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Abstract—Geographic routing is a promising approach
for point-to-point routing in wireless sensor networks,
but it requires the availability of geographic coordinates.
Location devices like GPS do not work indoors and they
are often not cost-effective for ubiquitous deployment on
a large scale. While it is possible to manually configure
coordinates for small sensor networks, it is infeasible to do
the same for large-scale networks with thousands of nodes.
We present Particle Swarm Virtual Coordinates (PSVC),
a distributed virtual coordinate assignment algorithm that
employs Particle Swarm Optimization to compute virtual
coordinates for geographic routing. PSVC converges faster,
achieves a lower hop stretch, and scales well up to large
networks of 3,200 nodes compared to NoGeo. Also, PSVC
makes no assumptions on the network topology and can
naturally be extended to three-dimensional (3D) wireless
sensor networks.

I. INTRODUCTION
Geographic routing [8, 10, 12, 13] is a promising

approach for point-to-point routing in wireless sensor
networks. Geographic routing can often achieve close
to optimal routing stretch [13] and scales well, typically
requiring the maintenance of routing state that is depen-
dent only on local network density and not on network
size [10].

Geographic routing however requires the availability
of geographic (Euclidean) coordinates. While it is pos-
sible to manually configure coordinates for small sensor
networks, it is infeasible to do the same for large-scale
networks with thousands of nodes. Also, location devices
like GPS do not work indoors and they are often not cost-
effective for ubiquitous deployment on a large scale.

The natural solution to this problem is therefore to em-
ploy virtual coordinates. In fact, this paper is motivated
by our attempts at implementing previously developed
virtual coordinate assignment algorithms [14, 18] for
TinyOS-based motes. In our work, we found that these
algorithms are typically ill-suited for deployment in a
practical sensor environment because of slow conver-

gence, implementation complexity and large compiled
binary size.

In this paper, we describe a new distributed virtual
coordinate assignment algorithm called Particle Swarm
Virtual Coordinates (PSVC), that computes coordinates
using an approximation algorithm called Particle Swarm
Optimization (PSO) [9]. Like GSpring [14], PSVC elects
a small number of reference nodes at the boundary of
the network. Initial coordinates are then assigned using
PSO to minimize the error for an objective function
that maps the assigned virtual coordinates for each node
to their hop counts to the reference nodes. PSVC also
employs a relaxation algorithm that models the virtual
coordinates as a system of nodes and springs to improve
the convexity of the virtual topology.

We also found that existing two-dimensional (2D)
virtual coordinate algorithms perform poorly for three-
dimensional (3D) networks. Unlike NoGeo [18] and
GSpring [14], PSVC does not make any assumptions on
the planarity of the physical network topology and can
be naturally extended to 3D wireless sensor networks.
PSVC also has a faster convergence rate, achieves lower
hop stretch, and scales well up to large networks of
3,200 nodes compared to NoGeo. Most importantly, our
algorithm is practical and has been successfully deployed
on a real TinyOS (TelosB) mote testbed.

The remainder of this paper is organized as follows: in
Section II, we present an overview of existing and related
work. In Section III, we describe our new algorithm.
We present our simulation evaluation for 2D and 3D
networks in Sections IV and V respectively and our
evaluation on a real sensor testbed in Section VI. Finally,
we conclude in Section VII.

II. RELATED WORK

Rao et al. were first to propose the use of virtual
coordinates for geographic routing [18]. Their algorithm,



which we refer to as NoGeo, elects a root node and
subsequently a set of p perimeter nodes based on their
hop counts to the root node. Subsequently, beacons
are broadcast from the p perimeter nodes to all the
nodes in the system and each node computes its virtual
coordinates by solving an optimization problem. NoGeo
however has several drawbacks: (i) for sparse networks,
the greedy forwarding success rate is low and conse-
quently, the associated hop stretch is very high; (ii) the
greedy forwarding success rate is low for 3D networks
and networks with obstacles with 800 or more nodes;
(iii) the storage cost is high, since it needs to store the
hop count between each pair of p perimeter nodes, which
incurs a storage cost of O(p2). Because p has order of
growth O(

√
n), where n is the network size, the storage

cost per node is approximately O(n).

