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Abstract

Existing geographic routing algorithms depend on the
planarization of the network connectivity graph for correct-
ness, and the planarization process gives rise to a well-
defined notion of “faces”. In this paper, we demonstrate
that we can improve routing performance by storing a
small amount of local face information at each node. We
present a protocol, Path Vector Exchange (PVEX), that
maintains local face information at each node efficiently,
and a new geographic routing algorithm, Greedy Path Vec-
tor Face Routing (GPVFR), that achieves better routing
performance in terms of both path stretch and hop stretch
than existing geographic routing algorithms by exploiting
available local face information. Our simulations demon-
strate that GPVFR/PVEX achieves significantly reduced
path and hop stretch than Greedy Perimeter Stateless Rout-
ing (GPSR) and somewhat better performance than Greedy
Other Adaptive Face Routing (GOAFR+) over a wide range
of network topologies. The cost of this improved perfor-
mance is a small amount of additional storage, and the
bandwidth required for our algorithm is comparable to
GPSR and GOAFR+ in quasi-static networks.

1. Introduction

With the development of wireless ad hoc networks like
roofnets [1, 30] and sensornets [16, 29], there has been
a proliferation of geographic routing algorithms in recent
years [3, 5, 7, 10, 19, 22, 24]. These algorithms are more
scalable compared to traditional routing algorithms [15, 27,
28] because they require O(1) storage per node, as opposed
to O(N) storage, where N is the number of reachable des-
tinations.

Most existing geographic routing algorithms first at-
tempt to forward packets greedily; each node forwards
packets to a neighboring node that is closest to the des-
tination. When greedy forwarding causes a packet to be

trapped in local minima, the packet is forwarded by travers-
ing a face of a planarized graph (also known as perimeter
forwarding). Existing geographic routing algorithms can
guarantee packet delivery only if the network connectivity
graph can be planarized without disconnecting the network.
The distributed planarization of a real radio network was
once a major challenge because traditional planarization al-
gorithms relied on idealized radio models [18], but recent
work showed that planarization can be achieved in practical
radio networks [20].

As a node knows only about its immediate neighbors,
there is often insufficient information for it to make a good
decision on the forwarding direction when a packet gets
trapped in a local minimum and has to switch to perime-
ter forwarding. To deal with this problem, a node usually
has to resort to an arbitrary choice, e.g., use the right-hand
rule as in Greedy Perimeter Stateless Routing (GPSR) [19].
But this choice may be the wrong one, and the penalty for
making a wrong decision may be very high. Most schemes
just choose deterministically [5, 19]; Greedy Other Adap-
tive Face Routing (GOAFR+) [22] deals with the problem
by bounding the search in each direction within an expand-
ing ellipse, thus avoiding the full consequences of a wrong
choice.

This paper proposes a different way of tackling the prob-
lem, by using more information about the planar graph.
Our expectation was that having more information would
lower the routing cost and lead to an algorithm with better
routing performance in terms of both path and hop stretch
and we show experimentally via simulation that this is in
fact the case. Our algorithm is efficient: it requires lit-
tle bandwidth to propagate the extra information and only
a constant amount of extra storage at each node. Yet it
outperforms GPSR substantially, and even does better than
GOAFR+, which to our knowledge is the most efficient ge-
ographic routing algorithm previously available. Like ex-
isting algorithms, we assume in our work that even though
network connectivity may change, the planarized graph is
quasi-static.



We have made both theoretical and practical contribu-
tions to the understanding of geographic routing. The theo-
retical contributions of our work are as follows:

• We show that there exists an oblivious (memory-
less) algorithm, Oblivious Path Vector Face Routing
(OPVFR), that can guarantee packet delivery for any
planar graph if nodes have complete face information;

• Bose et al. had shown earlier that deterministic obliv-
ious routing cannot guarantee packet delivery for ar-
bitrary planar graphs where nodes are only aware of
the positions of their one-hop neighbors [4]. We ex-
tend this result by showing the impossibility of oblivi-
ous routing in planar graphs where nodes are limited to
knowing about nodes up to k-hops away, for any finite
k.

Since some planar faces can be extremely large in prac-
tice, the assumption that nodes can maintain complete face
information is sometimes impractical and we augment these
theoretical findings with the following practical contribu-
tions:

• We present a practical asynchronous distributed algo-
rithm, Path Vector Exchange (PVEX), that propagates
and maintains local face information efficiently as well
as reacts to network membership changes;

• We propose a non-oblivious algorithm, Greedy Path
Vector Face Routing (GPVFR), that guarantees packet
delivery even when nodes do not have complete face
information;

• Through extensive simulations we evaluate the perfor-
mance of GPVFR and show that it achieves signifi-
cantly better routing performance in terms of both path
stretch and hop stretch than GPSR and somewhat bet-
ter performance than GOAFR+ for random networks
with only a small amount of additional routing state at
each node.

We are especially interested in the performance of geo-
graphic routing algorithms for random networks with node
densities in the critical range between 4 to 8 nodes per unit
disk. Kuhn et al. had shown earlier that this region is criti-
cal for all geometric routing algorithms since existing geo-
graphic routing algorithms are uniformly good for both very
sparse and very dense random networks [22]. The perfor-
mance benefits for GPVFR over GOAFR+ are not huge, but
we have found in our simulations that GPVFR does some-
times choose the wrong direction in spite of the extra infor-
mation at the nodes, leading to very bad paths; this suggests
that we could combine our approach with the search tech-
nique of GOAFR+ to obtain a technique that does substan-
tially better.

