Proceedings of thé2th International Conference on Networks 2004 (ICON 2004), Singapore, November 2004.

EpiChord: Parallelizing the Chord Lookup
Algorithm with Reactive Routing State Management

Ben Leong, Barbara Liskov, and Eric D. Demaine
MIT Computer Science and Atrtificial Intelligence Laborator
32 Vassar Street
Cambridge, MA 02139, USA
{benleong, liskov, edemaih@mit.edu

Abstract— EpiChord is a DHT lookup algorithm that demon- routing state management strategy where nodes probe all (or
strates that we can remove the)(log n)-state-per-node restriction gt |east most Of) their routing entries periodica"y to @esu
on existing DHT topologies to achieve significantly betterdokup that they are alive, EpiChord employs raactive routing
performance and resilience using a novel reactive routingtate ’ . .
maintenance strategy that amortizes network maintenanceasts state managemgnt S_trater where routing state ma'nten_ance
into existing lookups and by issuing parallel queries. Our COSts are amortized into the lookup costs. Nodes rely mainly
technique allows us to design a new class of unlimited-state on observing lookup traffic and on piggybacking additional
per-node DHTs that is able to adapt naturally to a wide range network information on query replies to keep their routing
of lookup workloads. EpiChord is able to achieve O(1)-hop giate yp-to-date under reasonable traffic conditions. Epic

lookup performance under lookup-intensive workloads, andat | d b back hani it lookun traffi
least O(logn)-hop lookup performance under churn-intensive only sends probes as a backup mechanism it l0oxup trainic

workloads even in the worst case (though it is expected to plarm |€vels are too low to support the desired level of perforneanc
better on average). We use parallel lookups to ameliorate the costs of keeping

Our simulations show that our approach can reduce both outdated routing state. In particular, there is a syndaist
lookup latencies and path lengths by a factor of 3 by issuingrdy relationship between large>(O(logn)) state and parallel

3 queries asynchronously in parallel per lookup. Furthermae, - - . .
we show that we are able to achieve this result with minimal lookups in our approach: while parallel queries allow us to

additional communication overhead and the number of messags @void lookup timeouts due to stale routing entries, we can
generated per lookup is in general no more than that for the afford to issue parallel queries without generating exeess

corresponding sequential Chord lookup algorithm. amounts of lookup traffic only because our large routingestat
reduces the number of hops per lookup and thereby the number
of lookup messages.

In recent years, many Distributed Hash Tables (DHTs) haveOur main goal in this work is to explore and quantify
been proposed [1], [2], [3], [4], [5], [6], [7], [8], [9], [IP[11]. the performance-cost trade-offs in moving from @flog n)-
DHTs are important to distributed systems research becagsste-per-node DHT topology to an unlimited-state-pedeno
they offer a scalable and efficient routing and object larati architecture, by adopting a reactive routing state managém
platform for self-organizing peer-to-peer overlay netkgor strategy and using parallel queries. Consequently, we acenp
While most of the initial DHT research was directed towardspiChord to the optimalsequential Chord lookup algorithm
minimizing the amount of routing state per node, more receaihd show that we are able in practice to achieve significantly
research has demonstrated that it is reasonable to attemygtter lookup performance on average (both in terms of Ipoku
to store a global lookup table at every node to achieymth length and latency) than that for the corresponding se-
one-hop lookup, when network churn is relatively low or ijuential Chord lookup algorithm with comparable amounts of
enough bandwidth is available, since local storage isivelgt maintenance and lookup traffic. Our parallel lookup aldynit
cheap [11]. is simple and effective, and our reactive approach to rgutin

In this paper, we describe EpiChord, a DHT that demostate maintenance allows our DHT to adapt naturally to agang
strates that we can remove the state storage restriction afflookup workloads.

