
Proceedings of the12th International Conference on Networks 2004 (ICON 2004), Singapore, November 2004.

EpiChord: Parallelizing the Chord Lookup
Algorithm with Reactive Routing State Management

Ben Leong, Barbara Liskov, and Eric D. Demaine
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street
Cambridge, MA 02139, USA

{benleong, liskov, edemaine}@mit.edu

Abstract— EpiChord is a DHT lookup algorithm that demon-
strates that we can remove theO(log n)-state-per-node restriction
on existing DHT topologies to achieve significantly better lookup
performance and resilience using a novel reactive routing state
maintenance strategy that amortizes network maintenance costs
into existing lookups and by issuing parallel queries. Our
technique allows us to design a new class of unlimited-state-
per-node DHTs that is able to adapt naturally to a wide range
of lookup workloads. EpiChord is able to achieve O(1)-hop
lookup performance under lookup-intensive workloads, andat
least O(log n)-hop lookup performance under churn-intensive
workloads even in the worst case (though it is expected to perform
better on average).

Our simulations show that our approach can reduce both
lookup latencies and path lengths by a factor of 3 by issuing only
3 queries asynchronously in parallel per lookup. Furthermore,
we show that we are able to achieve this result with minimal
additional communication overhead and the number of messages
generated per lookup is in general no more than that for the
corresponding sequential Chord lookup algorithm.

I. I NTRODUCTION

In recent years, many Distributed Hash Tables (DHTs) have
been proposed [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11].
DHTs are important to distributed systems research because
they offer a scalable and efficient routing and object location
platform for self-organizing peer-to-peer overlay networks.
While most of the initial DHT research was directed towards
minimizing the amount of routing state per node, more recent
research has demonstrated that it is reasonable to attempt
to store a global lookup table at every node to achieve
one-hop lookup, when network churn is relatively low or if
enough bandwidth is available, since local storage is relatively
cheap [11].

In this paper, we describe EpiChord, a DHT that demon-
strates that we can remove the state storage restriction on
O(log n)-state DHTs1 to achieve better lookup performance
using a novel reactive routing state maintenance strategy and
by issuing multiple queries asynchronously in parallel. Our
technique allows us to design a new class of unlimited-state-
per-node DHTs that is able to adapt naturally to a wide range
of lookup workloads.

While existing DHTs tend to decouple the lookup pro-
cess from routing state maintenance and adopt a proactive

1It is known that limiting the amount of state stored per node to O(log n)
limits the average lookup path length to no better thanO(log n/ log log n)
hops per lookup. Koorde [9] achieves thisO(log n/ log log n)-hop lower
bound.

routing state management strategy where nodes probe all (or
at least most of) their routing entries periodically to ensure
that they are alive, EpiChord employs areactive routing
state management strategy where routing state maintenance
costs are amortized into the lookup costs. Nodes rely mainly
on observing lookup traffic and on piggybacking additional
network information on query replies to keep their routing
state up-to-date under reasonable traffic conditions. EpiChord
only sends probes as a backup mechanism if lookup traffic
levels are too low to support the desired level of performance.

We use parallel lookups to ameliorate the costs of keeping
outdated routing state. In particular, there is a synergistic
relationship between large (> O(log n)) state and parallel
lookups in our approach: while parallel queries allow us to
avoid lookup timeouts due to stale routing entries, we can
afford to issue parallel queries without generating excessive
amounts of lookup traffic only because our large routing state
reduces the number of hops per lookup and thereby the number
of lookup messages.

Our main goal in this work is to explore and quantify
the performance-cost trade-offs in moving from anO(log n)-
state-per-node DHT topology to an unlimited-state-per-node
architecture, by adopting a reactive routing state management
strategy and using parallel queries. Consequently, we compare
EpiChord to the optimal2 sequential Chord lookup algorithm
and show that we are able in practice to achieve significantly
better lookup performance on average (both in terms of lookup
path length and latency) than that for the corresponding se-
quential Chord lookup algorithm with comparable amounts of
maintenance and lookup traffic. Our parallel lookup algorithm
is simple and effective, and our reactive approach to routing
state maintenance allows our DHT to adapt naturally to a range
of lookup workloads.

