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Abstract— We present a new approach for generating virtual
coordinates that produces usable coordinates quickly and im-
proves the routing performance of existing geographic routing
algorithms. Starting from a set of initial coordinates derived
from a set of elected perimeter nodes, Greedy Embedding Spring
Coordinates (GSpring) detects possible dead ends and uses a
modified spring relaxation algorithm to incrementally adjust
virtual coordinates to increase the convexity of voids in the virtual
routing topology. This reduces the probability that packets will
end up in dead ends during greedy forwarding. The coordinates
derived by GSpring achieve routing stretch that is up to 50%
lower than that for NoGeo, the best existing algorithm for de-
riving virtual Euclidean coordinates for geographic routing. For
realistic network topologies with obstacles, GSpring coordinates
achieves from between 10 to 15% better routing stretch than
actual physical coordinates.

I. INTRODUCTION

Geographic routing algorithms [2, 11, 14, 17, 18] are an at-
tractive alternative to traditional ad hoc routing algorithms [10,
27] for wireless networks because they scale better: the routing
state maintained per node is dependent only on local network
density and not network size [12].

Much of the work in recent years has been focused on
improving routing performance with successively more com-
plex and efficient algorithms [11,14,17,18]. In this paper, we
demonstrate that we can further improve routing performance
by adjusting the routing coordinates. We present a new algo-
rithm,Greedy Embedding Spring Coordinates (GSpring), that
is able to achieve routing performance comparable to actual
physical coordinates for some classes of topologies and ex-
ceeds actual physical coordinates for realistic topologies with
obstacles. Our approach is applicable in many settings because
geographic location devices like GPS, Bat [8] and Cricket [28]
are not yet cost effective for ubiquitous deployment on large
wireless networks, and virtual coordinates are often employed
when location information is not available [29].

Existing geographic routing algorithms work as follows:
they first try to forward packets greedily, i.e., to the imme-
diate neighbor that is closest in geographic distance to the
destination; when a packet reaches a dead end, they then
switch to a forwarding mode that guarantees packet delivery,
e.g., face routing [11,14,18] or tree traversal [17]. Geographic
routing algorithms tend to be most efficient when packets are
forwarded greedily as much as possible [33], since greedy

(a) Physical topology (b) GSpring topology

Fig. 1. Transformation of U-shaped physical topology to flat “smile” virtual
topology by GSpring. The points represent the physical and virtual coordinates
of nodes respectively and the lines indicate the connectivity between nodes.

forwarding avoids switching to the costly guaranteed-delivery
forwarding mode.

Concave “voids” in the routing topology are bad for ge-
ographic routing since packets will tend to end up in the
concave dead ends. GSpring starts from a set of initial co-
ordinates, and uses a modified spring relaxation algorithm to
incrementally adjust virtual coordinates. The key idea is for
the nodes to detect situations that lead to dead ends during
greedy forwarding, and to have them adjust their coordinates
in such a way as to increase the convexity of existing voids
in the routing topology. This reduces the probability that
packets will end up in dead ends during greedy forwarding
and thereby improves the routing performance of existing
geographic routing algorithms.

GSpring uses a simple perimeter detection algorithm to
identify nodes at the edge at the network and uses this in-
formation to assign initial coordinates. Subsequently, GSpring
incrementally adjusts coordinates so that greedy forwarding
succeeds more frequently. For example, for the U-shaped net-
work shown in Fig. 1(a), packets forwarded greedily between
nodes at the two ends of the U will mostly end up in a dead
end and thereby have to be forwarded via face routing or tree
traversal. The shape of the resulting virtual routing topology
from running GSpring on the U-shaped network is a flat
“smile” topology as shown in Fig. 1(b). With this new virtual
routing topology, greedy forwarding will succeed almost all
the time.

While GSpring typically requires about a thousand iterations
for a 1,000-node network to converge, this is not an issue
in a practical setting since GSpring quickly derives a set
of coordinates that are relatively good and usable immedi-



ately once a network is initialized. Smaller networks will
also converge in fewer iterations. GSpring coordinates are
subsequently improved incrementally over time, and they can
be used for routing even as they are improving.

The remainder of this paper is organized as follows: in
Section II, we provide a review of existing and related work.
In Section III, we describe how GSpring derives initial coor-
dinates to bootstrap the algorithm. In Section IV, we describe
how GSpring detects dead ends and incrementally adjusts
coordinates so that greedy forwarding succeeds more fre-
quently. Finally, we present our evaluation results for GSpring
in Section V and conclude in Section VI.