The remainder of this paper is organized as follows: in
Section 2, we provide a review of existing and related work.
In Section 3, we describe our algorithms and present the
theoretical foundations of our work. We present the results
of our simulations in Section 4 and discuss the implications
of our work in Section 5. Finally, we conclude in Section 6.

2. Related Work

The early proposals for geographic routing, suggested
over a decade ago, were simple greedy forwarding schemes
that did not have any guarantees of packet delivery in a con-
nected network [7, 13, 32]. The first geographic (or ge-
ometric) routing algorithm to provide guaranteed delivery
was Face Routing [21] (originally called Compass Routing
II) .

Greedy Perimeter Stateless Routing (GPSR) [19] and
several other algorithms [2, 5] were proposed subsequently.
These also provided delivery guarantees and were some-
what more efficient in the average-case than Face Rout-
ing, though none of them outperformed Face Routing in the
worst case.

Kuhn et al. first proposed an algorithm called Adaptive
Face Routing (AFR) that bounds the cost of execution for
geographic routing [23]. The key idea is to use an el-
lipse to restrict the searchable area during routing so that
in the worst case, the total cost is no worse than a constant
factor of the cost for the optimal route. Their algorithm
also achieves the optimal worst-case result. In [24], Kuhn
et al. studied the performance of a family of geographic
routing algorithms that combined Greedy forwarding and
AFR in different ways. Among them was Greedy Other
Adaptive Face Routing (GOAFR), which was proved to be
both worst-case and asymptotically optimal. A clustering
technique was subsequently applied to GOAFR to produce
GOAFR+ [22].

There have been previous geographic routing algorithms
that advocate the maintenance of information about nodes
in some locality that is beyond immediate neighbors: Sto-
jmenovic and Lin had previously proposed extending ex-
isting geographic routing schemes to two-hop neighbor-
hoods [31]. Geographic Location Service (GLS) is a dis-
tributed location service for the storage and lookup of ge-
ographic coordinates [26]. GLS also uses greedy forward-
ing and two-hop neighborhood information to reduce the
chances of routing queries to dead-ends. The use of two-
hop neighborhood information also turns out to have a side
effect of improving average-case Euclidean path length.

We are aware of two related algorithms that maintain
information on planar faces at each node: Mobicast [14]
(which is a geocasting protocol, and not a point-to-point
geographic routing protocol) and Greedy Perimeter Prob-
ing (GPP) [17]. These algorithms use probe packets to ex-



plicitly map the planar faces, while we piggyback informa-
tion on the existing keepalive beacons and propagate the in-
formation through mutual exchanges between neighboring
nodes. Also, these algorithms attempt to map faces com-
pletely, while we only maintain information about faces up
to a fixed number of hops.

As for non-geographic ad hoc routing protocols, the
Zone Routing Protocol (ZRP) [11] expands the amount of
state stored at a node to a local neighborhood up to a fixed
number of hops away. ZRP requires both a route discov-
ery mechanism and query control protocol to work effi-
ciently [12]. Other similar protocols include the limited-
radius variant of DSDV [28] and a modified k-hop DSDV
variant proposed by De Couto and Morris [6].

3. Path Vector Face Routing

3.1. Preliminaries

In this work, we focus on the routing algorithm and
assume that the underlying network graph can be and
is planarized correctly [20]. Although our results ap-
ply to any planar graph, in our evaluation, we consider
two well-known distributed planarization algorithms —
Gabriel Graph (GG) [9], and Relative Neighborhood Graph
(RNG) [34].

We consider a set of N nodes in a bounded plane with
identical broadcast range (normalized to one) and unique
identifiers. These nodes induce a Unit Disk Graph (UDG)
Gu, with the nodes as vertices and an edge between nodes
v1 and v2 iff v1v2 ≤ 1. By applying a planarization algo-
rithm (either GG or RNG) to Gu, we can obtain a connected
planar subgraph G that has no intersecting edges.

As mentioned in Section 1, the correctness of our algo-
rithms depend on the usual assumption that the planarized
graph G is quasi-static, i.e., it does not change for the dura-
tion of a particular routing activity.

3.2. Path Vector Exchange Protocol (PVEX)

In this section, we describe the Path Vector Exchange
Protocol (PVEX), which is used by nodes to maintain local
face information. Like other algorithms, nodes periodically
broadcast beacons to inform neighboring nodes of their po-
sition and face information. On receiving beacons from its
neighbors in the planarized graph, a node extracts the rele-
vant information required to deduce the path vectors for its
faces.

For example in Figure 1, the node v1 is contained in and
stores information about three faces that are adjacent to it in
the planar subgraph — {v1, v5, v6, v7, v2}, {v1, v3, v4, v5}
and {v1, v2, v3}. We assign an ordering to the nodes on
a face in the clockwise direction; for example, for the

v1
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v7 v8

Figure 1. An example planarized network to
illustrate the path vector exchange protocol.
Lines between two nodes indicate connec-
tivity between them. The solid lines are the
edges of the planar subgraph.

face {v1, v5, v6, v7, v2}, we define successor(v1) = v5 and
predecessor(v1) = v2. Every node will have a number of
faces exactly equal to its degree (in the planar subgraph),
though in some cases, some of the faces will be repeated.
For example, node v7 in Figure 1 has 3 faces, one is a pen-
tagon ({v1, v5, v6, v7, v2}) while the remaining two are the
same face (the hull of the entire network).