II. OVERVIEW

Like Chord [2], EpiChord is organized as a one-dimensional
circular address space and the node responsible for a key
is the node whose identifier most closely follows the key,
i.e., the successor (see Fig. 1). In addition to maintaininga
successor list ofk nodes, nodes in our network also maintain
a predecessor list ofk nodes. Nodes communicate with their

2By optimal, we mean that we ignore Chord maintenance costs and assume
that the finger tables of the Chord nodes have perfectly accurate finger entries
at all times regardless of node failures. The competing sequential lookup
algorithm is thus a reasonably strong adversary and not justa straw man.

K12

K20

K27

K50

N28

N15

K2
N58

N55

N53

N60

N9

N5

N3N1N0

N49

N44

N47

N42
N39

N35 N32

N19

N17

Fig. 1. Circular identifier address space with twenty nodes and five keys.

immediate successor and predecessor periodically, exchanging
their entire successor and predecessor lists. Instead of main-
taining a finger table (set of pointers) withO(log n) entries,
EpiChord maintains a cache that not only guarantees at least
O(log n)-hop performance, but can often do better.

We adopt two simple policies to learn new routing entries.
(i) When a node first joins the network, it obtains a full cache
transfer from one of its two immediate neighbors. (ii) Nodes
gather information by observing lookup traffic: a node updates
its cache based on information returned by queries and adds
an entry to the cache each time it is queried by a node not
already in the cache.

To look up a destinationid, nodex initiates p queries in
parallel to the node immediately succeedingid and to thep−1
nodes precedingid, within the set of nodes known to it (see
Fig. 2). Probing the succeeding node gives us a chance of
locating the destination node in one hop. When contacted,
each of thep nodes will provide itsl “best” next hops from
its cache or if it ownsid, it will say so. When these replies are
received, further queries will be dispatched asynchronously in
parallel ifx learns about nodes that are closer to the destination
id than the other queries that are still pending. We call an
EpiChord network wherep queries are made in parallel ap-
way EpiChord.

Our lookup algorithm is intrinsically iterative. The main
reason for this is that an iterative approach allows us to avoid
sending redundant queries. If we employ parallel queries in
a recursive lookup, nodes at the subsequent hops would not
know when other nodes respond to the original node that
issued the lookup, and hence which new nodesnot to query. In
general, such an approach is likely to require2p×h messages
(including both queries and responses) per lookup, wherep is
the number of parallel queries per hop andh is the number
of hops. With an iterative approach, we usually require only
about2(p + h) messages per lookup.

Each cache entry has an associated time. When a node
receives a query or reply, it adds an entry for the sender if
it is not already in the cache and sets (or resets) the time of
the entry associated with the sender to that of its local clock.
Query responses contain alifetime for each entry, equal to the
sender’s clock at the time of the send minus the node entry’s
time in the sender’s cache, and this information is used to set
or reset the time in the receiver’s cache for that node. Node
entries are flushed if their associated nodes do not respond to

x

id

1 entry
p − 1 entries

cache entry
increasing

id

Fig. 2. Cache entries returned
from cache for nodex for a lookup
of id.

x
cache entry

increasing
id

Fig. 3. Division of address space
into slices with respect to nodex.

some number of queries or when their lifetime exceeds some
limit, τ .

Like Chord, the correctness of the lookup algorithm is
guaranteed because a query can always reach the destination
id by moving sequentially down the successor lists. In general,
O(log n)-hop DHT routing schemes have a predefined set of
O(log n) fingers and provide guarantees on lookup perfor-
mance by ensuring that a node knows about some nodes in the
vicinity of each finger. EpiChord divides the address space into
two symmetric sets of exponentially smaller slices as shown
in Fig. 33. For performance guarantees, each node enforces
the following invariant:

Cache Invariant: Every slice contains at least j
1−γ̂

cache entries at all times.
whereγ̂ is a local estimate of the probability that a cache entry
is out-of-date (i.e., that the associated node had failed).A node
checks its cache slices periodically and ensures that thereare
sufficient unexpired cache entries in each slice. Should a slice
be found not to have sufficient unexpired cache entries, a node
makes a lookup to the midpoint of that slice. Sincej is small
(e.g. 2), one lookup is usually all it takes to satisfy the cache
invariant.

