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Abstract—It is not uncommon for the uplink buffers of cellular
data networks to be saturated when the uplink bandwidths are
low. This can cause the ACK packets for a downlink TCP
flow to be severely delayed. Since existing TCP implementations
are ACK-clocked, the downstream flow will suffer significant
degradation, causing the downlink to be under-utilized. We
present a new TCP variant, called TCP Receiver-Rate Estimation

(TCP-RRE), that addresses this problem directly by eliminating
ACK clocking. Instead, it uses TCP timestamps to estimate the
receiving rate at the receiver, which it then uses to determine
the sending rate. We show that TCP-RRE is able to improve
download speeds by 2 to 4 times compared to existing TCP
variants in both simulation and on real commercial cellular
data networks. Our solution is practical because it is compatible
with existing TCP implementations, requires no modifications to
existing mobile devices, and is thus immediately deployable in
existing ISP proxies.

I. INTRODUCTION

Recent studies have shown that the significant asymmetric

bandwidth in cellular data networks can cause significant

degradation for a downstream TCP flow to a mobile device

in the presence of a concurrent upstream flow. This problem

can be mitigated if the upstream flow regulates its sending

rate to avoid saturating the uplink buffer [21]. Unfortunately,

this approach only works if the receiver of the upstream

cooperates by implementing the solution, and will not work

with a non-TCP upstream flow. Furthermore, we have found

that extremely low uplink bandwidth (<200 kb/s) is not uncom-

mon in 3.5G/HSPA mobile networks even when the downlink

bandwidth is high. This is especially common in crowded areas

during peak hours, like in the subway or in a shopping mall.

Under such circumstances, the ACK packets of a downstream

TCP flow will inevitably be severely delayed in the uplink

buffer. As TCP relies on ACK clocking to regulate its data

flow, severely delayed ACK packets can cause the downstream

TCP throughput to be reduced significantly and the downlink

to be under-utilized.
Naively, we can improve the utilization of the downlink

by sending data packets at a rate that saturates the downlink

buffer without waiting for the ACK packets. However, by

doing so, we will likely lose packets from buffer overflow

and cause significant delays. This is known as the bufferbloat

problem [12]. In this paper, we present a sender-side rate-based

algorithm, called TCP Receiver-Rate Estimate (TCP-RRE), that

tries to do better. Not only do we fully utilize the downlink,

we also keep the occupancy of the downlink buffer low.
While there have been previous work on rate-based con-

gestion control algorithms both for TCP [15, 17] and for

UDP [6], to the best of our knowledge, TCP-RRE is the

first attempt at completely eliminating ACK clocking in the

TCP stack. Previous rate-based TCP variants all estimated the

appropriate sending rates in order to determine the appropriate

congestion window cwnd. There are many reasons why rate-

based approaches are not commonly deployed. First, rate-based

congestion control algorithms are typically less aggressive than

existing window-based TCP variants like TCP-CUBIC [7].

This means that rate-based algorithms would contend poorly

against them in the core Internet. Second, they often require

modifications to the TCP stacks of both the sender and receiver,

which is often hard to achieve in practice. Finally, it is

fundamentally difficult to estimate the available bandwidth

accurately in the presence of network fluctuations. If it is not

possible to estimate the available bandwidth accurately, then

we certainly cannot set the sending rate correctly.

Keshav had previously shown that rate-based flow control

is optimal for networks that implement fair queuing [16].

We argue that with the emergence and growing popularity of

modern cellular data networks, it is timely to revisit rate-based

algorithms because cellular data networks typically maintain

separate queues for individual subscribers at each base station

and enforce a non-FIFO scheduling policy. It turns out that it

is also common for mobile ISPs to deploy transparent proxies

in their networks and split TCP is the norm and not the

exception [21]. This means that if implemented at such a

proxy, a rate-based algorithm would not have to contend with

more aggressive window-based TCP variants. We will show

in Section IV that even if implemented at a server, and not

at a proxy, our rate-based approach can still achieve improved

utilization compared to TCP-CUBIC.

In addition, we argue that our approach is practical because it

requires only modifications at the TCP sender (which can easily

be incorporated in a proxy) and does not require changes to the

TCP stack of the receiving mobile devices. Because TCP-RRE

estimates the available downlink bandwidth by deducing the

receive rate at the sender via passive observation of the TCP

timestamps on the ACK packets, it only requires that the TCP

timestamp option be enabled. This option is currently enabled

by default for both Android and iOS, which together currently

account for some 80% of the available mobile devices.

Since we are only able to obtain a rough estimate of the

available downlink bandwidth and there are often significant

variation in network conditions, our key insight is to exploit
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the downlink buffer to take up the slack. We implement the

rate control algorithm with a feedback loop with two states:

(i) a “buffer fill” state, where the sending rate is set slightly

higher than the estimated receive rate, and (ii) a “buffer drain”

state, where the sending rate is set below the estimated receive

rate. By oscillating between these two states depending on the

observed changes in the one-way packet delays, TCP-RRE

keeps the buffer occupancy low but ensures that there are

always sufficient packets to maintain high link utilization. The

TCP-RRE rate control algorithm also adapts naturally to the

fluctuations in the network conditions.

We evaluated TCP-RRE with both the ns-2 simulator

and also with a Linux implementation over two commercial

3.5G/HSPA mobile networks. Our simulation results show that

TCP-RRE is able to fully utilize the downlink bandwidth when

the uplink bandwidth is low relative to the downlink bandwidth.

TCP-RRE is able to improve download speeds by up to 10

times in our ns-2 simulations and by about 2 times for our

Linux implementation in real cellular data networks, compared

to TCP-CUBIC. When link conditions are good, TCP-RRE’s

delay-based congestion detection mechanism also helps to

mitigate buffer-bloat [12], by reducing the buffer occupancy by

more than an order of magnitude compared to TCP-CUBIC.