More specifically, the state associated with PVEX at
node v has the following components:

• Fv: An indexed set of the faces adjacent to v,

• Sf : list of successor nodes for face f ∈ Fv,

• Pf : list of predecessor nodes for face f ∈ Fv, and

• seqf : sequence number for face f ∈ Fv (an integer).

In addition to the MAC address, node identifier, and its po-
sition information, the broadcast beacons contain this state,
with Sf and Pf truncated to a maximum length h, which is
a system parameter.

Node v processes only messages that it receives from
nodes with which it shares a face f and where the received
sequence number for f is greater or equal to the local se-
quence number for f . When node v receives (u.Sf , u.seqf)
from successor node u, node v updates its state as follows:

• If v.seqf ≤ u.seqf then v.Sf := {u, u.Sf}; and

• Additionally, if v.seqf < u.seqf then v.Pf := {} and
v.seqf := u.seqf .

Likewise, when node v receives (u.Pf , u.seqf) from pre-
decessor node u, node v updates its own state as follows:

• If v.seqf ≤ u.seqf then v.Pf := {u, u.Pf}; and

• Additionally, if v.seqf < u.seqf then v.Sf := {} and
v.seqf := u.seqf .



The recorded sequence seqf for a face f is incremented
when (i) a node detects that its successor on f has left the
network1; or (ii) when a new node joins the network. In
the latter case, the new node knows that it was not origi-
nally in the network, so it takes the existing sequence num-
ber for the face f and increments it. Whenever a sequence
number is incremented, it is incremented by a small but ran-
dom amount so as to ensure that path vectors are refreshed
correctly even when there are concurrent joins and depar-
tures. This protocol stabilizes locally for a node when the
successor list intersects with the predecessor list and it has
obtained the full information for a face, or when it has learnt
about h + 1 nodes along both edges of the face. If h = ∞
or 2h > k − 1, our protocol stabilizes for a face after �k

2�
rounds of message exchanges, where k is the size of the
face; otherwise, if 2h ≤ k − 1, it stabilizes after h < �k

2�
rounds.

A node will decide that the information for a face has sta-
bilized as soon as the sequence number no longer increases
for several inter-beacon intervals. If so, a node will only
broadcast the sequence number for the face in subsequent
rounds and not the associated path vectors. Thus, in the
steady state, PVEX beacons are expected to contain only the
node identifier, position and a small set of sequence num-
bers, and hence are only slightly larger than GPSR beacons.
Nodes will resume broadcasting the path vectors for a face
when there is an increase in the sequence number.

We jitter the inter-beacon transmission interval by up to
50% to avoid synchronization between the transmissions of
neighboring nodes [8], so given a mean inter-beacon inter-
val T , the actual inter-beacon transmission intervals are uni-
formly distributed in [0.5T, 1.5T ]. One approach to achieve
the stabilization of face information more quickly is to have
shorter inter-beacon periods before stabilization and to have
the mean inter-beacon period revert to T only after a node
is locally stable and no longer sends path vectors on its bea-
cons.

3.3. Oblivious Routing with Complete Face Infor-
mation

In this section we present Oblivious PVFR, a new geo-
graphic routing algorithm for planar graphs, where nodes
have full face information. This information can be main-
tained by running PVEX with h = ∞. The general idea
for this algorithm is as follows: when a node v receives a
packet p for destination t, it finds the edge ev(t) among the
set of all edges on its adjacent faces that has the minimum
Euclidean distance to t. The minimum Euclidean distance

1Since all nodes are expected to send periodic beacons, a node v will
assume that a neighboring node u has failed, if v does not hear from u
after a fixed interval that is r times the inter-beacon interval, where r is a
system parameter.

of an edge (x, y) to t is the minimum distance over the set
of all points in the line segment xy to t. If the segment
xy contains the projection of t onto it, the minimum dis-
tance will be the length of the perpendicular; otherwise it is
min(|xt|, |yt|). Let the node on ev(t) that is closest to t be
n∗

v(t). Suppose n∗
v(t) lies on face f . Node v then forwards

p to the adjacent node on f that is closest to n∗
v(t) along

face f . More formally,

Algorithm 1 (OPVFR) Forwarding rule for
node v receiving a packet destined for node t:

1. Direct: If t on face f then forward the
packet to any neighbor v′ in f containing v
and t, such that distf (v′, t) < distf (v, t).
Otherwise follow step 2.

2. Target node: Forward the packet to
any neighbor v′ in the face f contain-
ing n∗

v(t), such that distf(v′, n∗
v(t)) <

distf(v, n∗
v(t)). If v′ does not exist, con-

clude that p is undeliverable.

where distf(x, y) is the minimum distance between nodes
x and y along a path on face f . The reason why we choose
the target node in two steps instead of simply choosing the
node in the set of all known nodes that is closest to the desti-
nation is because the latter may cause a packet to be trapped
in a local minimum for some topologies.

An example of OPVFR routing from node s to node t is
shown in Figure 2. The following theorem states the cor-
rectness of OPVFR.