The key idea is that to provide anO(log n)-hop guarantee
on the lookup path length, the density of entries per slice
must increase exponentially as we get nearer to the node’s
id. EpiChord estimates the number of slices from itsk

successors andk predecessors: it requires that the successor
and predecessor lists fall into the two adjacent slices closest
to the reference node. This implies that we need to choosej

andk such thatk ≥ 2j.

III. A NALYSIS

A. Worst-Case Lookup Performance

If we assume a uniformly distributed workload, we can
show that the worst-case lookup performance isO(log n) hops.
In addition, the expected worst-case lookup path length is at
most 1

2
logα n, whereα = 3j + 6

j+3
. Here,n is the size of the

network, andj is the minimum number of cache entries per
slice (See [12]). Whenj = 1, we get the same expected worst-
case result as Chord does. However, forj ≥ 2, we tend to do

3In contrast to the asymmetric Chord finger table, the division of the address
space into slices is symmetric by design. The key idea is thatwhen nodex
responds to nodey, they will each know that each other is alive, and if the
node entry fory helpsx to satisfies its cache invariant for a particular slice,
we want the node entry forx to also be useful in satisfying the invariant for
a corresponding slice iny’s cache.

much better: forj = 2, α = 7.2 and the EpiChord expected
lookup path lengths are at most only

1

2
log

2
n

1

2
logα n

= logα 2 ≈ 1
3

of that for Chord4. Our analysis implicitly assumes that the
queries in each hop are synchronized. Because our lookup
algorithm is asynchronous, actual lookup path lengths willtend
to be slightly larger.

B. Reduction in Background Probes

EpiChord exploits information gleaned from observing
lookup traffic to improve lookup performance, and only sends
network probes when necessary. To see the bandwidth savings
with our approach, we consider a network with a steady
state size of 20,000 nodes and nodes that have an median
lifespan of 60 minutes5. This translates to a node failure rate
of approximately 0.03% (or 5 nodes) per second. Assuming
that the application-level lookup traffic received by a node
is approximately uniformly distributed (which is a reasonable
assumption since nodeids are obtained using the SHA-1
hash [15] and are thus uniformly distributed), the proportion of
lookup traffic that will help to satisfy the cache invariantsfor
various network sizes (forj = 2) is shown in Fig. 4. With an
amount of lookup traffic approximately equal to the required
background maintenance traffic (i.e.,x = 1 in Fig. 4), we
can achieve a 42% reduction in the background maintenance
traffic whenn = 2, 000. At larger network sizes, the savings in
background maintenance traffic is reduced, but even at network
sizes of 1,000,000 nodes, we can still expect a reduction
of more than 25% on average. The reduction in background
probes is relatively independent ofj.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

n=2,000
n=20,000

n=200,000
n=1,000,000

P
ro

po
rt

io
n

of
ca

ch
e

in
va

ria
nt

sa
tis

fie
d

Lookup traffic relative to minimal background network maintenance traffic

Fig. 4. Effect of network size (n) on the proportion of lookup traffic that
helps to satisfy cache invariant (forj = 2).

4The expected lookup path length for Chord is1
2

log2 n [13].
5These figures are representative of both the Napster and Gnutella peer-to-

peer file-sharing networks as reported in a measurement study by Saroiu et
al. [14].

C. Cache Composition in the Steady State

The proportion of live entries6 in the cache is an important
system parameter because it determines the probability of a
timeout occurring during a lookup. To obtain an estimate of
the number of live entries in a cache in the steady state, we
consider a network of sizen such that in a fixed time interval,
a fractionr of the nodes in the network leave, a fractionf of
the cache entries are flushed and each node makesQ lookups
uniformly over theid address space and sends outp queries in
parallel for each lookup. Wherex is the number of live nodes
that is known to a node at timet, we obtain the following
relation:

d

dt
x(t) =

incoming queries
︷ ︸︸ ︷

pQ(1− x

n
) −

entries
flushed
︷︸︸︷

fx −

nodes departed but
not flushed
︷ ︸︸ ︷

(1 − f)rx (1)