II. RELATED WORK

Rao et al. had earlier proposed the NoGeo family of
coordinate assignment algorithms for ad hoc wireless net-
works [29]. In the most general version of their algorithm
for systems where nodes have no location information, they
designate two nodes as beacon nodes. Next, nodes determine
if they are perimeter nodes from a heuristic based on their
hop count from the beacons. Once the perimeter nodes are
determined, O(p2) messages are exchanged, where p is the
number of perimeter nodes, and the perimeter nodes use an
error-minimization algorithm to compute their coordinates.
Finally, the perimeter nodes are projected onto an imaginary
circle and nodes determine their virtual coordinates using a
relaxation algorithm that works by averaging the coordinates
of neighboring nodes.

One major drawback for NoGeo is that it assumes that a
network is static once the perimeter nodes are determined.
Since the perimeter nodes are fixed, new nodes that join the
system at physical locations outside the initial perimeter of the
system will tend to get “flipped inward,” causing the routing
topology to “fold over” on itself. Such topologies are bad
for geographic routing since geometric distance no longer
corresponds to the routing distance, i.e., forwarding a packet
greedily no longer guarantees that progress will be made. In
contrast, because GSpring does not fix the coordinates of the
perimeter nodes, it is a fully online algorithm that is amenable
to the incremental addition and removal of nodes without any
need for periodic system reset or global coordination. That
said, it should be clarified that GSpring was developed for net-
works with non-mobile nodes. The assignment of coordinates
in a highly mobile environment without geographic location
devices is beyond the scope of this paper.

Arad and Shavitt have concurrently developed a algorithm
called NEAR that attempts to predict dead ends and in-
crementally adjust routing coordinates to improve routing
performance, by making adjustments based on the angle that
each node makes with its neighbors [1]. Unlike GSpring,
NEAR is a local algorithm so it can only detect local dead
ends and is not effective for sparse networks with the average
node degree below 10.

There is also a large body of work on the closely-related

node localization problem for ad hoc wireless networks [5,21,
25, 30]. The goal is to assign coordinates to a set of non-
location-aware wireless nodes in a distributed way so that
they correspond as closely as possible to the actual physical
coordinates. GSpring differs from these works in that the
coordinates derived need not correspond to actual physical
coordinates. In fact, it should be clear from the example of
the U-shaped network in Fig. 1 that actual physical coordinates
are often not optimal for geographic routing.

Also closely related to our work are some geographic rout-
ing algorithms based on non-Euclidean coordinate systems.
Newsome and Song proposed a routing algorithm based on
virtual polar coordinates called VPCR [23]. VPCR works
relatively well, but it can incur significant overhead under node
and network dynamics. Beacon Vector Routing (BVR) [7],
HopID [34] and GLIDER [6] are routing algorithms that
employ a set of landmark nodes (beacons). Coordinates are
assigned to nodes based on their hop count distances to the
beacons. Routing is done by minimizing a distance function
to these coordinates. When a packet is trapped at a local
minimum, they resort to scoped flooding. The major drawback
of this approach is that it requires a large number of beacons
(about 40) to achieve routing performance comparable to ge-
ographic routing algorithms. It is also somewhat cumbersome
to have to specify a destination with a large set of distance
vectors, and it may be costly to keep updating a node’s
coordinates when distance vectors change over time under
network churn.

Caruso et al. proposed a variant of the landmark node
scheme called VCap that finds three extremal-rooted landmark
nodes to generate three dimensional coordinates [3]. Since
VCap uses only 3 landmarks, it performs poorly in sparse
networks. More recently, Mao et al. developed S4, a routing
algorithm based on compact routing [32] that achieves good
routing stretch with O(

√
N) state per node, where N is the

network size [20]. S4 has been shown to be more efficient than
BVR and has a theoretical worst-case bound of 3 for routing
stretch.

Virtual coordinate assignment schemes (GNP [24], Big
Bang [31] and Vivaldi [4]) have also previously been proposed
for Internet applications, with a view to using the coordinates
for estimating Internet round-trip times (RTTs) rather than for
routing. GNP is a centralized system that uses a small number
(5 to 20) of landmark nodes and coordinates are chosen based
on the RTT measurements to these landmarks. Big Bang and
Vivaldi are schemes that also derive coordinates by simulating
physical systems. The former simulates particles in moving in
a force field with friction, while the latter is similar to GSpring
and simulates a physical system of springs.