While multiple TCP-RRE flows contend fairly among them-

selves, TCP-RRE might be prone to starvation if it needs to

contend with more aggressive window-based TCP variants.

This suggests that TCP-RRE should ideally be deployed at

a proxy at the last hop mobile link of a mobile ISP. That said,

experiments with our Linux implementation, on a server not

located within an ISP, suggests that even if not, TCP-RRE is

still able to achieve higher download speeds than TCP-CUBIC.

II. TCP RECEIVER-RATE ESTIMATION (TCP-RRE)

In Fig. 1, we plot the ratio of the average one-way delay of

400 different 1 MB TCP downloads over a 3.5G/HSPA link—

half of them with a concurrent TCP upload in the background

and the other half without. The measurements were taken by

tethering an Android phone to a server via USB in loopback

configuration. What these results show is that when the uplink

buffer is relatively empty, the uplink delay is typically smaller

than the downlink delay. However, when the uplink buffer is

saturated, the one-way delay of the uplink can inflate to almost

100 times to that of the downlink.

It is clear that under such circumstances, the ACK packets

for the downlink flow will be severely delayed and because

TCP is ACK-clocked, the downlink will be under-utilized. Our

key insight is that to achieve good utilization, it suffices if on

average, we can match the sending rate to the effective link

bandwidth even if the ACK packets are delayed. While this

could be easily done with the cooperation of the receiver, we

do not think that it is feasible to expect all existing TCP stacks

to be replaced. To avoid modifying the existing TCP stacks

in the mobile devices, we developed a sender-side technique

called TCP Receiver-Rate Estimation (TCP-RRE) to estimate

the receive rate by exploiting the TCP timestamp option. In our

work, we have found that it is very common for mobile ISPs
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Fig. 1: Ratio of one-way delay against ratio of downlink throughput.
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Fig. 2: Deployment scenario for TCP-RRE.

to deploy transparent proxies in their networks [21], especially

on port 80. We have found this to be true for all three local

ISPs and in this light, TCP-RRE is designed to be deployed at

such proxies as shown in Fig. 2. In the rest of this section, we

will describe how we successfully eliminated ACK clocking at

the TCP sender with our new algorithm.

The general idea is to set the sending rate so that, on average,

it matches the available downlink bandwidth. However, it is

hard to estimate the available downlink bandwidth accurately

from the receiving rate, because (i) the time granularity of TCP

timestamps is too coarse to achieve high accuracy, and (ii)

the available bandwidth could increase over time and if the

sending rate were not increased accordingly, the receiving rate

would remain the same, resulting in the underestimation of the

available bandwidth.

Our approach addresses these challenges by oscillating the

sending rate around a coarsely-estimated receive rate and

exploiting the buffer to take up the slack. We first send a

small burst of packets that is not likely to saturate or cause the

downlink buffer to overflow. From the timestamps of the ACKs

for these packets, the sender estimates the receive rate ρ and

sends packets at a rate that is slightly larger than ρ. This should

cause the downlink buffer to start filling up. We continuously

estimate the receive rate ρ and also monitor the buffer growth

by tracking the relative one-way delay. If the delay grows above

a certain threshold, we switch instead to a “buffer drain” state,

where the sending rate is reduced to a rate slightly lower than

ρ, which causes the buffer to drain. When the observed one-

way delay drops below the threshold, we again switch back to

the initial “buffer fill” state. In this manner, we can achieve

an average sending rate that matches the available downlink

bandwidth while maintaining link utilization without requiring

an accurate estimate of the receive rate.
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A. Preliminaries

We will first define the various parameters and metrics that

are used by TCP-RRE. Instead of being ACK-clocked, TCP-

RRE packets are sent at a rate σ and packets are received at

some rate ρ. This is illustrated in Fig. 3.

Estimating Receive Rate ρ. We estimate ρ using the TCP

timestamp option. When the TCP timestamp option is set, both

the sender and receiver will mark packets with two timestamp

values: (i) TSval, the current kernel timestamp when the

packet was sent, and (ii) TSecr, the “echo reply” which is

the TSval of the oldest unacknowledged data packet received

from the sender. Since we found that the delay between the

reception of a data packet and the sending of the corresponding

ACK packet is negligible (below 1 ms from our measurements),

the TSval of ACK packets provides us with a good estimate

of the local timestamp when the data packet was received.

Normal in-sequence ACK packets will advance the ACK

sequence number, which indicates the number of bytes received

at the recorded timestamp. By tracking the byte counts between

consecutive ACK packets, we can estimate the receive rate. The

only caveat is that the timestamp granularity of the receiver

is known to the sender, but since most devices use a 10 ms

granularity, this is hardly a concern. The situation becomes

slightly complicated when packets are reordered or lost. To

handle this, we use the TCP SACK option, which allows

us to compute the exact amount of data received for each

ACK. When there is no change to the SACK blocks, we

simply assume one MSS of data was retransmitted. Typical

TCP implementations only acknowledge every other packet

(c.f. delayed ACK), but this does not affect the accuracy of our

estimate, though it introduces a small, but negligible delay.

Estimating Buffering Time tbuff . En route from the sender

to the receiver, a data packet will often spend some time tbuff
in the downlink buffer of the 3.5G base station if the channel

is fully utilized. Suppose the shaded packet in Fig. 3 is sent

at time ts1 and queued in the buffer for time tbuff until it is

transmitted. It arrives at the receiver at time tr1 and the receiver

replies with an ACK, with TSval set to tr1 and TSecr set

to ts1 . In principle, we should be able to determine from the

TSecr value that the ACK is associated with the earlier shaded

packet, but in practice, TSecr does not reflect the TSval of

the packet ACKed when there is a delayed ACK or a lost

packet. So instead, the packet sent time is obtained from the

transmission buffer maintained by the kernel. We define the

relative one-way delay RD as tr1 − ts1 . Clearly, the minimum

observed relative one-way delay RDmin would be observed

when the buffer is empty, so we can estimate tbuff with RD−
RDmin.