We have assumed that new knowledge comes only from the
incoming queries as a node would have to know about a node
in order to send an outgoing query to it. This is conservative
and will tend to under-estimate the increase inx. We have
also assumed that the probability that a cache entry is flushed
is independent of the probability of failure for the associated
node. The steady state solution tox is:

lim
t→∞

x(t) =
pQ

pQ + (f + r − rf)n
n (2)

In addition, wherey is the number of stale cache entries at
time t, we have the following relation:

d

dt
y(t) =

stale entries
not flushed

︷ ︸︸ ︷

(1 − f)rx−

stale entries
flushed
︷︸︸︷

fy −

stale entries discovered by
timeouts of outgoing queries

︷ ︸︸ ︷

pQ(
y

x + y
) (3)

In a network with high churn, the proportion of stale entries
in the cache,γ, is a key system parameter:

γ = lim
t→∞

y

x + y
=

1

pQ
[(1 − f)rx − fy] (4)

If pQ ≫ rn and f = 0, thenx ≈ n and γ ≈ rn
pQ

≈ 0. This
implies that if the level of lookup traffic is high enough, the
performance of the system is somewhat independent of the
cache maintenance protocol.

Next, we consider the case whenpQ ≪ rn. By setting
dx
dt

= 0 in (1) and dy
dt

= 0 in (3), we obtain:

γ = lim
t→∞

y

x + y
=

√

1 + (1−f)r
f

− 1
√

1 + (1−f)r
f

(5)

If cache entries are flushed at a rate that is at least as fast as
the node failure rate, i.e.f ≈ r, then

γ =

√
2 − f − 1√

2 − f
≤ 1 −

1√
2

= 0.292 (6)

Thus, our model predicts that even when the churn rate is high
(pQ ≪ rn), at most 30% of the cache entries will be stale
(and this result is independent of the level of lookup traffic
pQ). This result was verified by our simulations.

6An entry islive if its associated node is still online. The set of cache entries
for a node will in general consist of some live entries and some unexpired,
stale entries.

IV. SIMULATION RESULTS

To understand the trade-offs when we move from an
O(log n)-state-per-node DHT to an unlimited-state-per-node
DHT with the same basic routing topology, we compare
EpiChord to a corresponding optimal iterative Chord network
of the same size using our simulation built on thessfnet [16]
simulation framework. We run the simulations on a 10,450-
node network topology organized as 25 autonomous systems,
each with 13 routers and 405 end-hosts. The average roundtrip
time (RTT) between nodes in the topology is approximately
0.16 s. Hence, we set timeouts at 0.5 s for all simulations.
Since all query packets are UDP-based and packets may be
lost, we retransmit twice after a timeout and will decide that
a node has failed if we do not hear from it after 3 tries.

Li et al. highlighted that the assumed workload will affect
the result of comparisons between DHTs significantly [17].
They proposed two generic classes of workloads –lookup-
intensive andchurn-intensive. Although they did not propose
exact definitions for these two classes of workloads, we
do have a very natural way of defining these two classes
of workloads for EpiChord based on our steady-state cache
model. In particular, we consider a workload to be lookup-
intensive ifpQ ≫ rn, and churn-intensive ifpQ ≪ rn.

In our simulations, we first generate a sequence of node
joins/departures and queries according to a pre-determined
set of network parameters. Subsequently, we run the same
set of traces on the EpiChord networks of varying degrees
of parallelism and on a corresponding Chord network. This
ensures that the results can be compared fairly across the two
algorithms without bias in the choice of nodeids and lookup
ids.

A. Lookup-Intensive Workload (pQ ≫ rn)

In our lookup-intensive workload simulation, node lifespans
are exponentially distributed with a mean of 600 s. We ex-
periment with a range of network sizes by varying the rate
of node joins from0.33 to 2 nodes per second. Each node
in the network makes on average 2 lookups per second. In
steady state, the network sizes range from 200 to 1,200 nodes
and the overall system query rate ranges from 400 to 2,400
lookups per second. The stabilization interval is 60 s (i.e.,
nodes probe their successors and predecessors once a minute)
and the lifetime of a cache entry is 120 s7. Since the expected
background maintenance traffic is negligible compared to the
active lookup rate,Q ≈ 2 andrn ranges from0.33 to 2. Also,
r ≈ 1

600
, f ≈ 1

120
(f > r) andj = 2.