O(logn)-state DHTS to achieve better lookup performance

using a novel reactive routing state maintenance stratady a Il. OVERVIEW

by issuing multiple queries asynchronously in parallelr Ou Like Chord [2], EpiChord is organized as a one-dimensional
technique allows us to design a new class of unlimited-statgrcular address space and the node responsible for a key
per-node DHTSs that is able to adapt naturally to a wide ran@e the node whose identifier most closely follows the key,
of lookup workloads. i.e., the successor (see Fig. 1). In addition to maintairEing

While existing DHTs tend to decouple the lookup prosuccessor list of nodes, nodes in our network also maintain
cess from routing state maintenance and adopt a proactiveredecessor list df nodes. Nodes communicate with their

I. INTRODUCTION

Lit is known that limiting the amount of state stored per ncd@{log n) 2By optimal, we mean that we ignore Chord maintenance costassume
limits the average lookup path length to no better tidafiog n/loglogn) that the finger tables of the Chord nodes have perfectly atedinger entries
hops per lookup. Koorde [9] achieves thi3(logn/loglogn)-hop lower at all times regardless of node failures. The competing esstipl lookup
bound. algorithm is thus a reasonably strong adversary and notajsstaw man.

1 entry
p — 1 entries

increasing increasing "
id e cache entry id 5

x

o cache entry

x

Fig. 2. Cache entries returned Fig. 3. Division of address space
from cache for node for a lookup into slices with respect to node
N32 N28 of id.

N35

Fig. 1. Circular identifier address space with twenty nodes fave keys.
some number of queries or when their lifetime exceeds some

limit, 7.

immediate successor and predecessor periodically, €801®n | jue Chord, the correctness of the lookup algorithm is
th_e|_r ennrg successor and pred_ecessor _“Sts' Instead _m'f' m@uaranteed because a query can always reach the destination
taining a finger table (set of pointers) with(logn) entries, ;1 moving sequentially down the successor lists. In general
EpiChord maintains a cache that not only guarantees at Ie@}og n)-hop DHT routing schemes have a predefined set of
O(logn)-hop performance, but can often do better. . O(logn) fingers and provide guarantees on lookup perfor-
_We adopt two simple policies to learn new routing entrieg,ance by ensuring that a node knows about some nodes in the
(i) When a node first joins the network, it obtains a full cachginity of each finger. EpiChord divides the address spate i

transfer from one of its two immediate neighbors. (ii) Nodeg,, symmetric sets of exponentially smaller slices as shown
gather information by observing lookup traffic: a node updat;, Fig. 3 For performance guarantees, each node enforces
its cache based on information returned by queries and aglgs following invariant:

an entry to the cache each time it is queried by a node not

! Cache Invariant: Every slice contains at least —~
already in the cache. -5

cache entries at all times.

To look up a destinatiorid, nodew initiates p queries in where¥ is a local estimate of the probability that a cache entry
arallel to the node immediately succeedid@nd to thep—1 v
P y @ @ is out-of-date (i.e., that the associated node had faikedpde

nodes precedingd, within the set of nodes known to it (se€

Fig. 2). Probing the succeeding node gives us a chancechCkS its cache slices periodically and ensures that #rere
locating the destination node in one hop. When contact fficient unexpired cache entries in each slice. Shouléta sl
each of thep nodes will provide its “best’ next hops from € found not to have sufficient unexpired cache entries, @ nod

its cache or if it ownsd, it will say so. When these replies ard"@kes a lookup to the midpoint of that slice. Sirjcs small
received, further queries will be dispatched asynchrolydans (6-9- 2), one lookup is usually all it takes to satisfy theheac
parallel if x learns about nodes that are closer to the destinatibiyanant. .))

id than the other queries that are still pending. We call an The key idea is that to provide abi(log n)-hop guarantee

EpiChord network where queries are made in parallel;a on the lookup path length, the density of entries per slice
way EpiChord must increase exponentially as we get nearer to the node’s

Our lookup algorithm is intrinsically iterative. The main'¢- EpiChord estimates the number of slices from ks

reason for this is that an iterative approach allows us todaveUCCESSOrs andl pr.edecesgors: it requires. that the_ successor

sending redundant queries. If we employ parallel queries "de predecessor lists fall _mt_o th_e two adjacent shcesegllos

a recursive lookup, nodes at the subsequent hops would H‘bfhe reference nodg. This implies that we need to chgose

know when other nodes respond to the original node th%ﬁ]dk such thate > 2j.

issued the lookup, and hence which new nau#go query. In I1l. ANALYSIS

general, such an approach is likely to requigex h messages A. Wbrst-Case Lookup Performance

(including both queries and responses) per lookup, whése . L

the number of parallel queries per hop alds the number If we assume a uniformly distributed workload, we can

of hops. With an iterative approach, we usually require onEhOW th?‘t the worst-case lookup performand@ g n) hops..