Theorem 1 Given a connected pair of nodes v
and t in a planar graph G, assuming that every
node in G completely knows all its faces, Oblivi-
ous PVFR guarantees packet delivery from v to t.

Proof: Let <v and <e be globally known operators
that totally order the set of vertices and the set of edges,
respectively2. Then, the target edge ev(t) of node v with
respect to the destination node t is the <e-smallest edge
xy, such that x, y ∈ F (v) and xy has minimum Euclidean
distance to t, where F (v) is the set of vertices that share
a face with v. Also, the target node n∗

v(t) of node v with
respect to the destination t is the <v-smallest node u, such
that u has minimal distance to t among the two vertices in
ev(t).

Let s and t be two connected vertices in G, and con-
sider the path s, v1, v2, . . . , vn of a packet sent by s to t.
If there exists vi in the path such that t ∈ F (vi), then vi

has a neighbor vi+1 which shares a face with vi and t, and
distf (vi+1, t) < distf (vi, t). In all successive hops, the

2It is easy to construct such ordering operators. For vertices, for exam-
ple, one could use the lexicographic ordering of the coordinates.
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Figure 2. An example of OPVFR routing from
node s to node t. The target edges are high-
lighted as dark dashed lines, while the target
nodes are shaded in grey.

packet is forwarded in the direct forwarding mode, and it
gets closer to t. So, if there is any vertex in the path, that
is in the same face as t, then the packet reaches t. The only
way the packet from s could not reach t is if the path con-
tained a cycle of nodes, such that none of the nodes in the
cycle has a face adjacent to t.

First, we show that such a cycle cannot exist. For target t
we define the following function for every node v in G, for
which t /∈ F (v).

Et(v) = 〈|n∗
v(t)t|, ev(t), distf (v, n∗

v(t))〉

It is easy to see that for a given pair of nodes s and t, this
function has a finite minimum value. If we show that for all
i, Evi+1(t) < Evi(t), then we are done. Suppose this is not
the case, then there are several possibilities:

Case I: |n∗
vi+1

(t)t| > |n∗
vi

(t)t|. As vi forwards the
packet along an edge in the face containing the target edge,
vi+1 is in the same face as vi. Therefore, n∗

vi+1
(t) is at least

as close to t as n∗
vi

(t), which contradicts the assumption.
Case II: |n∗

vi+1
(t)t| = |n∗

vi
(t)t| and evi(t) <e evi+1(t).

The distance from t to the target points of vi and vi+1 are the
same. Since the target edges are not the same, evi+1(t) <e

evi(t) because vi forwards the packet in the face containing
evi(t), which contradicts the assumption.

Case III: |n∗
vi+1

(t)t| = |n∗
vi

(t)t| and evi(t) = evi+1(t)
and distf(vi, n

∗
vi

(t)) ≤ distf (vi+1, n
∗
vi+1

(t)). This is im-
possible since if distf (vi, n

∗
vi

(t)) ≤ distf (vi+1, n
∗
vi+1

(t)),
vi would not have forwarded the packet to vi+1.

The only thing that remains to be shown is that there does
not exist a node vn such that n∗

vn
(t) = vn �= t, vn does not

share any face with t, and vn is connected to t. Suppose
there exists such a node vn. Consider the face f adjacent
to vn containing the two edges that the line segment vnt
subtends. f cannot obscure t from vn since the obscuring
edge e of this face would be the minimum edge for vn. We
need to consider two cases: (1) t is located inside the face f ,
and (2) t is located outside the face f . In both these cases,

since t and vn are connected, the planarity of the graph is
contradicted.

3.4. Impossibility of Oblivious Routing with Incom-
plete Information

OPVFR relies on the availability of complete face in-
formation at each node. In a dynamic network, it is often
impossible to maintain complete face information for every
node accurately. Even in static networks, some faces can be
very large (O(N)) and it might be impractical to propagate
such large path vectors. Therefore it is desirable to limit the
length of the path vectors propagated in PVEX to some con-
stant h. This results in each node v in G having knowledge
of all its faces, but up to depth h + 1. The next theorem
states that it is impossible to come up with a oblivious rout-
ing algorithm that guarantees packet delivery in all planar
graphs, with such limited face information. This theorem
generalizes Theorem 2 of [4].

Theorem 2 For any given non-negative integer
h, there does not exist a deterministic oblivious
routing algorithm that guarantees packet deliv-
ery for all planar graphs if nodes are limited to
knowing only those nodes that are up to h + 1
hops away.

Proof: We construct a set of graphs, such that no
oblivious algorithm can route correctly in all the graphs in
the set, assuming that the nodes have complete face infor-
mation only up to h+1 hops. In the graphs in Figure 3 every
� represents an identical chain of h + 1 nodes, the other 16
nodes are located at the vertices of a regular 16-gon, and the
destination node t is located at its center.

Suppose, for the sake of contradiction, that there exists
an oblivious algorithm A that routes correctly in all graphs,
where the nodes have correct face information up to h + 1
hops. We claim that, according to algorithm A all the gray
nodes in all the 3 graphs in Figure 3 behave identically.

If not, then in graph 3(a) vi forwards CW and vi+2 for-
wards CCW and the packet gets trapped in {vi, vi+1, vi+2},
since there are no routes from the nodes in the � nodes to
t. Note that all the gray nodes have identical face informa-
tion up to h + 1 hops and are symmetric with respect to the
location of t.