III. DETERMINING INITIAL COORDINATES

GSpring works in two steps. First, each node assigns
itself an initial coordinate. Subsequently, nodes adjust their
coordinates by simulating a system of springs and repulsion



forces. The first step is only required when a network is first
turned on and it quickly achieves a coordinate system that
works approximately as well as NoGeo [29]. The second step
takes a few hundred to about a thousand iterations (depending
on topology and network size) and incrementally adjusts
these initial coordinates to improve the greedy forwarding
performance of the network.

In the rest of this section, we explain the algorithm for
deriving initial coordinates. The algorithm for the subsequent
incremental adjustment of coordinates is described in Sec-
tion IV. More details can be found in [16].

A. Spring Rest Length

Each link between two neighboring nodes i and j that can
communicate with each other is modeled with a spring of
rest length lij . By scaling the spring rest length, the final
coordinates obtained by GSpring will be scaled accordingly.

We found that it is preferable for nodes that share many
common neighbors to be closer together in the virtual coordi-
nate space than nodes that do not share any common neigh-
bors. We thus define the percentage of common neighbors, rij ,
between two nodes i and j as follows: suppose i and j have
a set of common neighbors Sij and sets of neighbors that are
not shared by the other, Si and Sj , respectively. Then,

rij =

{
0, if |Sij | + |Si| + |Sj | = 0

|Sij |
|Sij |+|Si|+|Sj | , otherwise

(1)

Hence, 0 ≤ rij ≤ 1. The rest length of the spring between
two nodes i and j, lij , is then given by:

lij = lmax − rij(lmax − lmin) (2)

where lmin and lmax are constants such that lmin < lmax. In
our implementation, we set lmax = 100 and lmin = 1

10 lmax.

B. Perimeter Detection and Initialization

When a network is first turned on, there is a need to
bootstrap the network by assigning coordinates to a small
set of nodes at the perimeter of the network. GSpring uses
a simple hop-count-based algorithm to identify and assign
coordinates to a small number of perimeter nodes and also
to nodes that lie on the shortest paths between these nodes.

Perimeter Detection. We begin by detecting k nodes at
the boundary of the network graph. We start by identifying
a common reference node, r. This can be the node with the
smallest identifier (lowest-id node). To achieve a consensus,
each node will record and broadcast the identity of the node
that it thinks is the lowest-id node. When a node hears about
a node that has a lower identifier than its current lowest-id
node, it will update its record and broadcast the identity of
this new node. Also, by recording the hop count to this node,
all nodes will eventually agree on this reference node, and will
also know their own hop count to that node. This process will
take no longer than O(D) time, where D is the diameter of
the network and the messages broadcast are small and contain

only the identify of the lowest-id node and the broadcasting
node’s hop count to that node.

Next, the network comes to a consensus on the perimeter
node p1 that is farthest from r in terms of hop count. As
before, each node will broadcast the node that it thinks is
farthest from r and also that node’s hop count to r. Ties are
broken consistently by comparing node identifiers. Once p1 is
determined, p2 is determined in a similar way, as the node that
is farthest from p1 in terms of hop count. Subsequent nodes
pi, i = 3, · · · , n are the nodes that have the maximum sum of
the square roots of the hop counts from the nodes pj , where
j = 1, · · · , i − 1. This is illustrated in Fig. 2.

We use the sum of square roots instead of the sum of hop
counts for i > 2 because the latter does not differentiate
between two configurations with the same sum. For example,
a node that is four and six hops away from two other perimeter
nodes is as good as one that is five and five hops away. Using
the sum of the square roots as the metric will tend to spread
perimeter nodes evenly on the boundary of the network.

As more perimeter nodes pi’s are defined, each node pi

is associated with a vector of its hop counts to each of the
other perimeter nodes pj , j �= i. Overall, this perimeter
detection scheme will stabilize in O(D) time, and the constant
is relatively small since the number of perimeter nodes that
we need to elect is small. The storage cost is small since the
total maximum amount of information exchanged between any
pair of nodes is at most equal to a square matrix consisting
of (k

2 ) = k(k−1)
2 hop counts and k is small. We experimented

with some values of k and found that we only require a small
number of such perimeter nodes, and we set k = 8 in our
implementation since it seems to work well in practice.

It might perhaps be helpful to clarify that while this process
involves flooding the network, it only requires O(1) messages
per node. At each stage, the “winning” node effectively sends
out a “wave” that “drowns out” the other competing nodes.

Arranging Perimeter Nodes on a Circle. After the perime-
ter nodes are elected, the next step is to assign a set of
reasonable starting coordinates to them and a natural approach
is to arrange them on a virtual circle. Our algorithm for doing
so is based on a very simple observation: given the full hop
count matrix for the set of perimeter nodes, we can, in general,
deduce the adjacency relationship between the nodes along the
perimeter of the network by identifying the pair of nodes with
the minimal hops between them.