about2(p + h) messages per lookup. In adtljltlon, the expected yvors;g-case IooKup patr_\ lengtht is a
Each cache entry has an associated time. When a nGRsts log, n,.vyherea =3+ 75 Here,n is the size O_f the

receives a query or reply, it adds an entry for the sender{ftWOrk, and; is the minimum number of cache entries per

it is not already in the cache and sets (or resets) the timeyfe (See [12]). When = 1, we get the same expected worst-

the entry associated with the sender to that of its localkclodS€ result as Chord does. However, for 2, we tend to do

Query responses Cont?"maﬁ'me for each -entry, equal to the 3In contrast to the asymmetric Chord finger table, the divisibthe address
sender’s clock at the time of the send minus the node entryisace into slices is symmetric by design. The key idea isvien nodex
time in the sender’s cache. and this information is used tto $gsponds to nodg, they will each know that each other is alive, and if the

t the i in th L he for that de. N ode entry fory helpsz to satisfies its cache invariant for a particular slice,
or rese € ume In the receivers cache for that node. NOQGE \yant the node entry far to also be useful in satisfying the invariant for

entries are flushed if their associated nodes do not resmond torresponding slice ip’s cache.

much better: forj = 2, « = 7.2 and the EpiChord expectedC. Cache Composition in the Seady State

0oga M 1

1
lookup path lengths are at most onff—— = log,2 ~ 3 The proportion of live entriésin the cache is an important

1
5 log, n . T -
S, ystem parameter because it determines the probability of a
of that for Chord. Our analysis implicitly assumes that th%meout occurring during a lookup. To obtain an estimate of

queries in each hop are synchronized. Because our 100kHR umber of live entries in a cache in the steady state, we

algorithm is asynchronous, actual lookup path lengthstesiiti consider a network of size such that in a fixed time interval,

to be slightly larger. a fractionr of the nodes in the network leave, a fractiprof
the cache entries are flushed and each node m@Kkeskups
uniformly over theid address space and sends pgueries in
parallel for each lookup. Whereis the number of live nodes

B. Reduction in Background Probes that is known to a node at timg we obtain the following
relation:
EpiChord exploits information gleaned from observing incoming queries entries nodes departed but
: : flushed not flushed
lookup traffic to improve lookup performance, and only sends d A~ —_——
network probes when necessary. To see the bandwidth savings Em(t) = pQ(1 - g) - fz - (A-flrz @

with our approach, we consider a network with a steady

state size of 20,000 nodes and nodes that have an medig have assumed that new knowledge comes only from the
lifespan of 60 minutes This translates to a node failure raténcoming queries as a node would have to know about a node
of approximately 0.03% (or 5 nodes) per second. AssumiH%Ofder to send an outgoing query to it. This is conservative

L . . d will tend to under-estimate the increasezinWe have
that the application-level lookup traffic received by a no Iso assumed that the probability that a cache entry is ftlshe

is approximately uniformly distributed (which is a reasblea s ingependent of the probability of failure for the assteia
assumption since nodéls are obtained using the SHA-1node. The steady state solutionads:

hash [15] and are thus uniformly distributed), the promorof 20
lookup traffic that will help to satisfy the cache invariafis Jim x(t) = o

various network sizes (fof = 2) is shown in Fig. 4. With an

amount of lookup traffic approximately equal to the requiregh 4qdition, wherey is the number of stale cache entries at
background maintenance traffic (i.e:,= 1 in Fig. 4), we timet, we have the following relation:

can achieve a 42% reduction in the background maintenance

)

stale entries discovered by

traffic whenn = 2,000. At larger network sizes, the savings in stale entries stale entries timeouts of outgoing queriés
. o not flushed flushed
background maintenance traffic is reduced, but even at metwo 4 —_—— A~ SVIRTEN
sizes of 1,000,000 nodes, we can still expect a reduction@y(t) = A=fHra— fy - pQ(gH_y) ®)
of more than 25% on average. The reduction in background
probes is relatively independent gf In a network with high churn, the proportion of stale entries
in the cacheyy, is a key system parameter:
= lim — —i(l—f)m’—f] 4)
0.7 T T T T T T T T ,y_tﬂool‘—l—y_pQ Y
el | M pQ>rnandf =0, thenxmnandyw}f—”zo. This
' 1 implies that if the level of lookup traffic is hlg% enough, the

performance of the system is somewhat independent of the
cache maintenance protocol.
Next, we consider the case whexd) < rn. By setting