Let us assume that all the gray nodes forward packets
CCW. Now, node v5 cannot forward a packet towards node
x in graph 3(b), because then, the packet gets caught in the
{x, v1, v16, v1, v2, . . . , v5} circuit. From the point of view
of node v5 the graphs 3(b) and 3(c) are identical because
it has the same face information up to h + 1 hops. In
graph 3(c), a packet from node v5 would never enter the
inner octagon, and therefore would never reach t. Similar
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Figure 3. Counter-examples showing non-
existence of oblivious algorithm with limited
face information.

arguments can be made for the other black nodes by rotating
the construction in 3(b) and 3(c).

Theorem 2 implies that the only way to achieve deter-
ministic routing with incomplete face information is to re-
sort to non-oblivious algorithms.

3.5. Non-Oblivious Routing

In this section we describe Greedy PVFR, a non-
oblivious routing algorithm that does not require the partic-
ipating nodes to have complete face information. GPVFR
is designed as a tri-modal algorithm with the following
modes:

• Greedy: greedy forwarding using neighbor informa-
tion,

• OPVFR: greedy forwarding using face information,
and

• Perimeter: perimeter traversal (as in GPSR).

Under GPVFR, packets are first routed in Greedy mode.
When greedy forwarding to an immediate neighbor fails, a
node may find that it knows of another node along its pla-
nar faces that is nearer to the destination than itself. Then,
the node will apply the OPVFR algorithm to choose a tar-
get node, creating “virtual edges” for faces with incomplete
information if necessary. Once a target node is chosen, it is
recorded in the packet and the packet is switched to OPVFR
mode and forwarded toward the target node. It is possible
that this target node may be replaced by another if one that
is nearer to the destination than the recorded target node
is found while the packet is forwarded in OPVFR mode.
OPVFR forwarding is like greedy forwarding except that
nodes have a longer horizon, and packets are restricted to

forwarding on the planar faces (edges). If there are multiple
paths to the target node n∗, the choice can be made based on
any performance metric that is monotonic along a path. In
the example shown in Figure 4(a), node s forwards a packet
for t to k1 if we decide to minimize hop count and to k2 if
we choose to minimize the total Euclidean path distance.

Under both Greedy and OPVFR modes, a packet may
end up at a node that does not know of any other nodes that
is closer to the destination than itself, even including those
along the planar faces. If so, we resort to Face Routing [21].
The node forwards the packet along the edges of the planar
face that contains the imaginary line from the node to the
destination. The choice of the direction to traverse the face
is made based on the currently known set of path vectors
instead of using an arbitrary right-hand rule like GPSR. In
the example shown in Figure 4(b), a packet that is destined
for t is received by node s that decides it has to forward the
packet in Perimeter mode. Assuming limited-length path
vector exchange and s knows only nodes up to 3 hops away
on any given face, s forwards the packet for t to k2 since
|v2t| < |v1t|.

We need to record the forwarding direction and mode in
the packet, so that a node that receives the packet can deter-
mine the next edge of the face being traversed. In addition,
face traversal can terminate under one of three possible cir-
cumstances: (i) a packet finds a face that is closer to the
destination than the current face, (ii) a packet is undeliver-
able and ends up in a loop, or (iii) a packet finds a node
that is closer to the destination than the node at which a
packet first switched to Perimeter mode (which we call an-
chor node s). To detect these termination conditions, we
record s and the first edge traversed in the packet. We de-
termine that a packet for destination t has found a new face
when it reaches a node that has an outgoing edge that inter-
sects the imaginary line segment st; if so, we set this node
as the new anchor node and repeat the above process. It is
necessary to record the first traversed edge because there are
topologies for which a packet can end up back at the anchor
node during perimeter traversal and yet not be in a loop.

When greedy forwarding works, it is usually the most
efficient forwarding strategy, so we want to revert to greedy
mode from OPVFR and Perimeter modes as soon as possi-
ble. In fact, we do so as soon as we find a neighboring node
that is closer to the destination than the node recorded in the
packet.

The following is a more detailed description of the
GPVFR forwarding algorithm. A GPVFR packet p is
tagged with the following state components:

• mode: current forwarding mode, one of { Greedy,
OPVFR, Perimeter},

• s: marker node (This is the target node in OPVFR
mode and the anchor node in Perimeter mode),
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Figure 4. Examples of path selection for
GPVFR.

• ef : first edge traversed on the current face,

• c: forwarding direction (CW or CCW).

A node receiving a GPVFR packet will also record np, the
node from which it received the packet.

Algorithm 2 (Greedy PVFR) When a node v
receives packet p for destination node t, do:

1. Check for switch to Greedy mode: If
p.mode = OPVFR or Perimeter and there
is an immediate neighbor u such that |ut| <
|(p.s)t|, then set p.mode := Greedy. Exe-
cute step 2, 3, or 4(b) respectively, accord-
ing to p.mode.

2. Greedy: Find the node u in the set of im-
mediate neighbors that is closest to t. If
|ut| < |vt|, forward the packet to u. Oth-
erwise follow step 3.

3. OPVFR: Find the target node n∗
v(t) (ac-

cording to OPVFR). If |n∗
v(t)t| < |vt| and

|n∗
v(t)t| < |(p.s)t|, set p.mode := OPVFR,

and p.s := n∗
v(t), and forward the packet

along the shortest path towards n∗
v(t). Oth-

erwise follow step 4(a).