Coordinates for Perimeter Nodes. Once we have the
cyclical ordering of the nodes {n1, n2, · · · , nk}, we determine
the number of hops on the boundary of the network graph by
summing the hop counts between adjacent nodes. Let the hop
counts between adjacent nodes ni and ni+1(mod k) be hi, and
H =

∑k
j=1 hj , then the radius of the virtual circle, C, is given

by:

C =
H × lmax

2π
(3)
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Fig. 2. Illustration of boundary detection algorithm.
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Fig. 3. Determination of starting coordinates for perimeter nodes.

The intuition here is to use H × lmax to approximate the
circumference of the virtual circle.

Without loss of generality, we set the coordinates of n1

as the origin, (0, 0). The coordinates of the remaining nodes
are spread out along a circle of radius C, centered at (0, C)
according to their relative hop distances. We illustrate this in
Fig. 3. For example, the coordinates of n2 is the point on
the circle such that α

2π = h1
H , where h1 is the hop count

between n1 and n2. This process is analogous to hooking up
and stretching out a trampoline.

Interpolation. The above procedure will derive the coordi-
nates for k perimeter nodes. We observe that the hop matrix
between all the perimeter nodes is known by all nodes since
it is propagated by broadcast. Each node also knows its hop
count from each perimeter node. A node x can thus determine
that it is on the shortest path between one pair of perimeter
nodes if hi = h̄i + h̄i+1(mod k), where hi is the hop count
between some pair of perimeter nodes ni and ni+1(mod k) and
h̄i and h̄i+1(mod k) are the hop counts from x to the two nodes,
respectively. When a node satisfies this condition, it will derive
its initial coordinates by interpolating accordingly between
the coordinates of ni and ni+1(mod k) and h̄i, which can be
calculated from the hop matrix.

When this algorithm terminates, a small number of perime-
ter nodes at the boundary of the network and some nodes
in the middle of the network will have derived a set of initial
coordinates. The remaining nodes then derive their coordinates
from these initialized nodes as described below.

C. Obtaining Initial Coordinates from Initialized Neighbors

Wireless nodes periodically broadcast keepalive messages to
inform their neighbors of their presence. Nodes that know their
coordinates will piggyback this information in their keepalive

messages. Nodes without coordinates (i.e., a non-perimeter
node that didn’t receive its coordinates via interpolation, or a
new node that has just joined the network) listen for broadcasts
and derive their coordinate using one of the following rules:

• Case 1: If the node has only one initialized neighbor j,
choose coordinates on the circle of radius lij centered at
j that makes the greatest angle with a pair of the one-hop
neighbors of j. If j has only one other neighbor, add i at
the point on the circle directly opposite of that neighbor.
If j has no other neighboring node, select a point on the
circle at random.

• Case 2: If i has at least two initialized neighbors, find the
two initialized neighbors with virtual coordinates that are
farthest apart and pick the midpoint between these nodes
as the initial coordinates.

If a node does not have an initialized neighbor, it will wait
until at least one of its neighbors is initialized. Nodes that join
the network after a network has stabilized will also derive their
initial coordinates in a similar manner.

IV. GREEDY EMBEDDING RELAXATION

After nodes obtain an initial assignment of coordinates,
they will incrementally adjust their coordinates periodically
by exchanging coordinate information with their initialized
neighbors and collectively simulate a spring system with
repulsion forces through a series of iterations. In this section,
we describe the distributed algorithm for the adjustment of
coordinates. The goal of this algorithm is to make concave
voids in the routing topology more convex.

A. Preliminaries

A coordinate assignment is often referred to as an embed-
ding. A greedy embedding is a graph that has the property
that given any two distinct nodes s and t, there is a neighbor
of s that is closer (in Euclidean distance) to t than s is [26].
In other words, we can pick any two nodes in the graph and
successfully forward a packet between them using only greedy
forwarding.

Since geographic routing works best when packets are
forwarded greedily as much as possible [33], an important
measure of “goodness” for a virtual coordinate assignment or
embedding is the probability that a packet can be successfully
forwarded between two randomly chosen nodes using only a
simple greedy forwarding. We call this measure the greedy
forwarding success rate.

We define the region of ownership of a node as the set of
points that are closer to it than to its immediate neighbors in
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Fig. 4. Regions of ownership for the node s is shaded.
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Fig. 5. Required adjustment to move node s so that node t is no longer in
its region of ownership. Original region of ownership for s is shaded in gray.

the network connectivity graph. For example, in Fig. 4(a), the
region of ownership for node s is a pentagon and independent
of the position of node t since t is far from s. The region of
ownership for a node is constructed by finding the intersection
of all the half-planes formed by the bisectors of the edges to
each neighboring node.