T H d i n:
4z = 0in (1) and%¥ = 0 in (3), we obtain:

osf] iy =0y
LA ®)

7 t—oo I —f)r
0.2 | ,f i Yy /1 + (1 ff)

If cache entries are flushed at a rate that is at least as fast as

05 [|

04t e 1

Proportion of cache invariant satisfied

0.1

2§§§§§ —— | the node failure rate, i.ef ~ r, then
1=1,000,000 5—F
%0 05 1 15 2 25 3 35 4 45 v = 27fl <1- L = 0.292 (6)
Lookup traffic relative to minimal background network maimance traffic V2 — f \/5
Fig. 4. Effect of network sizer() on the proportion of lookup traffic that 1NUS, our model predicts that even when the.Churr_' rate is high
helps to satisfy cache invariant (fgr= 2). (pQ < rn), at most 30% of the cache entries will be stale

(and this result is independent of the level of lookup traffic

pQ@). This result was verified by our simulations.
4The expected lookup path length for Chord%islog2 n [13].
5These figures are representative of both the Napster ancelznpeer-to- 6An entry islive if its associated node is still online. The set of cache esitri
peer file-sharing networks as reported in a measuremeny &tyiGaroiu et for a node will in general consist of some live entries and eamexpired,
al. [14]. stale entries.

IV. SIMULATION RESULTS final (successful) lookup sequence. We see that the average

To understand the trade-offs when we move from atieady-state hop count varies from 1.1 to 1.4. This mearts tha
O(log n)-state-per-node DHT to an unlimited-state-per-nodd '€ast 60% of the lookups succeed within the initial wave
DHT with the same basic routing topology, we compar%f lookup queries. This re_sult is actually not surprisingcsi
EpiChord to a corresponding optimal iterative Chord netwoV€ kn(_)V\g from our f\naly5|s that the expected worst-case hop
of the same size using our simulation built on tstnet [16] countiszlog, n = 3 logy 51,200 = 1.80.
simulation framework. We run the simulations on a 10,450- Lookup failure rates are relatively low<(0.1%) under a
node network topology organized as 25 autonomous systef@@Kup-intensive workload. This is not surprising sincelen
each with 13 routers and 405 end-hosts. The average ropndtie l0okup-intensive workload, the large number of lookups
time (RTT) between nodes in the topology is approximate{€P the routing state for most nodes generally up-to-@ate.
0.16 s. Hence, we set timeouts at 0.5 s for all simulatiod§SUlts also show that adding more parallelism (increagjng
Since all query packets are UDP-based and packets mayr%guces t_he probablll_ty of lookup fa|Iurg significaritlyThe
lost, we retransmit twice after a timeout and will decidetthd00Kup failure probability falls by approximately an ordef
a node has failed if we do not hear from it after 3 tries. ~ Magnitude whem is increased by one.

Li et al. highlighted that the assumed workload will affect
the result of comparisons between DHTs significantly [17]. ,,
They proposed two generic classes of workloadkekup- Lway Epichord

2-way EpiChord -

intensive and churn-intensive. Although they did not propose ~ °° [wayrichor -
exact definitions for these two classes of workloads, we ,,| ®*"®c
do have a very natural way of defining these two classgs
of workloads for EpiChord based on our steady-state cache
model. In particular, we consider a workload to be Iooku@- 05
intensive ifp@Q > rn, and churn-intensive ipQ < rn. 2

In our simulations, we first generate a sequence of nogle
joins/departures and queries according to a pre-detetmife os |
set of network parameters. Subsequently, we run the same
set of traces on the EpiChord networks of varying degrees®
of parallelism and on a corresponding Chord network. This o1
ensures that the results can be compared fairly across the tw ‘ ‘ ‘ ‘ ‘ ‘ ‘

algorithms without bias in the choice of nodés and lookup 2w 300 400 600 800 1000 1200 1400
Network Size (log scale)

06 [1

04

2 b

T
!