4. Perimeter:

(a) (Start) Find the incomplete face f con-
taining the line segment vt. Let v1 and
v2 be the clockwise and anti-clockwise
end nodes in the two path vectors for
f . If |v1t| ≤ |v2t|, forward the packet
clockwise along f ; if |v1t| > |v2t|, for-
ward the packet anti-clockwise. Set p.c,
p.ef , p.mode := Perimeter, p.s := v,
and forward the packet accordingly.

(b) (Continue) If any adjacent edge inter-
sects the line segment (p.s)t then set
p.s := v and go to step 4(a), else go
to step 4(c).

(c) (End) Check if packet is undeliverable:
If the next edge to be traversed along

the current face f is already recorded
as p.ef , conclude that the packet is un-
deliverable, else forward the packet to
the next node along the current face f ,
as determined by c and np, the node
from which the packet was received.

The correctness of this algorithm follows from the correct-
ness of Face Routing [21]. The information required for
OPVFR mode is propagated with PVEX as described in
Section 3.2. The path vectors propagated are limited to a
maximum length h, which is a parameter of the algorithm.

4. Evaluation

In this section we evaluate the performance of PVFR
through simulation-based experiments. We compare the
performance of both OPVFR and GPVFR to GPSR [19] and
GOAFR+ [22] with respect to two commonly-used metrics:
(i) path stretch, and (ii) hop stretch. Suppose pA is the path
found by algorithm A between a pair of nodes s, t. The
path stretch of pA is the ratio of its Euclidean length to the
shortest path (in Euclidean distance) between s and t, and
hop stretch is the ratio of the number of hops in pA to the
number of hops in the shortest path (in terms of hops) be-
tween s and t. Path stretch is a natural measure of goodness
of any geographic routing algorithm, while hop stretch is
of more practical interest because many radios transmit at a
fixed power and smaller hop counts translate to shorter la-
tencies and likely power savings. Apart from the above ef-
ficiency metrics, we also collect data on the amount of state
propagated by the underlying path vector exchange proto-
col, while executing each of the algorithms.

To evaluate the various algorithms, we considered ran-
domly generated unit disk graph networks for a range of
network densities with nodes uniformly distributed on a
10 × 10 unit square using our own event-driven simula-
tor [25]. For each density, we generated 100 networks and
routed 16,000 packets on each network for each algorithm,
and for both GG and RNG planarization. The source and
destination nodes for each routed packet are chosen uni-
formly at random from the set of all nodes.

Our implementations of GPSR and GOAFR+ are based
on the algorithms as described in [19] and [22] respec-
tively. The configuration parameters for GOAFR+ are ρ0 =
1.4, ρ =

√
2 and σ = 1

100 as suggested in [22]; for GPVFR,
unless stated otherwise, we limit the length of path vectors
transmitted to 3 hops (i.e., h = 3). This means that each
node will know about nodes up to 4 hops away on each ad-
jacent face.
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Figure 5. Path stretch for OPVFR (unlimited
h), GPSR, GOAFR+, GPVFR, and Greedy for
UDGs of varying densities (under GG pla-
narization).

4.1. Routing Performance

4.1.1 Comparison with Existing Protocols

Figures 5 and 6 show the average values of path stretch and
hop stretch achieved by the different routing algorithms in
randomly generated networks with increasing density under
GG planarization. The performance of the simple greedy
forwarding strategy and connectivity rate of the network are
also plotted on the same graph for reference. The connec-
tivity rate is the probability that two randomly-chosen nodes
are connected, while the greedy forwarding success rate is
the probability that greedy forwarding successfully delivers
a packet between two randomly-chosen nodes.

We note that the simple greedy forwarding strategy out-
performs all the others, and achieves a stretch of nearly 1
in almost all cases. Of course, one has to bear in mind that
the greedy strategy does not always work. That is, a packet
sent from s to t might get stuck at some intermediate node
v even when there exists a path from s to t. As shown in
Figures 5 and 6, this actually happens quite often. For ex-
ample, at a density of 8 nodes per unit disk, Greedy fails
approximately 40% of the time, even though any two ran-
domly chosen nodes are 99% likely to be connected.

Our results show that GPVFR outperforms existing geo-
graphic routing algorithms, even GOAFR+ (which is known
to be asymptotically optimal) in our experiments. It outper-
forms GPSR by a significant margin (i.e., reduces both the
maximum path stretch and maximum hop stretch by about
37%) for networks in the critical region where node den-
sity is between 4 and 8 nodes per unit disk, and is better
than GOAFR+ by a smaller margin (i.e., reduces both the
maximum path stretch and maximum hop stretch by about
20%).
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Figure 6. Hop stretch for OPVFR (unlimited
h), GPSR, GOAFR+, GPVFR, and Greedy for
UDGs of varying densities (under GG pla-
narization).

4.1.2 Effect of Planarization Algorithm

We also investigated the performance of the various routing
algorithms for the same random networks under RNG pla-
narization instead of GG planarization to understand how
planarization affects routing performance. The correspond-
ing results for RNG planarization are shown in Figures 7
and 8. As shown in the figures, all the routing algorithms
seemed to perform slightly worse under RNG planariza-
tion, but the relative performance between the algorithms
remained mostly unchanged.