B. Detailed Algorithm

TCP-RRE is organized in two key stages: (i) initial receive

rate estimation and (ii) buffer management mode. We use a

burst of n packets to provide us with an initial estimate of the

receive rate. Thereafter, we adjust the sending rate to regulate

the number of packets in the downlink buffer so as to keep the

downlink fully utilized.

Initial Receive Rate Estimation. We start a new connection

with a burst of n packets, to intentionally saturate and cause

a small backlog of packets at the downlink buffer. Since the

buffer is backlogged, the drain rate and thereby the receive

rate would be approximately equal to the maximum available

bandwidth. Ideally, we would want to fill the buffer to more

than 1 × BDP (bandwidth-delay product) because this will

ensure that the buffer remains filled until the first ACK packet

returns. Furthermore, because we know the maximum capacity

of a 3.5G/HSPA link (e.g. 7.2 Mb/s downlink bandwidth and

50 ms RTT), we should, in principle, set n to the maximum

BDP, which is about 30 packets. Since downlink buffers are

typically in the order of several thousand packets in size, a

burst of 30 packets is relatively small and will not likely cause

the downlink buffer to overflow. However, in practice, because

the typical initial TCP receiver window is only 10 packets,

packets will be dropped if n is larger than 10. Also, Dukkipati

et al. from Google Inc. recently argued for the TCP initial

congestion window to be increased to 10, which they claim

can reduce latency without causing congestion [5]. Hence, we

use a setting of n = 10.

After the initial burst, two new data packets are sent for

each ACK received in this state. This is analogous to TCP

Slow Start. Once we receive enough ACK packets to obtain a

good estimate of ρ, TCP-RRE switches into buffer management

mode.

Buffer Management Mode. In buffer management mode,

our goal is to keep the number of packets in the buffer B

oscillating around a threshold value T . When the number of

packets in the buffer is less than T , we will set the sending

rate σ at a value that is higher than the estimated receive rate

ρ to fill the buffer; otherwise, we will set σ to a lower value

so as to drain the buffer. We discuss how we determine an

appropriate value for T in Section II-E below. In practice, the

number of packets in the buffer B will fluctuate between a

value Bmax > T and a value Bmin < T because of a delay

in the feedback from the receiver.

We know that it takes tbuff time for a packet to move from

the tail to the head of a queue of length B, so we can estimate
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B from tbuff as follows:

B ×MSS = ρ× tbuff (1)

B =
ρ× tbuff

MSS
(2)

where MSS is the maximum segment size, typically 1,420

bytes.
(a) Buffer Fill State (B < T ). When the estimated number

of packets in the buffer B is less than T , we set σ > ρ so

that the buffer starts to fill. We will not be able to observe B

directly and so we infer B from tbuff using Equation (2). In

other words, we keep filling the buffer if:

tbuff <
T ×MSS

ρ
(3)

We determine σ by analyzing the evolution of the buffer as

shown in Fig. 4. It is clear from the figure that once B reaches

T (shaded packet), it takes tbuff + RTT for the sender to

receive the feedback. During this time, the buffer would have

increased in size at a rate σ − ρ, so

Bmax = T +
σ − ρ

MSS
×RTT (4)

σ = ρ+
Bmax − T

MSS ×RTT
(5)

where Bmax is the expected maximum number of packets in

the buffer (to be discussed in Section II-E).

(b) Buffer Drain State (B ≥ T ). As we keep sending

packets at a rate that is higher than the receive rate, tbuff will

eventually exceed the threshold value given in Equation (3).

Once this occurs we will need to reduce the sending rate σ so

that it falls below ρ, as follows:

σ = ρ−
T −Bmin

MSS ×RTT
(6)

where Bmin is the expected minimum number of packets in

the buffer (to be discussed in Section II-E). This is completely

analogous to the buffer fill state with the following caveat: after

the sending rate σ is reduced when we enter this state, σ is

only allowed to increase and not allowed to decrease, even if

the estimated receive rate ρ drops or if the RTT decreases.
Under normal circumstances, the buffer will start to empty

after σ is reduced. Eventually, tbuff will fall below the

threshold T×MSS
ρ

, in which case we will switch back to the

buffer fill state. However, ρ should remain constant as long

as there are packets in the buffer. Thus, if ρ were to decrease

and eventually match σ, it indicates that buffer has completely

emptied. If we were to always keep σ < ρ as ρ decreases, the

lower sending rate will directly result in a lower receiving rate.

Thus, both σ and ρ will eventually be reduced to zero when

the buffer is empty. This is why σ is not allowed to decrease

in this state. Note that it takes a while before the effect of any

state change is observed by the sender due to RTT and buffer

delays.

C. Adapting to Changes in Underlying Network

Our algorithm tries to match the sending rate σ to the receive

rate ρ, so it will naturally adapt to observed changes in the

available bandwidth. However, because it uses the estimated

relative one-way delay to determine when to switch between

the buffer fill and buffer drain states, RDmin has to be updated

as the underlying one-way delay changes.

Decrease in one-way delay. During the buffer fill stage, this

will result in an underestimation of the number of packets in

the buffer and result in the algorithm switching to the buffer

drain state later. This means that the number of packets in

the buffer would oscillate about a value that is higher than

the T which we had intended. This might increase the delay

slightly but would not have much impact on the efficiency. It

is plausible that during the buffer drain stage, the buffer might

drain sufficiently, so that RD falls below the earlier observed

RDmin, in which case RDmin is updated with the new value.

Increase in one-way delay. This will cause packets to spend

more time on the link as the BDP increases, which will in

turn cause the buffer level to drop while TCP-RRE remains

oblivious to the changes. This causes no harm if the buffer

never empties as the link will still be fully utilized. However,

if the buffer does empty, the receiving rate ρ will be limited by

the sending rate σ as discussed previously and ρ will eventually

decrease to match σ. Naively, we could simply update RDmin

to the current RD. However, it might not always be the case

that the buffer is empty when ρ falls to match σ. The presence

of another flow, or simply network fluctuations could also cause

ρ to reduce. We thus introduce a special monitor state to probe

the network, before deciding what to do next.