There have since been several proposals for computing
greedy embeddings for geographic routing. A greedy
embedding is an embedding such that, at each vertex,
there always exists at least one neighbor which is closer
to the destination. In other words, it is an embedding
for which greedy forwarding is sufficient to guarantee
packet delivery. GSpring [14] introduced a novel spring
relaxation algorithm that incrementally improves the
convexity of the voids in the virtual topology, thereby
improving the greedy forwarding success rate. GSpring
is unfortunately impractical for implementation in prac-
tical networks because it assumes the existence of a
geocast mechanism and takes about 1,000 iterations to
converge, which incurs significant overhead. Kleinberg
proposed a method to construct a greedy embedding
in 2D hyperbolic space [11]. The greedy embedding
is constructed using n bits to describe the location of
the nodes. The algorithm was evaluated with a simu-
lation for a 50-node network, and it achieves an aver-
age hop stretch of 1.2. Westphal and Pei subsequently
proposed another greedy embedding in polylogarithmic-
dimensional Euclidean space [20], called GLoVE, that
reduces the dimensionality of greedy forwarding from
n to k = log(n)

ε2 , while still respecting the distance
between points within an ε factor. GLoVE-U avoids local
minima by routing in a tree structure, with a blacklist of
size O(log(n)). These methods will require more than
a constant number of bits for addressing which is a
practical concern for existing sensor networks because
the IEEE 802.15.4-compliant CC2420 radio hardware
buffer is only 127 bytes in size and we cannot afford
to use too many bits for addressing.

There are other routing algorithms based on non-
Euclidean coordinate systems. VPCR is a routing al-

gorithm based on virtual polar coordinates [17]. VPCR
does not perform as well as existing geographic routing
algorithms and incurs significant overhead under node
and network dynamics. There are also routing algorithms
that use the hop counts to a set of landmark nodes
(beacons) as a virtual coordinate system [1, 5, 16]. The
major drawback for these algorithms is that a large
number of beacons (about 30 to 40) is typically needed to
achieve routing performance comparable to geographic
routing algorithms and that they typically either have
to resort to flooding when packets end up at local
minima [5] or maintain O(

√
n) state [16].

III. PARTICLE SWARM VIRTUAL COORDINATES
(PSVC)

In this section, we describe the Particle Swarm Virtual
Coordinates (PSVC) algorithm in detail. Like previous
algorithms [14, 18], PSVC can be divided into two
phases: computation of initial coordinates and relaxation.

The selection of the reference nodes and the relaxation
steps are similar to GSpring [14]. The main difference
lies in the way that the coordinates of the reference nodes
are computed. Instead of arranging the reference nodes in
a circle, we attempt to model the hop counts between the
reference nodes as a spatial distance in a manner similar
to NoGeo [18]. While we use a minimization equation
that is similar to NoGeo, our method produces better
coordinates because the perimeter detection mechanism
for NoGeo is not accurate and it sometimes wrongly
identifies non-perimeter nodes as perimeter nodes.

In this section, we describe PSVC for two-dimensional
(2D) coordinates for simplicity. However, it should be
clear that PSVC can be trivially extended to three-
dimensional (3D) coordinates, while the same cannot
be said for both NoGeo [18] and GSpring [14], which
assume that the network topology is planar.

A. Preliminaries: Particle Swarm Optimization

In this section, we provide a brief overview of the
Particle Swarm Optimization (PSO) algorithm [9] that
is used to compute virtual coordinates.

PSO was motivated by the social behavior observed
in bird flocks and fish schools. PSO solves an opti-
mization problem where the goal is to find a vector
�x = (xi, x2, · · · , xD) that maximizes (or minimizes) an
objective function F (�x) by simulating particles moving
in a D-dimensional space. Possible solutions are mod-
elled as the positions of n particles, where particle pi

has position �xi and velocity �vi.



The particles are initialized randomly with coordinates
within a bounded space and their positions are updated
by their velocities. The key idea is that the flight of each
particle is influenced by both its own past flight history
and also the flight histories of the other particles in the
system. To this end, particle �pi maintains and constantly
updates the best position it has seen in the past as �li
and the system also maintains and constantly updates
the global best position �G.