The region of ownership is often a closed polygon. The
region of ownership can also be unbounded as illustrated in
Fig. 4(b). The regions of ownership are often similar to the
Voronoi diagram for a set of points. The key difference is that
in the construction of the Voronoi diagram, we have global
knowledge and hence it divides a plane into disjoint partitions.
Region of ownerships are often not disjoint.

Theorem 1: An embedding of a Euclidean graph
is greedy if and only if the region of ownership of
every vertex does not contain any other vertices of
the graph.
Proof: It is easy to see that a graph which has a vertex

u with a region of ownership that contains another vertex v of
the graph cannot be greedy. Consider a packet with destination
v at vertex u. Clearly, the packet is not deliverable using just
greedy forwarding since u is closer to the destination than all
v’s neighbors.

Next, suppose that there exists a non-greedy graph embed-
ding where the region of ownership of every vertex does not
contain any other vertices. Since the embedding is non-greedy,
it means that there exists a source-destination vertex pair where
greedy forwarding will cause a packet to reach a dead end
at some intermediate vertex u, such that node u is not the
destination node v. We know that v must be in the region of

ownership for u. If not, the packet would be forwarded to one
of u’s neighbors. However, since the region of ownership of
every vertex does not contain any other vertices of the graph,
we have a contradiction.

The key insight of our work is that the region of ownership
can be used to adjust coordinates to increase the greedy
forwarding success rate of a virtual routing topology and
thereby improve the performance of existing geographic rout-
ing algorithms. To understand how this is done, consider the
example in Fig. 5(a), where we have a node s with another
node t within its region of ownership. We observe that to
ensure that t does not lie in the region of ownership for s,
it is sufficient for us to shift s away from t to a point s′

such that the distance between s′ and t is greater than the
distance between t and the neighbor of s that is nearest to
t (i.e., n2). A simple way to achieve this is to have s be
repelled by t as long as s remains within the circle centered
at t and a radius determined by the neighbor of s that is
nearest to t, as illustrated in Fig. 5(b). While we use only
local adjustments, such adjustments in aggregate have a net
global effect of incrementally increasing the convexity of the
voids in the routing topology.

We refer to all the nodes within a node’s region of ownership
as its conflict set. If there are multiple nodes within the conflict
set, we can repeat the above process to find a point s′ that
satisfies the above condition for all nodes in the conflict
set. There are, however, some configurations for which it
is impossible to do so by simply shifting the position of s
alone [16].

B. Basic Spring Relaxation Update Rule

From Hooke’s Law, the force vector that the spring between
two nodes i and j exerts on node i, Fij , is given by:

Fij = κ × (lij− ‖ xi − xj ‖) × u(xi − xj) (4)

where κ is the spring constant, xi and xj are the coordinates of
nodes i and j, respectively, lij is the rest length of the spring,
the scalar quantity (lij− ‖ xi − xj ‖) is the displacement of
the spring from rest, and u(xi − xj) is the unit vector from
xj to xi.

The net force exerted on a node i, Fi, is the sum of the
forces from the springs attached to all its immediate neighbors:

Fi =
∑
j �=i

Fij (5)

A node will periodically update its coordinates based on
the virtual coordinates of its immediate neighbors using the
following rule:

xi = xi +
min(|Fi|, αt)

|Fi| Fi (6)

where αt is a damping constant that decreases over time.



C. Greedy Embedding Update Rule

After a node has obtained initial coordinates and the update
rule described in Equation (6) no longer yields any significant
changes to its virtual coordinates, it will send a geocast1

message to its region of ownership. Nodes in the region
will respond with their current virtual coordinates. After a
pre-determined interval, the node will have heard from all
the nodes within its conflict set. Once the conflict set is
determined, a node adjusts its coordinates so as to “move
away” from the nodes in its conflict set.

If nodes are discovered within its region of ownership, a
node will use a modified coordinate update rule. Each node
k in the conflict set for node i will exert a force of repulsion
Rik on node i as follows:

Rik = δ × u(xi − xk) (7)

where δ is the repulsion constant. The total force acting on a
node is now the sum of the spring forces and a capped total
of the repulsion force as follows:

Fi =

spring forces︷ ︸︸ ︷∑
j �=i

Fij +

capped conflict set repulsion forces︷ ︸︸ ︷
min(|∑k �=i Rik|, Rmax)

|∑k �=i Rik|
∑
k �=i

Rik (8)

The repulsion force from the conflict set serves two purposes:
(i) it tends to force nodes that are topologically separated from
each other apart; and (ii) it makes concave voids more convex
and hence improves the greedy forwarding success rate of the
network. The reason why we need to cap the repulsion forces
at some maximum Rmax is that in a large network, a given
node may find that it has a very large conflict set and we do
not want the repulsion of the conflict set to overwhelm the
spring forces. In our implementation, κ = 0.5, δ = 0.5 and
Rmax = 10.