1ids.
Fig. 5. Comparison of lookup latency between Chord arwlay EpiChord
A. Lookup-lntensive Workload (pQ > Tn) under lookup-intensive workload.
In our lookup-intensive workload simulation, node lifeepa
are exponentially distributed with a mean of 600 s. We ex- . p—— w w w w —

periment with a range of network sizes by varying the rate | 3w thchod
.. 3-way EpiChord =:-:=:-
of node joins from0.33 to 2 nodes per second. Each nod§ | &weyepchod ——
in the network makes on average 2 lookups per second.8lr |
steady state, the network sizes range from 200 to 1,200 noges
and the overall system query rate ranges from 400 to 2,490
lookups per second. The stabilization interval is 60 s, (i.&
nodes probe their successors and predecessors once a)migute
and the lifetime of a cache entry is 120 Since the expected€ .| 1
background maintenance traffic is negligible compared #o té
active lookup rate@) =~ 2 andrn ranges fron0.33 to 2. Also,
~ - fr L (f>r)andj =2
T~ 00> 120 r J .
1) Lookup Performance: The average latency and the av-
erage hop count per lookup for successful lookups in the,L . ‘ ‘ ‘ ‘ ‘ ‘

steady state are shown in Figs. 5 and 6 respectively. From ** 0 Network Size (log scale)

Fig. 5, we see that having more parallglism re_duce$ the Iooktlg 6. Comparison of lookup path length between Chord anday
latency. In Fig. 6, the hop count for EpiChord is defined as thpiChord under lookup-intensive workload.
minimum number of nodes that have to be contacted in the

Avera
-
T
L

“The cache entry expiration period of 120 s is chosen to enthat
the amount of maintenance traffic required is provably léss tthat for a
corresponding Chord network at the same level of networkrcHbetails can 8The competing optimal Chord network has perfectly accufagers at
be found in the EpiChord technical report [12]. all times and thus lookups never fail.

2) Message Count: It is clear that a parallel lookup al-

gorithm will generate more lookup messages when th@e
are more parallel queries per lookup. Fig. 7 shows that for
our given parameter settings, the average number of quéry
and reply messages that are required for a sequential Ch&réf
network is approximately equal to that for a 3-way EpiChorg
network. The main reason why the number of lookup messages
does not increase in proportion withis that with iterative € 1
lookups, the querying node can avoid sending duplicate a?1d
redundant queries.

B. Churn-Intensive Workload (pQ < rn)
In our churn-intensive workload simulation, node lifesparg

rage numbe!|

are exponentially distributed with a mean of 600 s. The stabi

T

5-way EpiChord -------

4-way EpiChord

3-way EpiChord -+

2-way EpiChord

1-way EpiChord
Chord

lization interval is 60 s and the lifetime of a cache entry2® 1
s. We experiment with a range of network sizes by varying the

rate of node joins from to 15 nodes per second. Each nodé&d: 7-
8|Chord under lookup-intensive workload.

in the network makes on average 0.01 lookups per secon
Because the lookup rate is so low, most of the lookups caghture .
in our results are lookups arising from node joins and cache
maintenance. In steady state, the network sizes range from

600 to 9,000 nodes and the overall system query rate ranges |

from 40 to 700 lookups per second. Including the minimal
expected background maintenance trafficx~ 0.05 to 0.08
and rn ranges from 1 to 15. As before, ~
(f>r)andj =2.

1) Lookup Performance: The average latency and the aVe> o5
erage hop count per lookup for all successful lookups a!afe04

0.9
0.8

1 ~ 1
W’f ~ 120 07

lookup laten

0.6

shown in Figs. 8 and 9 respectively. Again, we see frof sl

Fig. 9 that adding more parallelism reduces the lookup la- ,,
tency significantly. As shown in Fig. 10, the lookup failure
probabilities under the churn-intensive workload are hkigh
than those under the lookup-intensive workload (which are

0.1

0

500

200 300 400

Network Size (Iog scale)
Comparison of lookup message count between Chordpandy

800 1000 1200 1400

1-way EpiChord -------

Chord ——
2-way EpiChord
3-way EpiChord -
4-way EpiChord
r 5-way EpiChord

L L L L
1500 2000 3000 4000 5000 6000 8000 10000

Network Size (log scale)

L
1000

< 0.1%). From Fig. 10, we see that the failure rates for the 455 g comparison of lookup latency between Chord anday EpiChord
and 5-way EpiChord networks are higher than that for the 8ader churn-intensive workload.

way EpiChord network, which is somewhat counter-intuitive
We discovered that the explanation for this phenomenorsais th *
with a largerp, each lookup invoked for cache maintenance
satisfies the cache invariant for more nodes and so the 4-
and 5-way EpiChord networks generate fewer cache-refrgshi
lookups than a 3-way EpiChord network. This lower rate of
background maintenance traffic accounts for the marginally
higher failure rates for larger network sizes. Our simoladi
also suggest that with > 2, successful lookups will almost
never experience timeouts.