The simulation is done in iterations. In each iteration,
the positions of the particles are updated according to
the following equations [19]:

�vi = w�vi + c1r1(�li − �xi) + c2r2(�G− �xi) (1)
�xi = �xi + �vi (2)

w = wmax − k

kmax
(wmax − wmin) (3)

where c1, c2, wmax and wmin are positive constants,
r1 and r2 are uniform random variables over the range
[0,1], kmax is the total number of iterations and k is the
number of the current iteration.

B. Election of Reference Nodes

The nodes in the system first achieve a consensus on
the node r with the smallest node identifier (ID). This is
done by having each node broadcast the identifier of the
node with the smallest ID currently known to it, together
with its hop count to the node. When the consensus
is reached, each node will know its hop count to the
reference node r.

Next, the system elects the node with the largest hop
count to r as the first reference node p1 in a similar
manner. The remaining reference nodes are elected sim-
ilarly. In particular, the reference node p i is defined as
the node with the maximum sum of the square roots of
the hop counts to the earlier reference nodes p j , j =
1, · · · , i− 1. We break ties by comparing the node IDs.
A side effect of this consensus-based reference node
election algorithm is that all the nodes in the network
will know of their hop counts to all the reference nodes
when the process ends.

The election of each reference node floods the net-
work, but the cost per reference node is approximately
O(D) ≈ O(

√
n), whereD is the diameter of the network

and n is the network size. PSVC uses 4 reference nodes
for 2D networks and 6 reference nodes for 3D networks
because we found that this achieves good performance
in practice.

C. Initialization of Reference Nodes

We set the coordinates for p1 as (0, 0) and the co-
ordinates for p2 as (100h12, 0), where hij is the hop
count from pi to pj . A scaling factor of 100 is multiplied
with h12 to ensure that the computed coordinates are
sufficiently far apart to avoid floating point rounding
errors during routing. The coordinates for the third
reference point p3 = (x3, y3), is the point which is at a
distance 100h31 from p1 and at a distance 100h32 from
p2. (x3, y3) can be computed with triangle equalities.

We define the following error function for the position
�xk of reference node pk:

E =
k−1∑
i=1

(|�xk − �xi| − 100hik)2 (4)

The coordinates of the remaining reference nodes are
obtained by using PSO to solve for the coordinates
that minimize the error E. Note that for PSVC in 3D
coordinates, there exists a solution for �x4, where E = 0.

D. Coordinates for Non-Reference Nodes

Once each of the p reference nodes determines its
initial coordinates, these coordinates are broadcast to all
the nodes in the network. Each non-reference node then
proceeds to compute its own coordinates from its hop
counts to and the coordinates of all the reference nodes.

In the PSO simulation, we define the number of parti-
cles as POPSIZE and the total number of iterations as
kmax. To prevent floating point overflow, we normalize
the coordinates by dividing them by 100h12, the virtual
distance between reference nodes p1 and p2, so that all
the dimensions will be in the range [−1, 1]. The details of
our PSO implementation is shown in Algorithm 1. After
PSO converges, we scale the coordinates of the node by
multiplying the factor of 100h12. In our implementation,
we set the POPSIZE = 10, c1 = c2 = 1.8, wmax =
1.2, wmin = 0.1 and kmax = 100. The parameter
settings for PSO only determines the efficiency of the
convergence and not the final result, and the parameters
we chose are “reasonable” settings that seem to work in
practice.

E. Relaxation after Initialization

After the initial coordinates are determined, we run
an iterative relaxation procedure to make the virtual
topology more convex. Like GSpring [14], we model
the network as a system of nodes and springs. Each
link between two neighboring nodes i and j that can
communicate with each other is modeled as a spring of



Algorithm 1: Compute initial coordinates for non-
reference nodes with PSO
Given �pi, i = 1, · · · , p
Initialize �xi ∈ [−1, 1], �vi ∈ [−1, 1], �G = �0,