Analogy to Simulated Annealing. One issue that we have
to deal with is that the nodes may sometimes end up in a
local minimum analogous to a local minimum-energy state
for a physical system: the physical analogy is a tangled mess
of springs. To help the system break out of such minima,
when a node s has at least one node in its conflict set, with a
small probability p at each update step, instead of making an
incremental adjustment according to Equation (6), it will set its
coordinates as the point s′ where it has no nodes in its conflict
set, if such a point s′ exists. While this process occasionally
causes the system to end up in a somewhat unfavorable
configuration, the basic spring relaxation algorithm will restore
the configuration to a “good” state relatively quickly. In our
implementation, we set p = 0.1.

Rendezvous. While GSpring as described uses geocast,
what it requires is not geocast, but a rendezvous mecha-
nism [16]. Because geographic routing uses coordinates and
not node identifiers, there must be a way for nodes to discover

1Geocast [9, 13, 16, 22] is a routing primitive that delivers a packet to all
the nodes in a specified target spatial region instead of to an individual node.
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Fig. 6. Configuration where a node, s, will oscillate and is unable to obtain
virtual coordinates that will keep other nodes out of its region of ownership
(shaded in gray).

the coordinates of destination nodes. This information is
provided by a location service; possible implementations are
discussed in GLS [19] and by Rao et al. [29].

A location service can also be used as a rendezvous mecha-
nism. Nodes update their coordinates with the location service
when they join the network and when they move. GSpring can
then query the location service to obtain the information. The
relative costs of geocasting versus querying will depend on
the design and implementation of the respective services.

It is also important to note that routing with geographic
coordinates would be quite impractical if the destination
coordinates are constantly changing. Hence, in a practical
implementation of GSpring, each node will have maintain two
sets of coordinates: a set of routing coordinates that correspond
to a node’s record at the location service and another set of
GSpring coordinates that are adjusted periodically according
to the GSpring algorithm. A node’s routing coordinates are
then updated with its GSpring coordinates and the location
service updated accordingly at regular intervals.

D. Damping and Hysteresis

Since GSpring simulates a spring system, nodes can in
principle oscillate forever. The introduction of repulsion forces
can also give rise to an oscillating configuration. One example
of such a configuration is shown in Fig. 6. In this example, s
is first repelled by n1, and subsequently by n3 when it ends
up as shown in Fig. 6(b), and hence the system returns to the
configuration in Fig. 6(a). However, since it had heard from
n1 before, it will keep n3 as the node in its conflict set and
remain in the configuration in Fig. 6(a).

Hence, a node will keep track of the nodes that it hears from
and adopt a new conflict set for computing the repulsion forces
as described in Equation (8), only if it hears from new nodes
in the new conflict set. Like others [4], we achieve stability
by introducing damping and hysteresis.

The rate of progress for GSpring is controlled by the
size of the damping constant αt, which decreases with the
progress of time. More specifically, since the nodes broadcast
keepalive messages periodically to inform its neighbors of its
location, we use the interval between broadcasts as the update
interval and each node tracks the number of iterations it spends
performing relaxation. Once the number of iterations exceeds
a pre-determined threshold T , αt is scaled by an exponentially



decreasing constant as follows:

αt =
{

αmax, if t < T

αmaxe−
t
T , otherwise

(9)

where αmax and T are constants and t is the count of the
number of iterations after a node starts updating its coordi-
nates. If the magnitude of the displacement min(|Fi|, αt) falls
below a minimum threshold αmin, a node will consider itself
stabilized and no longer updates its coordinates. At this point,
the node will also record the force vector Fi that is acting on
it as Fstop.

The parameter αmax controls the hysteresis factor in the
system. If the force vector Fi acting on a node changes
sufficiently so that |Fstop − Fi| > αmax at some point, a
node will reset its record of t to zero and start updating
its coordinates again. In our implementation, αmin = 1,
αmax = 5 and T = 50.