2) Message Count: As shown in Fig. 11, more messages
are required to complete a lookup under a churn-intensive
workload. However, the increase in message count over the
lookup-intensive workload is quite modest: a 1-way EpiG@hor
network requires approximately the same number of messages
per lookup as the corresponding Chord network, while a 3-way
EpiChord network incurs approximately 50% more lookup
traffic.

Holding p and [constant at 3, increasing the amount
of lookup traffic per node) (varying between 0.01 and

2 lookups per second) reduces the lookup path length,
lookup latency, and the number of messages sent per
lookup. There are however decreasing marginal returns
with increasing traffic and the EpiChord lookup algorithm
achieves close to optimal performance with a reasonably
small amount of lookup traffic (i.e) = 0.5).

Similarly, holding p constant at 3 and the amount of
lookup traffic Q constant at 0.01 lookups per node per
second, the numbel of “best entries” returned per
response (varying between 2 and 4) has a negligible effect
on the lookup path length, lookup latency and the number
of messages sent per lookup. We thus conclude that we
can keep small and sef = 3.

V. DISCUSSION

Our analysis and simulations have shown that by using

C. Varying Other System Parameters
Our simulations also show that:

parallel lookups and by amortizing the network maintenance
costs into the lookup costs, our approach offers signifigant

T
5-way EpiChord -------
30 4-way EpiChord
3-way EpiChord -:-:-:-
2-way EpiChord s
1-way EpiChord -

Chord

Chord !
1-way EpiChord -------

4-way EpiChord
5-way EpiChord -------

25

15

10

Average number of hops per lookup
Average number of messages per per lookup

! ! !

! ! ! ! ! ! ! ! 0
0500 1000 1500 2000 3000 4000 5000 6000 8000 10000 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

Network Size (log scale) Network Size (log scale)
Fig. 9. Comparison of lookup path length between Chord angay Fig- 11. Comparison of lookup message count between Chatcpamay
EpiChord under churn-intensive workload. EpiChord under churn-intensive workload.
Ll B Fwr———— v v v — , a fu_II ini_tial ca_che transfer, a minimal transfer 6f(logn)
Wy EniChord - entries is sufficient to guarantee worst-caé¢logn)-hop
4-way EpiChord - 2
0025 | Sway EpiChord ~——---- 4 lookup performance. In contragd(log n) lookups O(log” n)
P messages) are required for a Chord node to fully initialige i
2k T] finger table.

Although our reply messages will tend to be larger than
those of traditional sequential lookup algorithms, sihtimest”
entries are returned, even with the increase in size, thg rep
messages are only about 100 bytes in size (including the 28-
ooy 1 byte UDP/IP header) at a reasonable setting ef3. Hence,
the increased size of the responses is not an issue even for
A nodes behind a 56k modem line since the packets are relativel
small.

0015 |- LT T R

Probability of lookup failure

0.005 |

0 === T N ! ! ! ! ! !

500 1000 1500 2000 3000 4000 5000 6000 8000 10000 VI. RELATED WORK
Network Size (log scale)

Fig. 10. Lookup failure rates fop-way EpiChord networks under churn- Our parallelized lookup algo_”thm and reactive C?‘Che man-
intensive workload. agement strategy can be applied to any of the existing DHT

routing topologies that have some flexibility in the choide o
better lookup path lengths and latencies with little addiil neighbors (i.e., ring, tree or xor) [18]. We chose to implamne
costs in terms of bandwidth consumption. Our simulationsur proof-of-concept DHT using the Chord ring [2] as the
have also shown that even though multiple messages are sgitferlying routing topology because of its simplicity.
per lookup step, the lookup traffic generated is not signifiya Like EpiChord, Kademlia [6] gathers routing information
larger than that for a sequential lookup algorithm becau@m observing lookup traffic and uses parallel lookups to
lookup path lengths are significantly shorter. In fact, thekup improve lookup resilience. The organization of its routing
traffic generated by a 3-way EpiChord network is comparabigitries is also somewhat analogous to that for EpiChord,
to that for a corresponding Chord network. This is a destrablbeit in a different address space. One key differencedmw
trade-off because lookup latency is the principal meastire Rademlia and EpiChord is that Kademlia limits the amount of
lookup performance. routing state ta)(log n) while EpiChord does not. By limiting