�li = �0, i = 1, · · · , POPSIZE,
Lerrori = ∞, i = 1, · · · , POPSIZE
�G = �0, Gerror =∞

for k = 0 to kmax do
w = wmax − k

kmax
(wmax − wmin)

for i = 0 to POPSIZE do
�vi ← w�vi + c1r1(�li − �xi) + c2r2(�G− �xi)
�xi ← �xi + �vi

error =
∑p

j=1(|�xi−�pj|− hj

h12
)2 // where p is the

number of reference nodes, hj is the hop count
from the current node to the reference node j, �p j

is the position for reference node j.
if error < Lerrori then

�li ← �xi

Lerrori = error
end if
if error < Gerror then

�G← �xi

Gerror = error
end if

end for
end for

rest length lij , which depends on the number of common
neighbors. Assume Sij is the set of common neighbors
for nodes i and j, Si and Sj are the sets of neighbors
not shared by the other node respectively, the percentage
of common neighbors rij is defined as follows:

rij =

{
0, if |Sij |+ |Si|+ |Sj | = 0

|Sij |
|Sij |+|Si|+|Sj | , otherwise

(5)
Note that 0 ≤ rij ≤ 1 and the rest length of the spring,
lij , between two nodes i and j is then given by:

lij = lmax − rij(lmax − lmin) (6)

where lmin and lmax are constants such that lmin <
lmax.

According to Hooke’s law, the force vector �Fij , ex-
erted by the spring between two nodes i and j on node
i, is given by the following formula:

�Fij = k × (lij − |�xi − �xj |)× u(�xi − �xj) (7)

where k is the spring constant, lij is the spring rest
length, and �xi and �xj are the coordinate vectors of nodes
i and j respectively. The difference between the spring
rest length and the actual spring length (l ij−|�xi−�xj |) is

the displacement of the spring from rest, and u(�x i−�xj)
is the unit vector from �xj to �xi, specifying the direction
of the force. We compute the net force on a node by
vector addition:

�Fi =
∑
j �=i

�Fij (8)

A node will periodically update its coordinates based
on the virtual coordinates of its immediate neighbors
using the following rule:

�xi = �xi +
min(|�Fi|, αt)

| �Fi|
�Fi (9)

where αt is a damping constant that decreases exponen-
tially after time T , according to the following equation:

αt =
{

αmax, if t < T

αmaxe−
t
T , otherwise (10)

Here, αmax and T are constants and t is the number
of iterations after a node starts updating its coordinates.
When α < αmin, we stop updating the coordinates. In
our implementation, we set k = 0.5, αmin = 1, αmax =
3 and T = 20.

As mentioned in Section III-C, we chose a basic
“virtual hop” length of 100 units in the initial coordinate
assignment. After experimenting with many different
values, we found that the spring constants lmax = 30
and lmin = 15 yielded the best results.

F. Node Joins after Convergence

The steps described in Sections III-B to III-E are
only used for the initialization of a network. Once the
relaxation of the nodes has stabilized, the nodes typically
do not change their coordinates since constant changes to
the virtual coordinates would complicate the addressing
of the nodes during routing.

When a node joins a network, it listens to the stayalive
beacons of its neighbors to obtain their coordinates. If
it finds that the coordinates of its neighbors have not
stabilized, it computes its coordinates according to the
process described in Section III-D. Otherwise, if all its
neighbors have stabilized, it computes its coordinates
as a weighted sum of the coordinates of its neighbors’
coordinates as follows:

xi =
1∑
j rij

∑
j

rijxj (11)

yi =
1∑
j rij

∑
j

rijyj (12)

where rij is the percentage of common neighbors for
nodes i and j as defined in Equation (5).



IV. SIMULATION EVALUATION FOR 2D NETWORKS

In this section, we evaluate the performance of PSVC
by comparing it to NoGeo [18] and the actual physical
coordinates with simulations in TOSSIM, a simulator for
TinyOS. We investigated the effect of network density,
network size and also obstacles. The error bars for all
the plots in our evaluations indicate the 95% confidence
intervals.

In our TinyOS implementation of PSVC, each refer-
ence node will periodically broadcast a heartbeat mes-
sage. The period t (in seconds) between each broadcast
is uniformly distributed in the range [3, 3n], where n
is the number of reference nodes. We set n = 4
for 2D networks and n = 6 for 3D networks in our
implementation because we found that this strikes a
balance between performance and cost. Each heartbeat
message contains the ID of the reference node, hop count
to the reference node and the sequence number of the
message. A node will discard the messages whose se-
quence numbers are superseded by other messages, and
broadcast the remaining messages to its neighbors. Each
node will compute its initial coordinate after it learns of
its hop count to all the reference nodes. Once a node
has computed its initial coordinates, it will broadcast
its coordinates in its own stayalive message every 2
seconds. After a node finds that all its neighbors have
initialized their coordinates, it starts to update its co-
ordinates by running the relaxation algorithm described
in Equation (9). NoGeo is implemented according to its
description in [18].