1) Lookup Performance: The average latency and the av-
erage hop count per lookup for successful lookups in the
steady state are shown in Figs. 5 and 6 respectively. From
Fig. 5, we see that having more parallelism reduces the lookup
latency. In Fig. 6, the hop count for EpiChord is defined as the
minimum number of nodes that have to be contacted in the

7The cache entry expiration period of 120 s is chosen to ensurethat
the amount of maintenance traffic required is provably less than that for a
corresponding Chord network at the same level of network churn. Details can
be found in the EpiChord technical report [12].

final (successful) lookup sequence. We see that the average
steady-state hop count varies from 1.1 to 1.4. This means that
at least 60% of the lookups succeed within the initial wave
of lookup queries. This result is actually not surprising since
we know from our analysis that the expected worst-case hop
count is 1

2
logα n = 1

2
log7.2 1, 200 = 1.80.

Lookup failure rates are relatively low (< 0.1%) under a
lookup-intensive workload. This is not surprising since under
the lookup-intensive workload, the large number of lookups
keep the routing state for most nodes generally up-to-date.Our
results also show that adding more parallelism (increasingp)
reduces the probability of lookup failure significantly8. The
lookup failure probability falls by approximately an orderof
magnitude whenp is increased by one.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 200 300 400 600 800 1000 1200 1400

Chord
1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

A
ve

ra
ge

lo
ok

up
la

te
nc

y
(s

)

Network Size (log scale)

Fig. 5. Comparison of lookup latency between Chord andp-way EpiChord
under lookup-intensive workload.

 0

 1

 2

 3

 4

 5

 200 300 400 600 800 1000 1200 1400

Chord
1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

A
ve

ra
ge

nu
m

be
r

of
ho

ps
pe

r
lo

ok
up

Network Size (log scale)

Fig. 6. Comparison of lookup path length between Chord andp-way
EpiChord under lookup-intensive workload.

8The competing optimal Chord network has perfectly accuratefingers at
all times and thus lookups never fail.

2) Message Count: It is clear that a parallel lookup al-
gorithm will generate more lookup messages when there
are more parallel queries per lookup. Fig. 7 shows that for
our given parameter settings, the average number of query
and reply messages that are required for a sequential Chord
network is approximately equal to that for a 3-way EpiChord
network. The main reason why the number of lookup messages
does not increase in proportion withp is that with iterative
lookups, the querying node can avoid sending duplicate and
redundant queries.

B. Churn-Intensive Workload (pQ ≪ rn)

In our churn-intensive workload simulation, node lifespans
are exponentially distributed with a mean of 600 s. The stabi-
lization interval is 60 s and the lifetime of a cache entry is 120
s. We experiment with a range of network sizes by varying the
rate of node joins from1 to 15 nodes per second. Each node
in the network makes on average 0.01 lookups per second.
Because the lookup rate is so low, most of the lookups captured
in our results are lookups arising from node joins and cache
maintenance. In steady state, the network sizes range from
600 to 9,000 nodes and the overall system query rate ranges
from 40 to 700 lookups per second. Including the minimal
expected background maintenance traffic,Q ≈ 0.05 to 0.08
and rn ranges from 1 to 15. As before,r ≈ 1

600
, f ≈ 1

120

(f > r) andj = 2.
1) Lookup Performance: The average latency and the av-

erage hop count per lookup for all successful lookups are
shown in Figs. 8 and 9 respectively. Again, we see from
Fig. 9 that adding more parallelism reduces the lookup la-
tency significantly. As shown in Fig. 10, the lookup failure
probabilities under the churn-intensive workload are higher
than those under the lookup-intensive workload (which are
≤ 0.1%). From Fig. 10, we see that the failure rates for the 4-
and 5-way EpiChord networks are higher than that for the 3-
way EpiChord network, which is somewhat counter-intuitive.
We discovered that the explanation for this phenomenon is that
with a largerp, each lookup invoked for cache maintenance
satisfies the cache invariant for more nodes and so the 4-
and 5-way EpiChord networks generate fewer cache-refreshing
lookups than a 3-way EpiChord network. This lower rate of
background maintenance traffic accounts for the marginally
higher failure rates for larger network sizes. Our simulations
also suggest that withp ≥ 2, successful lookups will almost
never experience timeouts.