Monitor State. When transiting into this state, a small burst

of n packets is sent, similar to the initial fill stage. This is to

probe if the buffer is empty, or network conditions had indeed

changed. Thereafter, as a precaution and to further drain the

buffer, the sending rate σ is halved while we wait for the

feedback from the initial small burst. When the feedback is

received, it gives us the new receive rate estimate ρ′. If ρ′

is close to the previous value ρ, it suggests that the network

bandwidth did not actually change and perhaps the buffer

was either empty, or a competing flow had reduced the rate

temporarily. Either way, RDmin is updated and we switch back

to buffer fill state with the new ρ = ρ′.

If ρ′ is indeed much lower than ρ, this most likely suggests

that the link bandwidth had reduced and the buffer was not



yet empty. Thus, we return to the buffer drain state with the

updated ρ = ρ′ without changing RDmin.

In addition, it can be derived from the equations in Sec-

tion II-B that it should typically take approximately 3 × RTT

for the buffer to sufficiently drain and switch back to the buffer

fill state. If the algorithm stays in the buffer drain state longer

than 4 × RTT, it suggests that the buffer is not draining as

expected, and so we also switch to the monitor state.

D. Handling Packet Losses

Traditional TCP congestion control uses packet losses to

trigger a congestion event, under the assumption that the losses

were due to buffer overflow. Because TCP-RRE will keep

buffer occupancy low and will not overflow the buffer, packet

losses due to buffer overflow are likely caused by competing

(non-TCP-RRE) flows.

There are several existing TCP fast recovery schemes to

handle packet losses that uses SACK [2, 4, 18]. All of them

focus on estimating the number of outstanding packets in

flight in order to reduce the cwnd to an optimal value to

minimize delays. On the other hand, TCP-RRE does not need

to estimate a cwnd because its sending rate is not clocked

by ACK packets. In this light, as long as TCP-RRE continues

to correctly estimate the receiving rate and relative one-way

delay from the SACK information, it can continue to use the

same sending rate for both retransmission as well as new data

packets.

To avoid inadvertently causing further buffer overflow, TCP-

RRE will switch to the buffer-drain state, i.e. we will slightly

reduce the send rate, when there is a packet loss. If successive

packet losses cause TCP-RRE to stay in the buffer-drain state

for a long time, it will eventually trigger a transition to the

monitor state, where TCP-RRE aggressively drains the buffer.

While we did not specifically design TCP-RRE to handle

packet losses, the basic algorithm was able to adapt to packet

losses naturally.

E. Parameter Tuning

Other than the size of the initial burst n, TCP-RRE needs

to determine the values of parameters T , Bmax and Bmin.

Clearly, Bmin ≥ 0 and Bmax should not be larger than the

available downlink buffer, which is determined by the mobile

ISP and is not under our control (though it is relatively easy

to estimate the size of the buffer with a simple experiment).

We experimented with different settings and found that a

large T will cause slower feedback due to the increased buffer

delay. While this does not affect the resulting receiving rate,

it makes our algorithm slow to react to network fluctuations.

Conversely, setting T too low might inadvertently cause the

buffer to empty, resulting in underutilization of the downlink.

Also, the higher the bandwidth of the link, the faster the

buffer will drain. Thus, a value of T that is suitable for low

bandwidths might be too low when the bandwidth is high. A

simple solution is to make T a function of the bandwidth and

RTT. Because we know the receive rate ρ and the RTT, we

set T = ρ×RTTmin, which is the estimated bandwidth-delay

product (BDP) and this seems to work well in practice. We

note that Nichols and Jacobson’s CoDel also sets 1 × RTT

as the threshold to invoke early dropping of packets in the

buffer [19].

Bmax and Bmin determine the responsiveness of TCP-RRE

and how fast it will converge to T on each oscillation. If

the difference between them and T is large, TCP-RRE will

respond with more aggressive changes in the sending rate (See

Equations (5) and (6)). Because T is set to the BDP, we set

Bmax and Bmin to T + BDP
2

and T − BDP
2

respectively. We

found that in practice, because of the imprecision in estimating

the RTT and receive rate, the fluctuations in the buffer size

will tend to overshoot these maximum and minimum values.

This problem is exacerbated when the bandwidth is low (so

T is small), and the buffer might empty completely, leading

to underutilization. We address this issue by simply setting

a minimum value for T at 30 packets. Likewise, to prevent

excessive use of the buffer, a maximum value of T can also be

imposed. We did not set a maximum as we found the typical

ISP downlinks buffers are sufficiently large. Instead, we set the

lower and upper limit on Bmax and Bmin to +10 and −10
packets respectively.

III. ns-2 SIMULATION

We evaluated TCP-RRE with the ns-2 simulator to un-

derstand and show the correctness of the protocol under a

controlled environment. While we also have a Linux imple-

mentation that can be run over a real 3.5G/HSPA network,

we are not able to replicate a consistent test environment

over a commercial 3.5G/HSPA cellular data network. Because

we are aware that our ns-2 model cannot perfectly model

real 3.5G/HSPA links, we attempt to obtain good simulation

parameters by performing a measurement study of existing

cellular data networks.

We evaluate TCP-RRE under three scenarios: (i) when the

uplink bandwidth is very low, (ii) when the uplink bandwidth

is good, and (iii) in the presence of a concurrent upstream

flow. We compare it against TCP-Reno, the classic congestion

control algorithm, as well as TCP-CUBIC [7], which is the

current default TCP congestion control algorithm deployed

in Linux and Android. We also compared TCP-RRE to TCP

Vegas, which is delay-based, and to TCP Westwood, which

implements a form of receive rate estimation.