4.1.3 Effect of Path Vector Horizon (h)

Since increasing the size of the exchanged path vectors
(i.e., increasing h) increases the amount of knowledge that
each node maintains about the topology of the network, it
is natural to expect that increasing h will improve routing
performance. Figures 9 and 10 show that this is intuition
is mostly correct, except that for denser networks, where
GPVFR with full face information performs worse than
GPVFR with h limited to 5 or 6. The likely explanation for
this is that OPVFR mode restricts packet forwarding to the
edges on the planarized graph which often prevents more ef-
ficient direct forwarding that would be possible on the non-
planarized edges. If the source and destination nodes both
lie on the hull of the network and the hull is completely
known (since h = ∞), packets will routed correctly, but
albeit inefficiently along the hull. Also, these figures show
even if h = 1, GPVFR performs better than GPSR, and that
if we increase h from 3 to 6, we increase the performance
margin for GPVFR over GPSR and GOAFR+ by another
15%.
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Figure 7. Path stretch for OPVFR (unlimited
h), GPSR, GOAFR+, GPVFR, and Greedy for
UDGs of varying densities (under RNG pla-
narization).

4.2. Memory and Bandwidth Requirements

Since nodes in GPVFR networks have access to more
routing state than the corresponding nodes for GPSR and
GOAFR+ networks, it is not surprising that GPVFR out-
performs GPSR and GOAFR+. The important question is:
what is the performance/state storage tradeoff for GPVFR,
compared to GPSR and GOAFR+? Figure 11 shows the
amount of state maintained by PVEX (size of face set F (v))
for random networks with GG planarization for h = 3. As
shown in Figure 11, the face set size is less than 15 nodes
for at least 95% of the nodes and this upper limit is inde-
pendent of the network density, which is comparable to the
number of immediate neighbors (neighbor set size), which
increases with network density and is roughly equivalent
to the amount of state stored per node by both GPSR and
GOAFR+. Storing additional information about 14 nodes
at each node is certainly not a concern for existing sensor
devices like the Mica2 [33], which has 128K of program
memory and 512K of flash RAM.

Another important question is whether GPVFR con-
sumes more bandwidth than other geographic routing algo-
rithms. In terms of the amount of state stored in the routing
packet headers, GPVFR stores about the same amount of
state as GPSR3 and less state than GOAFR+. Since GPVFR
has better hop stretch than GPSR and GOAFR+, it is likely
that GPVFR will consume less routing bandwidth than both
these algorithms when amortized over a large number of
packets.

3More specifically, GPVFR stores two additional bits of information in
the packet compared to GPSR because we allow for both clockwise and
anti-clockwise face traversal and we have three forwarding modes instead
of two. The cost of provisioning for these two extra bits is negligible.
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Figure 8. Hop stretch for OPVFR (unlimited
h), GPSR, GOAFR+, GPVFR, and Greedy for
UDGs of varying densities (under RNG pla-
narization).

Next, we consider the beacons: the beacons for GPVFR
may contain path vector information and can be signifi-
cantly larger than those for GPSR. However, path vectors
are only propagated when there are changes in the pla-
narized subgraph (i.e. when nodes join, leave or move).
Under normal operating conditions where the network is
quasi-static, GPVFR beacons (or more accurately, PVEX
beacons) are only slightly larger than GPSR beacons be-
cause they only contain a small additional set of sequence
numbers in each beacon. Our empirical experiments sug-
gest that the number of faces at each node is at most 6 for
GG planarization, the size of the sequence number set is
also less than 6, and thus we know that the PVEX beacons
will contain no more than ≤ 8 × 6 = 48 nodes worth of in-
formation for h = 3. Since RNG is known to be a subgraph
of GG [34], PVEX beacons are smaller when RNG is used
as the underlying planarization algorithm.

4.3. Understanding GPVFR Performance

We store extra face information at each node with the
intention of helping nodes make better decisions on the for-
warding direction when they switch packets from greedy to
perimeter forwarding mode. Hence, one interesting ques-
tion is how often the extra information is useful in helping
nodes make better choices. In our experiments with GPVFR
(with h = 3) over the entire range of network densities, we
found that on an average, any node is likely to know 80%
of its adjacent faces completely and therefore it is able to
choose the best path; where complete face information is
not available, the probability of picking a good forwarding
direction is about 60% on average, as opposed to 50% for
the right-hand rule.
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Figure 9. The effect of varying h on the hop
stretch of GPVFR for UDGs of varying densi-
ties (under GG planarization).

As a side effect, local face information is also exploited
by the OPVFR forwarding mode (which is equivalent to
greedy-face forwarding) when regular greedy-neighbor for-
warding fails. Hence, we also examined the distribution of
the forwarding modes for GPVFR (with h = 3), GOAFR+
and GPSR. Figure 12 shows the proportion of hops that each
packet will make in the various forwarding modes under
GG planarization. The corresponding results for RNG pla-
narization are similar. For the worst case in the critical re-
gion, about 65% of GPSR hops are made in greedy mode,
which means that the remaining 35% of the hops are made
in perimeter mode; in contrast, for GPVFR, some 83% of
the hops are made in either greedy or OPVFR mode and
only 17% are made in perimeter mode. Hence, our results
suggest that a big win for GPVFR over GPSR is likely to
come from being able to avoid perimeter forwarding mode
most of the time. It was surprising for us that GOAFR+
packets actually spent a slightly smaller proportion of their
time in greedy forwarding mode than corresponding GPSR
packets.