A. Effect of Network Density

In the simulation, we generate our topology using a
simple radio model: all nodes have the same radio range
and for a given radio range, two nodes can communicate
if and only if they are within range. Nodes are randomly
generated in a plane of size 2, 000 × 2, 000 and the
network densities are varied by adjusting the radio range.
To ensure that the generated topologies are connected,
we repeatedly add nodes at random and remove the
smaller connected components until there is only one
large connected component with the desired number of
nodes (200). We generated 50 random topologies for
each density. In our simulations, we ignore the link-layer
errors since our focus is to evaluate the efficiency and
cost of our algorithm in the routing layer. The impact
of the link layer is evaluated in a real sensor testbed in
Section VI.

To measure the hop stretch, which is defined as the ra-
tio between the actual routing path and the optimal rout-

ing path, we compared the performance of GDSTR [13]
on different virtual coordinate systems and also on the
actual physical coordinates. GDSTR first attempts to
forward a packet to the destination using greedy forward-
ing if there exists a neighbor nearer to the destination.
When greedy forwarding fails, it resorts to routing along
a spanning tree in order to guarantee packet delivery.
Since the greedy forwarding mode is usually much more
efficient than tree forwarding [21], greedy forwarding
success rate is also an important benchmark for virtual
coordinate systems. GDSTR was implemented mostly as
described in [13], with some minor differences because
TinyOS does not support dynamic memory allocation. In
our simulation experiments, each node acts as a source
and sends a packet to a randomly-selected destination
node every 50 ms over a period of 30 minutes (1,800 s)
after the network is allowed to stabilize for 30 minutes.
1) Greedy Forwarding Success Rate: In Fig. 1, we

compare the greedy forwarding success rates for differ-
ent virtual coordinate algorithms with either a one-hop or
two-hop neighbor forwarding strategy. The use of two-
hop neighbor information for greedy forwarding incurs
little additional cost, since the required information is
already contained in the periodic stayalive messages.

We make three key observations: first, the greedy
forwarding success rates for virtual coordinates (both
PSVC and NoGeo) are higher than that for physical coor-
dinates for sparse networks (average node degree below
8); second, as expected, two-hop greedy forwarding can
improve the greedy forwarding success rate compared to
one-hop greedy forwarding and the improvement is most
pronounced for sparse networks, especially for physical
coordinates; finally, PSVC performs better than both
physical coordinates and NoGeo for sparse networks
and achieves close to 100% greedy forwarding success
rates for dense networks. Given that these results were
obtained using only 4 reference nodes for PSVC, we
conclude that 4 reference nodes are sufficient.
2) Average Hop Stretch: In Fig. 2, we plot the hop

stretch for GDSTR running over various virtual coor-
dinate systems. As predicted by the greedy forwarding
success rates shown in Fig. 1, the hop stretch for
dense networks is close to 1 for GDSTR over both
PSVC and physical coordinates. What is interesting is
that PSVC performs better than physical coordinates in
sparse networks. The reason for this is that because of
the relaxation process, PSVC has a tendency to gener-
ate virtual topologies that are somewhat more convex
than randomly-generated sparse topologies. When the
network is more convex, there are fewer local minima
and because greedy forwarding success rate is higher,
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Fig. 1. Plot of greedy forwarding success rate against network density.
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Fig. 2. Plot of average hop stretch for GDSTR against network
density.

the overall geographic routing performance is better.

We found that NoGeo does not perform as well as
PSVC for sparse networks and it performs especially
poorly for dense networks. We found that it was because
NoGeo sometimes does not initialize the coordinates
of nodes properly. NoGeo’s perimeter node detection
algorithm tends to cause perimeter nodes to cluster
on one side of the perimeter in the physical topology
and this has implications on the computations for the
initial coordinates. The NoGeo relaxation process helps
somewhat, but only marginally. This is clear from the
virtual coordinates derived for the donut-like and cross-
shaped networks shown in Figs. 3 and 4 respectively.
In some cases, NoGeo’s perimeter detection algorithm
might also wrongly classify some non-perimeter nodes
as perimeter nodes.