A. Network Model & Parameters

In our simulations, we used the simple dumbbell topology

shown in Fig. 5 to model the mobile wireless link. While a

typical connection from a mobile device to the Internet will

involve more nodes and links, this configuration is sufficient

for us to obtain an understanding of TCP-RRE, because we

expect the bottleneck to be at the mobile wireless link. What

remains is to set the model parameters (link bandwidth, buffer

size, RTT and loss rate) appropriately, so that we have some

confidence that the resulting evaluations are meaningful for a

practical cellular data network.

To determine the parameters for our model, we conducted
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a measurement study to characterize the 3.5G/HSPA networks

of the three local mobile ISPs, which we anonymously label

A, B and C. While 4G/LTE plans have very recently become

available, we did not manage to get access to them as there

were no locally available plans when we first started our

experiments. We believe that our results are likely to be

applicable to 4G/LTE networks as well. We wrote a custom

Android app which we installed on the phones of several

volunteers to collect background measurements of local mobile

networks when their phones were idle.

Link Bandwidth. To determine the bandwidth of the net-

works, we use UDP to send a small flood of packets of around

300 KB between a server and a mobile device and record the

received throughput. We recorded over 2,000 data points over a

period of several weeks, which we plot in Fig. 6. We see from

the results that the available bandwidth is distributed across a

large range up to 5 Mb/s downstream and 3 Mb/s upstream. All

three mobile ISPs offered mobile plans with advertised rates of

7.2 Mb/s downstream and 2 Mb/s upstream. There were a small

number of instances where the downstream bandwidth reached

8 Mb/s. While we omitted these samples from the graph for

clarity, the bandwidth parameters in our simulations were up

to 8 Mb/s for the downlink and 3 Mb/s for the uplink.

Our measurement results seem to suggest that there is no

clear correlation between the uplink and downlink bandwidth.

At the same time, there are significant differences in the

network characteristics for different mobile ISPs. For example,

ISP C seems to impose a cap on the upload bandwidth

that is significantly lower than the 2 Mb/s advertised rate.

Furthermore, it is not uncommon for the uplink bandwidth to be

very low while the downlink remains disproportionately high.

We found that not only do certain locations tend to exhibit such

characteristics, they also typically occur in crowded areas like

in a shopping mall or in the subway during peak hours. One

possible explanation is that the mobile device might not have

sufficient transmission power to overcome the interference at

TABLE I: Buffer sizes for different ISPs and phone models.

ISP Downlink Buffer

A 2.8 MB

B 2.8 MB

C <600 KB

Phone Model Uplink Buffer

iPhone 5 150 kB

HTC Desire 200 kB

Galaxy Nexus 1 MB

HTC Rhyme 1 MB

certain locations. Another explanation is that there might be

significant contention on the uplink due to a high volume of

subscribers.

RTT & Packet Loss. We observed RTTs that varied between

50 ms to 200 ms, so the RTT parameter for our simulations

was also varied within this range. The observed packet loss

rate was less than 0.04% overall, which agrees with Huang

et al.’s measurements that packet losses over cellular networks

are rare [9]. We did simulations both with no link losses and

with 0.04% link losses, and found that there was hardly any

difference in the results.

Buffer Size. We estimated the uplink and downlink buffer

sizes by sending a flood of UDP packets at the advertised link

rate. Because packet losses are uncommon over the 3.5G/HSPA

link due to its Hybrid-ARQ mechanism, any losses can most

likely be attributed to buffer overflow. By examining the

outstanding packets-in-flight (pif), we can deduce the buffer

size from the steep increase in packet losses when the pif

reaches a plateau. We also measured the downlink buffer for

each ISP and found that the downlink buffer for ISP A and

B was about 2.8 MB. For ISP C, the pif did not plateau but

peaked in spikes, with packet losses. We suspect that ISP C has

implemented some form of RED in their network, and thus did

not use it in our evaluations. Another interesting observation

we made from our measurements is that separate downlink

buffers are maintained for each mobile device from running

the measurements simultaneously with phones side-by-side.

Similarly, we measured the uplink buffer for a few different

phone models and found that certain phone models, especially

older ones, have significantly smaller buffers. We suspect it

could be because the newer models are designed to support

the higher HSPA+ uplink speeds. However, these large buffers

would exacerbate the ACK delay problem that we study in

this paper when these phones operate on the older 3.5G/HSPA

networks. Our results are summarized in Table I. Based on

these results, we set the downlink and uplink buffer sizes to

2.8 MB and 1 MB in our simulations.

B. Single Download with Slow Uplink

To understand how a slow uplink can degrade a TCP flow

downstream, we varied the uplink and downlink bandwidths for

a 1 MB data flow downlink using TCP-CUBIC. In Fig. 7, we

plot the average downlink utilization against uplink bandwidth.

As expected, the utilization is independent of the uplink band-

width when the uplink bandwidth is high, but the utilization

drops once the uplink bandwidth falls below a certain threshold

(See dotted line in Fig. 7). This threshold increases as the

downlink bandwidth increases, since we need a higher rate

of returning ACK packets to clock the TCP sender.

TCP-RRE is specifically designed to address scenarios where
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the uplink is the limiting factor. To understand how TCP-

RRE improves downlink performance, we uniformly sampled

configurations of (uplink, downlink) pairs that fall below this

threshold by varying the uplink bandwidth at 5 kb/s intervals

and the downlink bandwidth at 0.25 Mb/s intervals. We run

experiments to compare the resulting goodput of TCP-CUBIC

and TCP-RRE for each of these configurations and plot the

results in the scatter-plot shown in Fig. 8. These results

clearly demonstrate that TCP-RRE is able to achieve a higher

goodput than TCP-CUBIC when the uplink is a bottleneck.

The achieved improvement depends on how close the uplink

is to the threshold. It is greatest when the uplink bandwidth is

significantly smaller than the threshold. While it is not shown

in the figure, TCP-RRE is able to achieve a downlink utilization

close to 80% for 90% of the scenarios.