V. PERFORMANCE EVALUATION

In this section, we present the results of our evaluation of
GSpring. We evaluated the routing performance of existing
geographic routing algorithms with coordinates obtained with
the GSpring algorithm, with actual physical coordinates, and
with those obtained with NoGeo [29], which is the best
existing algorithm for deriving virtual Euclidean coordinates.

In our simulations, we adopted a simple radio model: all
nodes have a uniform radio range; two nodes can communicate
if and only if they are within radio range of each other and
if their line-of-sight does not intersect an obstacle. The simu-
lations were performed using our own high-level event-driven
simulator [15]. While the uniform radio model is relatively
simple, by including obstacles, we generated a diverse range
of topologies, which we believe is adequate for the purposes
of understanding the performance of GSpring under common
operational scenarios [16].

We measured routing performance in terms of hop stretch,
where hop stretch is the ratio of the number of hops on the
route between two nodes to the number of hops in the shortest
path (in terms of hops). We also evaluated the scalability of
GSpring with regards to network size and the cost overhead in
terms of the number of iterations required for convergence to a
set of stable coordinates and the number of geocasts messages
sent and received.

A. Routing Performance

Geographic routing is known to be a relative easy problem
for dense networks (where the average node degree is greater
than 16) [14]. While many proposed algorithms have been
shown to work well for dense networks, most perform rela-
tively poorly for sparse networks [1,7,23,29]. Large networks
are likely to be heterogeneous, with both dense and sparse
regions, so our approach is to systematically evaluate networks
over a range of network densities up to an average node degree
of 16.
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Fig. 7. Plot of GDSTR hop stretch with GSpring coordinates.

We evaluate GSpring by studying its effect on routing using
existing geographic routing algorithms [16]. Because of space
constraints, we will only present the results for GDSTR [17]
here, since GDSTR has been shown to be generally more
efficient and significantly cheaper to deploy than geographic
face routing algorithms [11, 14, 18].

In Fig. 7, we plot the routing performance of GDSTR
with GSpring coordinates (both initial assignment according
to hop-count algorithm described in Section III and the final
coordinates after the spring relaxation algorithm converges),
NoGeo coordinates and for actual physical coordinates in
small networks (with up to 500 nodes). These networks were
generated by scattering an appropriate number of nodes at
random over a 10 × 10 unit square.

Our results show that while the routing performance of
the initial coordinates obtained by GSpring are comparable to
that for NoGeo, the final coordinates yield significantly better
routing performance. In particular, the final coordinates ob-
tained by GSpring seem to achieve better routing performance
than actual physical coordinates for sparse networks (average
node degree below 8) and comparable performance for dense
networks.

B. Greedy Forwarding Success Rate

We measured the greedy forwarding success rates for the
various networks and found an inverse relation between rout-
ing stretch and greedy forwarding success rate. Our results are
shown in Fig. 8. For relatively sparse networks with average
node degrees between 5 and 8, GSpring achieves greedy
forwarding success rates that are about 15% higher than that
for the true physical coordinates. Given the significant im-
provement in the routing performance for GSpring coordinates
in Fig. 7, it is surprising that GSpring only achieves a 15%
improvement in the greedy forwarding success rate. It might
be worth further study to understand why GSpring is only able
to improve the greedy forwarding success rate by 15% and to
see if modifications can be made to the algorithm to further
improve the greedy forwarding success rate.
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Fig. 8. Plot of greedy forwarding success rate with network density.
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Fig. 9. Plot of GDSTR hop stretch for sparse networks (average node degree
6.5).

C. Scalability and Obstacles

To understand the scaling properties for GSpring and the
effect of obstacles, we evaluated routing performance over
a range of topologies of different densities and studied the
effect of obstacles [16]. Due to space constraints, we present
only the results for three sets of networks that represent the
major classes of network topologies: sparse networks, dense
networks, and networks with obstacles. These networks were
generated by scattering nodes randomly over a x × x unit
square, and scaling x by a factor of

√
n for each network

size n. A hundred networks were generated and evaluated for
each network size for sizes that range from 50 to 2,000 nodes.
To generate the networks with obstacles, we scattered some
cross-shaped obstacles at random. The results are shown in
Figs. 9, 10 and 11 respectively.

In all three cases, GSpring derives an initial set of coordi-
nates that yields routing performance that is similar to NoGeo.
The coordinates obtained after GSpring stabilizes are however
able to achieve significantly better performance. In particular,
as shown in Figs. 9 and 10, GSpring achieves hop stretch
that is approximately equal to that achieved by actual physical
coordinates, which is between 30% to 50% lower than that for
NoGeo coordinates.

