
the serialization delay will decrease when the link speed goes up.
Our calculations show that the current out-of-order retransmission
mechanism should work on a 10G fiber link of up to ∼238m. For a
100G fiber link, this limit will drop to ∼24m (assuming a 100G TCP
sender). While these requirements are likely to change over time as
the underlying hardware improves, caution needs to be exercised
when deploying LinkGuardian on longer or high-speed fiber links.

Loss-oblivious congestion control. Our evaluations show
that TCP benefits from LinkGuardian because it is not resilient
to random losses. It was therefore a question of whether loss-
oblivious congestion control algorithms like BBR [9] would also
benefit from LinkGuardian. Our preliminary experiments suggest
that throughput-sensitive BBR flows are not impacted much by
packet corruption losses, but short BBR flows still benefit from
LinkGuardian’s protection.

6 RELATEDWORK
In this section, we place LinkGuardian in the context of the most
relevant prior work as categorized below.

Avoiding the faulty links. A common strategy is to disable a
corrupting link when the loss rate is above a certain threshold [27,
30]. CorrOpt [30] uses a global view of the network to selectively
disable corrupting links while meeting capacity constraints. Besides

the loss of capacity, disabling a link causes disruption to the rest
of the network [27] as routing and load-balancing protocols need
to move traffic away from the disabled link. RAIL [31] avoids lossy
links for latency-sensitive applications through virtual network
topologies but requires end-host modifications.

End-host based recovery. End-to-end redundancy via FEC [14,
31] or packet duplication [26] can help, but it adds redundant bytes
for all the packets across the entire path and risks worsening con-
gestion in the network. Latency-sensitive flows can make faster loss
recovery using NIC-offloaded [6] and/or multipath [10] transport
stacks, but the recovery delay is still lower-bounded by 1 RTT.

Link-local recovery. Wharf [15] mitigates corruption by using
link-local frame-level block-based FEC. However, compared to Link-
Guardian, it incurs significant overhead (see Table 2) as redundancy
is added for all the packets while corruption loss rates remain small.
In addition, it requires FPGA support on switches for FEC encod-
ing/decoding. Newer Ethernet standards provide FEC options at the
PHY layer [19]. However, our preliminary measurements suggest
that the links can still suffer from packet corruption loss. SQR [25]
is another algorithm that implements link-local retransmission, but
it is designed to recover packet loss during fail-stop link failures
and does not work for corrupting links.

Unlike prior work, LinkGuardian’s overheads are low and pro-
portional to the corruption loss rate, while its impact is localized to
the corrupting link. It requires no support from the end-hosts and
the recovery delay is less than 1 RTT.

7 CONCLUSION
In this paper, we argue that link-local retransmission is a promis-
ing approach to mitigate packet corruption losses in datacenter
networks. We show that a simple implementation that retransmits
out-of-order is able to mitigate the impact of packet corruption
loss on both throughput-sensitive flows and latency-sensitive flows.
LinkGuardian is currently a work in progress, but it represents
a step toward self-driving/self-patching networks [12, 13] where
network faults patch by themselves allowing the network to run
seamlessly with minimal impact on the SLAs.
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