2) Message Count: As shown in Fig. 11, more messages
are required to complete a lookup under a churn-intensive
workload. However, the increase in message count over the
lookup-intensive workload is quite modest: a 1-way EpiChord
network requires approximately the same number of messages
per lookup as the corresponding Chord network, while a 3-way
EpiChord network incurs approximately 50% more lookup
traffic.

C. Varying Other System Parameters

Our simulations also show that:

 0

 5

 10

 15

 20

 200 300 400 600 800 1000 1200 1400

5-way EpiChord
4-way EpiChord
3-way EpiChord
2-way EpiChord
1-way EpiChord

Chord

A
ve

ra
ge

nu
m

be
r

of
m

e
ss

a
ge

s
pe

r
pe

r
lo

ok
up

Network Size (log scale)

Fig. 7. Comparison of lookup message count between Chord andp-way
EpiChord under lookup-intensive workload.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

1-way EpiChord
Chord

2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

A
ve

ra
ge

lo
ok

up
la

te
nc

y
(s

)

Network Size (log scale)

Fig. 8. Comparison of lookup latency between Chord andp-way EpiChord
under churn-intensive workload.

• Holding p and l constant at 3, increasing the amount
of lookup traffic per nodeQ (varying between 0.01 and
2 lookups per second) reduces the lookup path length,
lookup latency, and the number of messages sent per
lookup. There are however decreasing marginal returns
with increasing traffic and the EpiChord lookup algorithm
achieves close to optimal performance with a reasonably
small amount of lookup traffic (i.e.,Q = 0.5).

• Similarly, holding p constant at 3 and the amount of
lookup traffic Q constant at 0.01 lookups per node per
second, the numberl of “best entries” returned per
response (varying between 2 and 4) has a negligible effect
on the lookup path length, lookup latency and the number
of messages sent per lookup. We thus conclude that we
can keepl small and setl = 3.

V. D ISCUSSION

Our analysis and simulations have shown that by using
parallel lookups and by amortizing the network maintenance
costs into the lookup costs, our approach offers significantly

 0

 1

 2

 3

 4

 5

 6

 7

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

Chord
1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

A
ve

ra
ge

nu
m

be
r

of
ho

ps
pe

r
lo

ok
up

Network Size (log scale)

Fig. 9. Comparison of lookup path length between Chord andp-way
EpiChord under churn-intensive workload.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

Network Size (log scale)

P
ro

ba
bi

lit
y

of
lo

ok
up

fa
ilu

re

Fig. 10. Lookup failure rates forp-way EpiChord networks under churn-
intensive workload.

better lookup path lengths and latencies with little additional
costs in terms of bandwidth consumption. Our simulations
have also shown that even though multiple messages are sent
per lookup step, the lookup traffic generated is not significantly
larger than that for a sequential lookup algorithm because
lookup path lengths are significantly shorter. In fact, the lookup
traffic generated by a 3-way EpiChord network is comparable
to that for a corresponding Chord network. This is a desirable
trade-off because lookup latency is the principal measure of
lookup performance.

Our new algorithm yields substantial savings in terms of
setup time and the number of messages sent when a node
first joins the network, compared to Chord and many other
DHTs. To join the network, a node need only perform one
lookup, contact its successor and predecessor, and performan
initial cache transfer9. Although performance is better with

9Adjacent nodes in an EpiChord network usually have a similarset of
address space slices for their cache invariants. This meansthat after a node
completes a cache transfer from either its successor or predecessor, it will
generally have a cache that already satisfies the invariant.

 0

 5

 10

 15

 20

 25

 30

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

5-way EpiChord
4-way EpiChord
3-way EpiChord
2-way EpiChord
1-way EpiChord

Chord

A
ve

ra
ge

nu
m

be
r

of
m

e
ss

a
ge

s
pe

r
pe

r
lo

ok
up

Network Size (log scale)

Fig. 11. Comparison of lookup message count between Chord and p-way
EpiChord under churn-intensive workload.

a full initial cache transfer, a minimal transfer ofO(log n)
entries is sufficient to guarantee worst-caseO(log n)-hop
lookup performance. In contrast,O(log n) lookups (O(log2 n)
messages) are required for a Chord node to fully initialize its
finger table.