Since obstacles are common in real networks, it is important
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Fig. 11. Plot of GDSTR hop stretch for networks with obstacles (average
node degree 7).

to understand the performance of GSpring in the presence
of obstacles. As shown in Fig. 11, NoGeo performs poorly
for networks with obstacles. The routing performance for
NoGeo worsens progressively with increasing network size.
For 2,000-node networks, GSpring achieves up to 50% lower
hop stretch than NoGeo. GSpring on the other hand, achieves
better routing performance than actual physical coordinates,
and we found that its performance is somewhat independent
of the obstacle density. In particular, for the networks we
investigated, GSpring achieves from between 10 to 15% better
routing stretch than actual physical coordinates.

Also shown in these figures is the routing performance of
coordinates obtained with only the Spring Relaxation Update
Rule and without simulating the conflict set repulsion forces
(“Spring only”). We see that while conflict set repulsion
is not very helpful for dense networks, it is critical for
good performance in both sparse networks and networks with
obstacles.

D. Example Topologies

To provide some physical intuition for the effect of GSpring,
we plot the derived coordinates for two example networks with
300 nodes in Figs. 12 and 13. The virtual topologies generated
by NoGeo are also provided for reference.



(a) Actual (b) GSpring (c) Spring only (d) GSpring (e) NoGeo
location (initial) (final) (final)

Fig. 12. Derived coordinates for sample dense 300-node unit disk graph (UDG) network.

(a) Actual location (b) GSpring (c) Spring only (d) GSpring (e) NoGeo
(with obstacles) (initial) (final) (final)

Fig. 13. Derived coordinates for sample 300-node network with cross-shaped obstacles.

These examples clearly illustrate that GSpring makes the
voids in the routing topology more convex. Because the
network in Fig. 12 is dense and does not have many convex
voids, the final configuration of the GSpring coordinates is
quite similar in shape to the actual physical configuration, On
the other hand, because many of the voids for the network in
Fig. 13 are concave, the final configuration is quite different
from the actual physical layout of the network.

E. Convergence and Costs

We evaluated the costs of GSpring in terms of the number
of iterations required for convergence and the number of
geocast messages that have to be sent. In Fig. 14, we plot
the hop stretch of random 1,000-node networks of various
configurations against the number of iterations. These results
demonstrates that GSpring converges relatively quickly and
hop stretch falls sharply to within 10% of the final hop stretch
within about 500 iterations.

In Fig. 15, we plot the cumulative number of geocasts mes-
sages sent and received per node over time for random 1,000-
node networks over time. We make two observations from
these results: (i) GSpring requires a relatively small number
of geocast messages, and (ii) networks with obstacles tend to
generate more messages. The latter is a natural consequence
of the fact that networks with obstacles will tend to have more
concave voids and hence nodes have large conflict sets.

Since GSpring requires several simulation parameters (i.e.,
spring rest length, spring constant, repulsion constant, etc.)
to be set, we systematically explored a range of values for
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Fig. 14. Routing performance of random 1,000-node networks over time.

each parameter. We found GSpring to be relatively robust to
the parameter settings, i.e., GSpring seems to work relatively
well over a wide range of parameter settings and it does not
require much effort to optimize the algorithm [16]. Like other
spring algorithms [4], GSpring will converge over a relatively
wide range of “reasonable” increments.

We also found that we can trivially increase the rate of con-
vergence by increasing the damping and hysteresis constants,
αmin and αmax, with little effect on routing performance [16].
The key tradeoff is a slight increase in the number of geo-
cast messages in most cases. This is because with increased
damping or hysteresis, nodes are likely to stop adjusting their
coordinates sooner, often even before they have completely
eliminated all the nodes in their region of ownership.
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VI. CONCLUSION

In this work, we demonstrate that we can improve the
routing efficiency of existing geographic routing algorithms
with a good virtual coordinate assignment. GSpring quickly
derives a set of coordinates that are relatively good and
usable immediately, and subsequently adjusts the coordinates
incrementally to increase the convexity of voids in the virtual
routing topology. After it converges, GSpring achieves routing
stretch that is up to 50% lower than that for NoGeo [29], and
it often achieves up to 10 to 15% better stretch compared to
routing over actual physical coordinates by converging to a
virtual topology that has a higher greedy forwarding success
rate than the actual physical topology.

GSpring was developed for networks with non-mobile
nodes. While the assignment of virtual coordinates to quasi-
static networks is practical and sometimes a necessity, it is not
clear that it is feasible to use virtual coordinates for routing
in a highly mobile environment. The deployment of GSpring
in networks with a mixture of static and mobile nodes and in
real radio networks remains as future work.
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