C. Download with Concurrent Upload

Next, we investigate how TCP-RRE performs when the

uplink is congested. To simulate a congested uplink, we simply

start a single continuous upload using TCP-CUBIC. After a

short delay to allow the uplink flow to saturate the uplink

buffer, we start a downstream TCP transfer of 1 MB using

different TCP variants. We varied the delay from 1 s to 10 s at

1 s intervals, the uplink bandwidth from 250 kb/s to 3,000 kb/s

at intervals of 250 kb/s, and the downlink bandwidth was

varied from 500 kb/s to 8,000 kb/s at intervals of 500 kb/s.

In total, we obtained 1,620 data points for each of the TCP

variants: TCP-RRE, TCP-Reno, TCP-CUBIC, TCP Vegas and

TCP Westwood. The RTT was set at 100 ms.

In Fig. 9, we plot the cumulative distribution of the ratio of

goodput achieved by TCP-RRE against that for the other TCP

variants on a pairwise basis. We make three observations: (i)

the achieved goodput for TCP-Reno, TCP-CUBIC and TCP

Westwood are extremely similar. There are three distinct lines

for these three algorithms in Fig. 9, but it is hard to tell them

apart. The reason for the similarity is that all three algorithms

have similar behavior during slow start, which dominates the

duration of the 1 MB data transfer. (ii) TCP Vegas performs

relatively poorly and is starved about 30% of the time by the

concurrent upload. (iii) TCP-RRE is able to achieve downlink

goodput that is between 2 to 4 times of that for the other

window-based ACK-clocked TCP variants.

D. Single Download under Normal Conditions

While we have shown that TCP-RRE performs as expected

and can improve downstream TCP goodput under poor uplink

conditions, we now examine how TCP-RRE compares against

other TCP variants under normal conditions. Here, we trans-

ferred 10 MB downstream so as to allow the downstream buffer

a chance to fill. The downlink bandwidth was varied between

0.5 Mb/s to 8 Mb/s at intervals of 0.5 Mb/s, and the uplink

bandwidth was set at a level that is above the threshold levels

described in Section III-B. The RTT was set at 100 ms.

In Fig. 10, we plot the average downstream goodput of

various TCP variants and note that the achieved downstream

goodput are all comparable. A minor observation is that TCP-

RRE performs slightly better than the other variants when

the downlink bandwidth is high because TCP-RRE does not

require several RTTs during slow start to inflate the cwnd like

the other (ACK-clocked) variants. Instead, it quickly estimates

the correct sending rate. This can be clearly seen in Fig. 11

where we plot the time traces of the various single TCP flows

against time. We can see that the average goodput of TCP-RRE

increases much more rapidly to the steady value than the other

TCP variants. We can observe also in the time traces that TCP-

Reno and TCP-CUBIC both experience a drop in goodput after

about 2 s due to packet losses from buffer overflow. Because

SACK was used in our simulation, the sender only had to

retransmit the packets lost when the buffer overflowed. Thus,

upon reception of the lost packets, the goodput sharply returns

to normal.

E. Handling Network Fluctuations

One important design goal of a congestion control algorithm

is that it must be able to adapt to changing network conditions

promptly and gracefully. To investigate how TCP-RRE handles

changes in network conditions, we ran a long-lived TCP-RRE

flow with a starting downlink bandwidth of 3 Mb/s and the RTT

initially set at 100 ms. The underlying network conditions are

changed at various points: (i) at 4 s, the RTT was increased by

50 ms to 150 ms; (ii) at 8 s, the RTT was further increased to

200 ms; (iii) at 15 s, the bandwidth was decreased to 2 Mb/s;

(iv) at 20 s, the RTT was restored to the original level of

100 ms; (v) at 24 s, the bandwidth was drastically increased to

5 Mb/s; and finally (vi) at 30 s, the bandwidth was restored to

the original value of 3 Mb/s. The resulting trace is shown in
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Fig. 13. We plot also a trace for TCP-CUBIC under the same

conditions for comparison.
We see from these traces that TCP-CUBIC has a relatively

stable sending rate, but it also keeps buffer occupancy relatively

high. While the sending rate for TCP-RRE oscillates, the

achieved receive rate is comparable to TCP-CUBIC and also

relatively stable. TCP-RRE reacts to the changes rather quickly

and typically converges to the correct sending rate within a

few seconds. The worst response was at t = 8 when the

RTT increases a second time. Nevertheless, by t = 10s, TCP-

RRE has successfully detected the change in the network and

adjusted its sending rate accordingly.

F. TCP Friendliness

Next, we investigate how TCP-RRE contends with other

TCP flows. To do so, we ran two downstream TCP flows

concurrently, with the second flow started with delay after

the first. The experiment was repeated with the delay varied

between 1 s to 10 s at intervals of 1 s. The rest of the parameters

were identical to those in Section III-D.
We then computed the average goodput for each pair

of flows and the associated Jain’s fairness index [11], i.e.

(R1 +R2)
2
/

(2× (R1
2 +R2

2)) , where R1 and R2 are the

throughput of the two flows. In Fig. 12, we plot the cumulative

distribution of the resulting data points. We make two interest-

ing observations: (i) TCP-RRE and TCP Vegas are significantly

more fair when contending with the same variant (and achieves

a fairness index value consistently above 0.95), compared to

TCP-CUBIC and TCP-Reno; (ii) how well TCP-RRE contends

with TCP-CUBIC depends on which flow starts first, which

explains why there are two lines, one labeled “RRE vs CUBIC”

and one labeled “CUBIC vs RRE.” Surprisingly, if we start a

TCP-RRE flow first, a subsequent TCP-CUBIC flow would

aggressively flood the buffer and cause TCP-RRE to back-off

and significantly reduce its rate below the “fair” rate. On the

other hand, if a TCP-CUBIC flow starts first, a subsequent

TCP-RRE flow is able to acquire a reasonably fair share of the

available bandwidth.
Our results suggest that TCP-RRE, like other rate-based con-

gestion control algorithms, does not contend well against TCP-

CUBIC, which means that TCP-RRE might not be suitable

for deployment “in the wild.” However, because transparent

proxies are commonly deployed in existing mobile ISPs, TCP-

RRE can be easily deployed by modifying the mobile-device-

facing TCP stacks at such proxies where they would not have

to contend with other TCP variants in the core Internet. Surpris-

ingly, we will show in the next section, that our Linux TCP-

RRE implementation is often able to achieve better goodput

than TCP-CUBIC on existing 3.5G/HSPA networks, even if

deployed on a server that is not within a mobile ISP.