B. Scaling Up

The key motivation of our work is to develop a
distributed virtual coordinate assignment algorithm for
large networks since it is infeasible to manually assign
coordinates for large networks. It is therefore important
to evaluate the performance and cost of PSVC when the
network size scales up.

To this end, we generated a range of random network
topologies between 50 to 3,200 nodes. The topologies
with 200 or fewer nodes were generated in a 2, 000 ×
2, 000 square region, while bigger networks were gen-
erated in a 3, 000× 3, 000 square region. A total of 50
random topologies were generated for each network size.

We generated three classes of random networks: (i)
sparse networks (average node degree 10), (ii) dense
networks (average node degree 16) and (iii) networks
with obstacles (average node degree 8). The radio range
was varied in order to achieve the desired density. The
networks with obstacles were generated by adding

√
n
50

cross-shaped obstacles to n-node topologies. Each cross
consists of two perpendicular lines intersecting in the
middle. The width of the crosses were 1

4 of the region
width for all network sizes.
1) Greedy Forwarding Success Rate: Since a node

can obtain two-hop neighbor information from the stay-
alive messages of its neighbors, in this and subsequent
sections, the results for greedy forwarding success rates
reflect the success rates using two-hop neighbor infor-
mation for various coordinate systems. We omit the
results for one-hop greedy forwarding because of space
constraints, and because they are similar and do not yield
additional insight. In Fig. 5, we plot the two-hop greedy
success rates for both dense and sparse 2D networks. We
observe that for dense networks, both physical coordi-
nates and PSVC can achieve 100% forwarding success.
For sparse networks, PSVC also achieves almost 100%
forwarding success, with the success rate falling slightly
with increasing network size. Even at 3,200 nodes, the
success rate stays above 99%. NoGeo performs worse
than both PSVC and physical coordinates in all cases,
though forwarding success rates remain above 90% in
the range of topologies evaluated.
2) Average Hop Stretch: In Fig. 6, we plot the average

hop stretch achieved by GDSTR for different virtual
coordinate systems. These results are not surprising since
hop stretch is directly correlated with greedy forwarding
success rates. Routing performance with NoGeo is worse
than that with both PSVC and physical coordinates
in both dense and sparse networks. GDSTR with No-
Geo achieves an average hop stretch between 1.05 and



(a) Actual (b) PSVC (c) NoGeo
Fig. 3. Actual and virtual topologies for a sample 3,200-node donut network.

(a) Actual (b) PSVC (c) NoGeo
Fig. 4. Actual and virtual topologies for a sample 3,200-node cross network.
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Fig. 5. Plot of two-hop greedy forwarding success rate against network
size in 2D networks (average node degree 16 for dense networks,
average node degree 10 for sparse networks).

1.15; GDSTR with either PSVC or physical coordinates
achieves a hop stretch close to 1.
3) Networks with Obstacles: In Figs. 7 and 8, we plot

the routing performance for networks with obstacles. The
addition of obstacles has a significant impact on greedy
forwarding success rates for both physical coordinates
and NoGeo. This is because the addition of obstacles
significantly increases the frequency that local minima
are encountered during greedy forwarding. The two-hop
greedy forwarding success rates for physical coordinates
and NoGeo drop to around 40% when there are 3,200
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Fig. 6. Plot of average hop stretch against network size in 2D networks
(average node degree 16 for dense networks; average node degree 10
for sparse networks) with GDSTR .

nodes; PSVC is somewhat more resilient and drops only
to 80%. These results suggest that PSVC will likely work
better than NoGeo in practice since practical network
topologies are likely to have local minima arising from
obstacles blocking some line-of-sight transmissions.