Our new algorithm yields substantial savings in terms 6fs routing state t@(log n), Kademlia lookups take on average

setup time and the number of messages sent when a ngi&g n) hops while EpiChord can often achieve one- or two-
first joins the network, compared to Chord and many oth@bp lookup performance with its large routing state. While
DHTs. To join the network, a node need only perform ongademlia employs parallel lookups mainly to improve lookup
lookup, contact its successor and predecessor, and peaiornperformance, EpiChord actualkequires parallel lookups to
initial cache transfér Although performance is better with cope with possible timeouts arising from maintaining a darg

amount of routing state.

SAdjacent nodes in an EpiChord network usually have a sinmsktr of The MIT Chord [13] implementation includes lacation

address space slices for their cache invariants. This mibansafter a node . .

cache, i.e., nodes remember the IP address afslof nodes

completes a cache transfer from either its successor oepeedor, it will = Bt
generally have a cache that already satisfies the invariant. that recently contacted them and use this information iir the

lookup. Zhuang and Zhou showed that the Chord locati@queries asynchronously in parallel per lookup and that the

cache is able to reduce lookup path length by 1/2 of thRimber of messages thus generated is in general no more than

Iogarithm of the cache size, but unfortunately, it does oates that for the Corresponding sequentiaj Chord |00kup a|bmjt
to more than 2,000 nodes in a typical network setting because

of stale cache entries, which cause timeouts and redundant REFERENCES
hops [19]. [1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. i&feriA

it imi i i scalable content-addressable network,Phoceedings of the 2001 ACM
In addmon to p_rOX|m|ty ne|ghbqr selection [18], D_abe_k et SGCOMM Conference, August 2001,
al. recently investigated the effectiveness of a combamadif [2] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Baisnan,

techniques in improving lookup latency for DHash++ [20] (an ~ “Chord: A scalable Peer-To-Peer lookup service for interagplica-

O(logn)-state DHT based on Chord), including synthetic co- tz'ggsl in Prlofgee‘iiggs of the 2001 ACM SIGCOMM Conference, August
ordinates, erasure coding, integration of key lookups atd d [3] B. Y, Ef{ao’ J. D. Kubiatowicz, and A. D. Joseph, “TapestAn

fetches and an integrated transport protocol (STP). Epi€ho infrastructure for fault-tolerant wide-area location armlting,” UC
is certainly not as sophisticated, but we are not seeking j(‘%] Berkeley, Tech. Rep. UCB/CSD-01-1141, April 2001.
r

. . A. Rowstron and P. Druschel, “Pastry: Scalable, disiiéld object lo-
be. Most of the techniques in DHash++ are orthogonal to U™ c4tion and routing for large-scale peer-to-peer systemsPtoceedings

lookup algorithm and can be integrated into EpiChord if SO of the 18th IFIP/ACM International Conference on Distributed Systems
desired. Platforms (Middleware 2001), November 2001.
(Lﬂ D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scalabland
Gupta et al. proposed one- and two-hop schemes that gynamic emulation of the butterfly,” iRroceedings of 21st ACM Conf.
disseminate global network membership changes using a on Principles of Distributed Computing (PODC'02), July 2002.

background broadcast process that scales up to a millidfl P- Maymounkov and D. Mazieres, *Kademlia: A peer-to{péefor-
mation system based on the xor metric,” Rroceedings of the 1st

nodes [11]. Other two-hop schemes that have been proposed |piernational Workshop on Peer-to-Peer Systems (IPTPS '02), March
include Kelips [8] and Structured Superpeers [10]. The majo 2002.

drawbacks of these schemes are that they either impose a fixél &-ysiz‘gﬁ'w“g-rlg?"i‘aaﬁra“d Pi-nngfhifB'S‘Em;‘(g‘r’nny:gaﬁtgmﬂi‘;mg
(and relatively high) amount of constant background traffic technologies and Systems, Ma?ch 2003. Pe

on all nodes (even ones that are relatively inactive), and/@8] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Repg&elips:

i iynifi i ; ; Building an efficient and stable P2P DHT through increaseanorg
Impose S|gn|f|c§1nt asymmetry in the bandwidth consumptlon and background overhead,” iRroceedings of the 2nd International
across nodes in the network. In return, they are in general \workshop on Peer-to-Peer Systems (IPTPS'03), February 2003.