IV. LINUX IMPLEMENTATION

TCP-RRE was implemented as a kernel module for Linux

kernel version 3.2. Because TCP-RRE uses completely differ-

ent mechanisms from regular TCP congestion control, it cannot

be implemented using the Linux pluggable TCP congestion

control module. Instead, we inserted hooks into the TCP pro-

cess flow to intercept incoming ACK packets and outgoing data

packets. The receive rate is estimated with every ACK received

using an exponentially-weighted moving-average (EWMA) and

the sending rate is updated accordingly. Because the send

routine in the regular TCP stack is only called when an ACK

packet is received, we introduced a timer to clock the sending

instead. A short history of bytes sent is maintained to determine

the number of packets to be sent at each tick.
In addition, the retransmission routine also has to be modi-

fied to handle packet retransmissions, especially after a trans-

mission time-out. This is to give priority to retransmitting

lost packets over sending new data. We also added a hook

in the handling of SACK packets to extract the information

identifying which data sequence was acknowledged. All other

TCP functions were left as is. In total, we added slightly less

than 1,000 lines of code.
The modified kernel was installed on a server in our lab and

we evaluated it over 3.5G/HSPA networks for ISPs A and B.

We were unable to test with LTE/HSPA+ because we were not

able to obtain any locally available data plans. We ran sets

of experiments at various locations, such as in our laboratory,

at various residences and at shopping malls, for several hours

each. In our experiments, we downloaded 1 MB of data from

the server to a mobile phone, and we used two different

models of Android phones: HTC Desire (200 kB uplink buffer)

and the newer Samsung Galaxy Nexus (1 MB uplink buffer).

One set of experiments consists of 4 tests: (i) a single TCP-

CUBIC download, (ii) a single TCP-RRE download, (iii) a

TCP-CUBIC download with a concurrent TCP upload, and (iv)

a TCP-RRE download with a concurrent TCP upload. In the

latter two tests, we started the download 10 s after we start
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the continuous upload. The experiments were done in sets of 4

tests and each set was run approximately every minute. Since

we stayed for several hours at each location, we obtained about

100 to 200 data points for each test at each location. While we

collected many sets of data, we are only able to present three

sets of data because of space constraints.

In Fig. 14, we plot the results of our experiment carried

out in our lab using the older HTC Desire phone over ISP A.

The results show that the achieved goodput for a single TCP

download for both TCP-CUBIC and TCP-RRE are comparable.

However, in the presence of a concurrent upload, the goodput

drops significantly, though the drop for TCP-CUBIC is much

more significant than that for TCP-RRE. We suspect that this

large drop was caused by the combination of a small 200 kB

uplink buffer and a relatively high measured uplink throughput

of 800 kb/s compared to the download. This combination likely

caused the background TCP uplink flow to flood the uplink

buffer aggressively causing significant ACK losses and delays

for the downlink flow.

In Fig. 15, we plot the results for experiments carried out in

the same location, but using the newer Galaxy Nexus phone

over ISP B. The downlink speeds were much higher but the

uplink throughput was slower, with a median value of 500 kb/s.

Finally, in Fig. 16, we plot the results for experiments carried

out at a residence over ISP B. The uplink at the residence

was even slower, with the median rate below 200 kb/s. While

the data presented in Figs. 14 to 16 were specially chosen

to illustrate scenarios where TCP-RRE performed better than

TCP-CUBIC, we do not mean to suggest that TCP-RRE always

performs better. In experiments where the uplink bandwidth

was high, the performance of TCP-RRE and TCP-CUBIC were

comparable. We note however that in none of our experiments

did TCP-RRE perform noticeably worse than TCP-CUBIC.

In summary, what our results for actual 3.5G/HSPA net-

works suggest is that TCP-RRE is able to improve download

throughput under two scenarios: (i) when the uplink bandwidth

is low relative to the uplink buffer and (ii) when the uplink

buffer is saturated by a concurrent upload. While TCP-RRE

was predicted to perform in our simulations some 2 to 4 times

faster than TCP-CUBIC under such scenarios, the observed

improvements were somewhat smaller in practice. We believe

that a plausible explanation for the difference is that the server

in our experiments was not located within the ISP and so there

were likely losses arising from contention between our TCP-

RRE flow and other TCP flows in the core Internet routers.

V. RELATED WORK

In this section, we provide an overview of the prior work in

the literature that are related to our work.

TCP congestion control is a well-studied subject and many

TCP variants have been proposed [3, 7, 15, 17]. All existing

TCP variants follow the basic ACK-clocking mechanism first

proposed by Jacobson [10] and differ on how the congestion

window cwnd is determined and adjusted. TCP Vegas keeps

the buffer occupancy low by computing the cwnd based

on the RTT observed [3]. TCP Westwood+ optimizes for

wireless networks by estimating the rate using the observed



RTT [17]. However, since cellular networks are prone to

significant delays, TCP Westwood+ is not likely to be able

to estimate the required rate accurately. TCP-CUBIC [7] is the

default TCP implementation in current Android and iOS mobile

devices. The key difference between TCP-RRE and previous

TCP variants is that we have done away with the congestion

window cwnd and ACK clocking, and we regulate the sending

rate directly.

The idea of using rate information to control a TCP flow

is not new. Keshav showed that the rate control method is

preferred when there are rate allocating servers [16]. RATCP

is another TCP congestion control using rate information

feedback from the receiver [14]. Thus, it requires a modified

receiver and is not compatible with TCP, unlike TCP-RRE.