In Fig. 9, we plot the resulting network topologies
for PSVC and NoGeo for a 3,200-node network with
obstacles. It is clear that the topology produced by PSVC
is more “similar” in shape to the actual physical network
topology, and also more convex. The convexity arises



(a) Actual (b) PSVC (c) NoGeo
Fig. 9. Actual and virtual topologies for a sample 3,200-node network with obstacles.
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Fig. 7. Plot of two-hop greedy forwarding success rate against network
size for 2D networks with obstacles (average node degree 8).

from the spring relaxation algorithm employed by PSVC.
4) Convergence Rate: Nodes perform relaxation for

both NoGeo and PSVC. In Fig. 10, we plot the one-hop
greedy forwarding success rates for the two algorithms
for both dense and sparse networks with 3,200 nodes.
The corresponding two-hop greedy forwarding success
rates in both cases are higher. We plot the lower value
because it illustrates the difference in the convergence
rates between PSVC and NoGeo more clearly. It is quite
clear that PSVC converges more rapidly.

For dense networks, PSVC converges rapidly to 100%
greedy forwarding success rate; for sparse networks,
PSVC also converges rapidly (in 50 iterations), but only
to an asymptotic value of about 98%. By using PSO to
compute the initial coordinates, NoGeo also converges
rapidly. However, its greedy forwarding success rate is
lower than PSVC. An interesting observation is that the
greedy forwarding success rate for NoGeo drops after a
certain threshold, so more iterations does not necessarily
yield a better virtual topology for NoGeo. The same
behavior can also be seen in Figure 10 of [18].
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Fig. 8. Plot of average hop stretch for GDSTR against network size
for 2D networks with obstacles (average node degree 8).

5) Storage Cost: In Fig. 11, we plot the maximum
storage requirement for the networks corresponding to
the results in Fig. 6 and Fig. 8. These figures include
the storage required by GDSTR. We see that the storage
requirements for both NoGeo and PSVC are relatively
low and scale up slowly with network size, so storage is
not a major concern.
6) Overhead: Similarly, in Figs. 12 and 13, we plot

the message overhead for the networks corresponding to
the results in Fig. 6 and Fig. 8. The message overhead
for NoGeo includes stayalive messages, bootstrap node
broadcast messages, perimeter node detection messages,
perimeter vector broadcast messages and GDSTR setup
messages. The message overhead for PSVC includes
stayalive messages, reference node election messages,
reference node broadcast messages and GDSTR setup
messages. We make two observations: (i) the overhead
for both PSVC and NoGeo seems somewhat independent
of density and (ii) PSVC requires about twice as many
messages to converge as NoGeo for small networks, but
NoGeo rapidly catches up PSVC for large networks. The
reason is that as the network size increases, the num-
ber of perimeter nodes for NoGeo increases, whereas
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Fig. 11. Plot of maximum storage cost versus network size for
various algorithms for 2D networks (average node degree 16 for dense
networks, average node degree 10 for sparse networks).

PSVC uses a constant number of reference nodes. We
believe that the implementation of the PSVC reference
node election algorithm can be optimized to reduce the
message overhead.

V. SIMULATION EVALUATION FOR 3D NETWORKS

In recent times, we have seen a number of practi-
cal deployments of three-dimensional (3D) sensor net-
works [2, 6, 7], and also a corresponding interest in
geographic routing algorithms for 3D networks [3,4,15].
In this light, we decided that it would be helpful to
evaluate the performance of PSVC and NoGeo for 3D
networks.

We used experimental settings similar to those for
2D networks. We generated topologies in a 2, 000 ×
2, 000×2, 000 cubic region for networks with 200 nodes
or fewer, and a 3, 000× 3, 000× 3, 000 cubic region for
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Fig. 12. Plot of messages sent per node against network size for 2D
networks (average node degree 16 for dense networks, average node
degree 10 for sparse networks) with GDSTR.
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Fig. 13. Plot of bytes sent per node against network size for 2D
networks (average node degree 16 for dense networks, average node
degree 10 for sparse networks) with GDSTR.

larger networks. We investigated sparse networks with
average node degree 8 and dense networks with average
node degree 16. We generated 50 random networks for
each density with sizes ranging from 50 to 3,200 nodes.

In Fig. 14, we plot the two-hop greedy forwarding suc-
cess rates for various algorithms in both sparse and dense
3D networks. PSVC-2D uses only xy-coordinates, while
PSVC-3D uses xyz-coordinates. Our first observation is
that 2D virtual coordinate systems perform poorly in a
3D network. In particular, PSVC-2D achieves a two-hop
greedy forwarding success rate of less than 60% in the
worst case, for both sparse and dense networks. NoGeo
performs even worse. The low greedy forwarding success
rates render them impractical for geographic routing in
3D networks.