5. Discussion

Our experiments suggest that geographic routing algo-
rithms tend to perform better when the planarization has a
higher density of connectivity, i.e., that GG planarization is
preferred to RNG planarization. However, as highlighted
by Karp and Kung [19], many MAC layers exhibit drasti-
cally reduced efficiency as the number of mutually reach-
able sending stations increases and using fewer links can
help by reducing spatial diversity. It seems likely from our
work that even though the underlying planarization algo-
rithm affects the absolute efficiency of each routing algo-
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Figure 10. The effect of varying h on the hop
stretch of GPVFR for UDGs of varying densi-
ties (under RNG planarization).

rithm, the relative efficiency across the range of routing al-
gorithms is not dependent on the underlying planarization
algorithm for randomized graphs. Although we have only
studied the traditional GG and RNG planarizations, we be-
lieve that the relative performance of the studied algorithms
will be similar for other planarizations even though there
may be minor variations in the absolute performance. It
would be interesting to evaluate the performance of these al-
gorithms when a network is planarized with a different pla-
narization algorithm like the recently-proposed Cross Link
Detection Protocol (CLDP) [20] and also the effect of the
MAC layer in practice.

As apparent from Figures 9 and 10, there are diminish-
ing returns with increasing h for both GG and RNG pla-
narizations. However, increasing h is more helpful for RNG
planarization than GG planarization. This trend suggests a
possible tradeoff: given a fixed bandwidth budget for PVEX
maintenance, we can choose between GG planarization, or
RNG planarization with a larger h.

Since GOAFR+ is the only asymptotically optimal al-
gorithm among the algorithms we studied, it is possible to
construct network topologies that will cause any of the re-
maining algorithms (including GPVFR) to perform arbitrar-
ily badly. We note that GPVFR is compatible with AFR,
i.e., GOAFR’s technique of using an ellipse to bound the
costs of a bad routing choices can be applied to GPVFR. It
would be interesting to study a variant of GPVFR that in-
corporates bounded search. The fact that GOAFR+ packets
spend more hops in perimeter forwarding mode than GPSR
packets leads us to suspect that a new hybrid algorithm that
combines GOAFR+ and GPVFR is likely to be able to fur-
ther improve on GPVFR’s current performance.

We have evaluated GPVFR in a mostly static scenario;
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Figure 11. Face and neighbor set sizes for
random networks with nodes uniformly dis-
tributed in a square with 10 units side length
(under GG planarization), when h = 3.

there are likely to be concerns that the bandwidth cost of
maintaining face information may be prohibitive when there
is rapid mobility. While we do have plans to evaluate the
cost of GPVFR/PVEX in a fully mobile environment to ad-
dress these concerns, we would like to highlight that we be-
lieve the bandwidth cost of PVEX is not likely to be a limit-
ing factor for several reasons: First, if h is limited to 3 hops,
PVEX converges rapidly. Second, even though the problem
of planarization for real radio networks has been solved, the
current state-of-the-art planarization algorithm (CLDP) is
significantly more complicated and will take longer to con-
verge than PVEX [20]. If the planarization protocol con-
verges, PVEX is almost certainly guaranteed to converge.
In fact, if CLDP is employed as the planarization algorithm,
nodes will learn about their adjacent faces during the pla-
narization process and GPVFR can be applied without run-
ning PVEX. Finally, GPVFR can continue to work correctly
when the planarization is correct even while face informa-
tion is not yet consistent by simply skipping the OPVFR
mode and switching directly from Greedy to Perimeter for-
warding mode. To address bandwidth concerns or scarcity,
GPVFR can also voluntarily trade off the routing perfor-
mance with bandwidth consumption by reducing the length
of the propagated path vectors. In the limit, if we set the
length of the path vectors to zero, GPVFR is (almost) iden-
tical to GPSR.

6. Conclusion

In this paper, we demonstrate that by storing a small
amount of local face information at each node, we can
achieve better routing performance in terms of reduced path
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Figure 12. Distribution of forwarding modes
for GPVFR (with h = 3), GOAFR+ and GPSR.

and hop stretch. The extra storage helps because the local
face information can be exploited by a greedy-face forward-
ing mode using the available face information where regu-
lar greedy-neighbor forwarding fails to avoid switching to
the costly perimeter forwarding mode. Also, where nodes
have no choice but switch to perimeter forwarding, this ex-
tra information can marginally improve the probability of
picking a good forwarding direction.

Our paper makes two main contributions: (i) we have
shown that while it is possible to guarantee packet delivery
with an oblivious algorithm in a network where nodes have
full face information, it is impossible to do so when nodes
are limited to knowing about nodes up to a fixed number of
hops away on each face; and (ii) we developed Greedy Path
Vector Face Routing (GPVFR), a non-oblivious algorithm
that guarantees delivery even when nodes do not have com-
plete face information. Through extensive simulations we
have shown that GPVFR (with h = 3) achieves significantly
better routing performance in terms of both path stretch and
hop stretch than GPSR and somewhat better performance
than GOAFR+ with only a small additional amount of rout-
ing state at each node.
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