able to achieve somewhat better one- and two-hop lookup] F. Kaashoek and D. Karger, “Koorde: A simple degree+opti dis-

performance than EpiChord, which also often achieVés)- g:]b‘;g_trfs:atagsg (rr’g?gds"}%%)"f;zzrirgy'”,;Eg&?tiona' Workshop
hop lookups, but only in an incidental ataissez faire manner 1] A. Mizrak, Y. Cheng, V. Kumar, and S. Savage, “Structligeiperpeers:

and at a somewhat lower cost. Leveraging heterogeneity to provide constant-time logkinpProceed-
ings of the 4th IEEE Workshop on Internet Applications, June 2003.
VIlI. CONCLUSION [11] A. Gupta, B. Liskov, and R. Rodrigues, “Efficient rouirfor peer-

)])) to-peer overlays,” irProceedings of the 1st Symposium on Networked
Our goal in this work is not to design the perfect DHT. Systems Design and Implementation (NSDI 2004), March 2004, pp. 113—
Instead, our objectives are: (i) to explore the effectigsne _ 126

. . .[12] B. Leong, B. Liskov, and E. D. Demaine, “Epichord: Péatiting the
of our new technique, where we combine parallel queri€s” chord lookup algorithm with reactive routing state managetit MIT,

with a reactive cache management strategy, in allowing us Cambridge, MA, Technical Report MIT-LCS-TR-963, August020

_ _ _ [13] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. dashoek,
to mave from anO(log n) state-per node DHT topology to F. Dabek, and H. Balakrishnan, “Chord: A scalable peergerpgookup

an Un“mited'Sta.tefper'nOde. ar.ChiteCture; and (ii) tO&IBt?ind service for internet applications,” MIT LCS, Tech. Rep.020
the trade-offs within the unlimited-state-per-node DHBida [14] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measuneistudy
space. of peer-to-peer file sharing systems,” Proceedings of Multimedia

Lo . L . Computing and Networking 2002 (MMCN ’02), San Jose, CA, USA,
Proximity routing has been shown to be effective in reducing Janupary 2002_ 9 ()

DHT routing latency [18]. Although we do not track latencyi15] “FIPS 180-1. secure hash standard,” US Department afi@erce/NIST,
information or actively decide on which nodes to query basT Tech. Rep., April 1995.
g

. 16] The ssfnet project. [Online]. Available: http://wwsgfnet.org
on proximity, our parallel asynchronous lookup approach f7] 3. Ui, J. Stribling, R. Morris, M. F. Kaashoek, and T. MilGDHT

fact exploits proximity indirectly. The key observationrbe routing tradeoffs in network with churn,” ifProceedings of the 3rd

is that the final sequence of lookups that returns the correct gggz{‘aﬁonaj Workshop on Peer-to-Peer Systems (IPTPS04), February

answer fi!’St in our al-synChronOUS pqra!lel |00_ka algorithﬁ]S] K. Gummadi, G. Gummadi, S. Gribble, S. Ratnasamy, Sniére and
is approximately equivalent to a proximity-optimized lagk I. Stoica, “The impact of DHT routing geometry on resilieneed

; ; ; proximity,” in Proceedings of the 2003 ACM SSIGCOMM Conference,
sequence for the corresponding sequential lookup algorith August 2003, pp. 381394,

Our pqrallel lookup algorithm is simple_and effective, anflo} 1. zhuang and F. Zhou, “Understanding Chord perfornearand

our reactive approach to routing state maintenance allaws o topology-aware overlay construction for Chord,” 2003. [@e].
Available: http://www.cs.berkeley.edu/"zf/papers/ichperf.pdf

DHT to adapt na_'t_ura”y to a range of IOOkuP workloads. W 0] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, BadMorris,

have also qyan“f'ed the performance-cost trade-offs for ou ™ «pesigning a dht for low latency and high throughput,” Rnoceedings

lookup algorithm and showed that we can reduce both lookup of the 1st Symposium on Networked Systems Design and Implementation

latencies and path lengths by a factor of 3 by issuing only (NSDI 2004), March 2004, pp. 85-98.