The second observation is that PSVC-3D performs
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Fig. 14. Plot of two-hop greedy success rate against network size for
3D networks.
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Fig. 15. Comparison of greedy forwarding success rates for PSVC
with 4, 5, 6 and 7 reference nodes for 3D networks.

much better than physical coordinates in sparse net-
works, and has a similar performance to physical coor-
dinates in dense networks. Its greedy forwarding success
rate is greater than 95% in the worst case. As evident
from the results in Section IV, there is an inverse
relationship between hop stretch and greedy forwarding
success rate. Due to space constraints, we omit the
results for GDSTR hop stretch.

In Fig. 15, we compare the efficiency of PSVC in
3D networks with different numbers of reference nodes.
While 4 references nodes are sufficient to achieve good
performance for 2D networks, it is clear from these
results that 4 reference nodes are insufficent for 3D
networks, and that with 6 reference nodes, PSVC can
achieve a greedy forwarding success rate of 90% even
for sparse networks with 3,200 nodes.

VI. EVALUATION ON SENSOR NETWORK TESTBED

In order to evaluate the performance of PSVC in a
practical setting, we evaluated PSVC on Indriya [2], a
wireless sensor network testbed deployed at the National
University of Singapore. On Indriya, we had access to
120 TelosB sensor motes deployed on three levels of a
building. Each mote has a TI MSP430 processor running
at 8 MHz, with 10 KB of RAM, internal and external
flash memories of size 48 KB and 1 MB respectively,
and a Chipcon CC2420 radio operating at 2.4 GHz.

To evaluate the performance of different virtual co-
ordinate algorithms, we ran experiments with connected
subsets of nodes. First, we started with only sets of ran-
domly chosen nodes on Level 1; next, we used randomly
chosen nodes on both Levels 1 and 2; finally, we used
randomly chosen nodes distributed across all three levels.
Experiments were repeated with 5 random subsets of
nodes for each network size. In each experiment, each
node acts as a source and sends a packet to a randomly
chosen destination every second for 30 minutes.

While we would have evaluated the efficiency of
GDSTR with PSVC and NoGeo on Indriya, it turns out
that the TelosB motes have only 48 KB of executable
memory and the sizes of the binary executable for
GDSTR/PSVC and GDSTR/NoGeo are too large to fit.
In fact, NoGeo by itself does not fit either and the PSVC
TelosB binary is already 44 KB in size.

In Fig. 16, we plot the two-hop greedy forwarding
success rates for different algorithms. We can see that be-
cause Indriya is a 3D network, PSVC-2D does not work
well when the nodes are distributed over two or more
levels. It is no surprise that when the physical topology
is a 3D network, we are able to generate a topology
that is more amenable to greedy forwarding with a 3D
virtual coordinate assignment algorithm. Surprisingly,
while the PSVC topologies are more convex that the
actual physical topology, two-hop greedy forwarding
using the actual physical coordinates achieves a slightly
higher success rate.

VII. CONCLUSION

In this paper, we present Particle Swarm Virtual Co-
ordinates (PSVC), a new distributed virtual coordinate
assignment algorithm that employs Particle Swarm Op-
timization to compute virtual coordinates for geographic
routing. PSVC converges faster and achieves a lower
hop stretch compared to NoGeo, and scales well up to
large networks of 3,200 nodes. Also, PSVC makes no
assumptions on the network topology and can naturally
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Fig. 16. Plot of two-hop greedy forwarding success rates for various
algorithms on Indriya.

be extended to three-dimensional (3D) wireless sensor
networks.

We have not been able to deploy PSVC and GDSTR
simultaneously in the TelosB motes because the com-
piled binaries are too large to fit into the executable
memory. We are working on improving the memory
footprint of PSVC (and perhaps GDSTR if necessary)
in order to fit both algorithms into the 48 KB exe-
cutable memory. That said, our evaluation results have
demonstrated that PSVC is a concrete step towards
making geographic point-to-point routing practical for
large wireless sensor networks.
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