TCP-friendly, equation-based congestion control was proposed

to regulate UDP flows [6]. The proposed equation is based on

the packet lost rate which is very low in cellular networks. TCP

Rate-based Pacing (RBP) is a technique to pace out the sending

of packets instead of sending a burst of cwnd packets to avoid

saturating the buffer [15, 20]. None of these techniques can

address the ACK delay problem solved by TCP-RRE.

The uplink saturation problem has recently received much

attention and shown to be a significant cause of performance

degradation in 3.5G/HSPA networks [21]. Heusse et al. showed

that in practice, the Data Pendulum effect is more prevalent [8]

than the classic ACK compression problem [13] under such

scenarios. Xu et al. proposed a receiver-side algorithm called

Receiver-side Flow Control (RSFC) that regulates the send-

ing rate of a TCP upload from a mobile device to avoid

saturating the uplink buffer. TCP-RRE directly addresses the

uplink buffer saturation problem from the sender-side, and

in addition, addresses it in a more general way and hence

improves download performance even under scenarios where

low uplink bandwidths would effectively throttle the downlink.

The bufferbloat problem was also cited in a recent mea-

surement study of 3G/4G networks [12]. While bufferbloat

is typically solved by sizing the buffer appropriately [1],

Nichols and Jacobson recently revisited this classic problem

and proposed CoDel, where packets are dropped according to

the time they spend in the buffer [19]. This is similar in spirit

to TCP-RRE, which infers the buffer growth by measuring

the relative one-way delay. By making the delay oscillate

about a constant threshold that is a function of the RTT,

TCP-RRE effectively creates a dynamic virtual buffer. Unlike

CoDel, which requires specific hardware feedback support and

is designed for deployment in routers with FIFO queues, TCP-

RRE works end-to-end.

VI. CONCLUSION

While there have been previous work on rate-based conges-

tion control algorithms for both TCP and UDP, to the best of

our knowledge, TCP-RRE is the first attempt at completely

eliminating ACK clocking in the TCP stack. When link con-

ditions are good, the performance of TCP-RRE is comparable

to that of existing TCP variants. When uplink conditions are

poor and there are severe delays in the ACKs within the uplink

buffer, TCP-RRE is able to achieve high utilization of the

downlink by deducing the receive rate at the sender via passive

observation of the TCP timestamps on the ACK packets and

setting the sending rate accordingly.

TCP-RRE is compatible with existing TCP implementations

and can be easily deployed at existing mobile ISP proxies

without requiring any modifications to existing mobile devices.

As mobile uploads become more common, and the number

of cellular data subscribers continues to increase, we believe

TCP-RRE is an useful enhancement for modern cellular data

networks.

ACKNOWLEDGMENTS

This work was supported by the Singapore Ministry of

Education grant T1 251RES1006.

REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing Router Buffers.
In Proceedings of SIGCOMM ’04, Aug. 2004.

[2] E. Blanton, M. Allman, K. Fall, and L. Wang. A conservative SACK-
based loss recovery algorithm for TCP. RFC 3517, April 2003.

[3] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: new
techniques for congestion detection and avoidance. In Proceedings of

SIGCOMM ’94, Aug. 1994.
[4] N. Dukkipati, M. Mathis, Y. Cheng, and M. Ghobadi. Proportional rate

reduction for TCP. In Proceedings of IMC ’11, Nov. 2011.
[5] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,

A. Jain, and N. Sutin. An argument for increasing TCP’s initial
congestion window. SIGCOMM CCR, 40:26–33, June 2010.

[6] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based
congestion control for unicast applications. In Proceedings of SIGCOMM

’00, Aug. 2000.
[7] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-friendly high-speed TCP

variant. SIGOPS OSR, July 2008.
[8] M. Heusse, S. A. Merritt, T. X. Brown, and A. Duda. Two-way TCP

connections: Old problem, new insight. SIGCOMM CCR, 41(2):5–15,
Apr. 2011.

[9] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl.
Anatomizing application performance differences on smartphones. In
Proceedings of MobiSys ’10, June 2010.

[10] V. Jacobson. Congestion avoidance and control. SIGCOMM CCR, Aug.
1988.

[11] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe. A quantitative measure
of fairness and discrimination for resource allocation in shared computer
system. DEC Research Report TR-301, Sept. 1984.

[12] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling bufferbloat in 3G/4G
networks. In Proceedings of IMC ’12, Nov. 2012.

[13] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan. Improving TCP
throughput over two-way asymmetric links: Analysis and solutions. In
Proceedings of SIGMETRICS ’98, June 1998.

[14] A. Karnik and A. Kumar. Performance of TCP Congestion Control with
Explicit Rate Feedback: Rate Adaptive TCP (RATCP). In Proceedings

of Globecom ’00, Dec. 2000.
[15] J. Ke and C. Williamson. Towards a rate-based TCP protocol for the

web. In Proceedings of MASCOT ’00, Sept. 2000.
[16] S. Keshav. A control-theoretic approach to flow control. In Proceedings

of SIGCOMM ’91, 1991.
[17] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang. TCP

Westwood: Bandwidth estimation for enhanced transport over wireless
links. In Proceedings of MobiCom ’01, July 2001.

[18] M. Mathis and J. Mahdavi. TCP rate-halving with bounding parameters.
Dec. 1997.

[19] K. Nichols and V. Jacobson. Controlling queue delay. Queue,
10(5):20:20–20:34, May 2012.

[20] V. Visweswaraiah and J. Heidemann. Rate based pacing for TCP. http:
//www.isi.edu/lsam/publications/rate based pacing/, 1997.

[21] Y. Xu, W. K. Leong, B. Leong, and A. Razeen. Dynamic regulation
of mobile 3G/HSPA uplink buffer with receiver-side flow control. In
Proceedings of ICNP ’12, Oct. 2012.