Although our reply messages will tend to be larger than
those of traditional sequential lookup algorithms, sincel “best”
entries are returned, even with the increase in size, the reply
messages are only about 100 bytes in size (including the 28-
byte UDP/IP header) at a reasonable setting ofl = 3. Hence,
the increased size of the responses is not an issue even for
nodes behind a 56k modem line since the packets are relatively
small.

VI. RELATED WORK

Our parallelized lookup algorithm and reactive cache man-
agement strategy can be applied to any of the existing DHT
routing topologies that have some flexibility in the choice of
neighbors (i.e., ring, tree or xor) [18]. We chose to implement
our proof-of-concept DHT using the Chord ring [2] as the
underlying routing topology because of its simplicity.

Like EpiChord, Kademlia [6] gathers routing information
from observing lookup traffic and uses parallel lookups to
improve lookup resilience. The organization of its routing
entries is also somewhat analogous to that for EpiChord,
albeit in a different address space. One key difference between
Kademlia and EpiChord is that Kademlia limits the amount of
routing state toO(log n) while EpiChord does not. By limiting
its routing state toO(log n), Kademlia lookups take on average
O(log n) hops while EpiChord can often achieve one- or two-
hop lookup performance with its large routing state. While
Kademlia employs parallel lookups mainly to improve lookup
performance, EpiChord actuallyrequires parallel lookups to
cope with possible timeouts arising from maintaining a large
amount of routing state.

The MIT Chord [13] implementation includes alocation
cache, i.e., nodes remember the IP address andids of nodes
that recently contacted them and use this information in their

lookup. Zhuang and Zhou showed that the Chord location
cache is able to reduce lookup path length by 1/2 of the
logarithm of the cache size, but unfortunately, it does not scale
to more than 2,000 nodes in a typical network setting because
of stale cache entries, which cause timeouts and redundant
hops [19].

In addition to proximity neighbor selection [18], Dabek et
al. recently investigated the effectiveness of a combination of
techniques in improving lookup latency for DHash++ [20] (an
O(log n)-state DHT based on Chord), including synthetic co-
ordinates, erasure coding, integration of key lookups and data
fetches and an integrated transport protocol (STP). EpiChord
is certainly not as sophisticated, but we are not seeking to
be. Most of the techniques in DHash++ are orthogonal to our
lookup algorithm and can be integrated into EpiChord if so
desired.

Gupta et al. proposed one- and two-hop schemes that
disseminate global network membership changes using a
background broadcast process that scales up to a million
nodes [11]. Other two-hop schemes that have been proposed
include Kelips [8] and Structured Superpeers [10]. The major
drawbacks of these schemes are that they either impose a fixed
(and relatively high) amount of constant background traffic
on all nodes (even ones that are relatively inactive), and/or
impose significant asymmetry in the bandwidth consumption
across nodes in the network. In return, they are in general
able to achieve somewhat better one- and two-hop lookup
performance than EpiChord, which also often achievesO(1)-
hop lookups, but only in an incidental andlaissez faire manner
and at a somewhat lower cost.

VII. C ONCLUSION

Our goal in this work is not to design the perfect DHT.
Instead, our objectives are: (i) to explore the effectiveness
of our new technique, where we combine parallel queries
with a reactive cache management strategy, in allowing us
to move from anO(log n)-state-per-node DHT topology to
an unlimited-state-per-node architecture; and (ii) to understand
the trade-offs within the unlimited-state-per-node DHT design
space.

Proximity routing has been shown to be effective in reducing
DHT routing latency [18]. Although we do not track latency
information or actively decide on which nodes to query based
on proximity, our parallel asynchronous lookup approach in
fact exploits proximity indirectly. The key observation here
is that the final sequence of lookups that returns the correct
answer first in our asynchronous parallel lookup algorithm
is approximately equivalent to a proximity-optimized lookup
sequence for the corresponding sequential lookup algorithm.

Our parallel lookup algorithm is simple and effective, and
our reactive approach to routing state maintenance allows our
DHT to adapt naturally to a range of lookup workloads. We
have also quantified the performance-cost trade-offs for our
lookup algorithm and showed that we can reduce both lookup
latencies and path lengths by a factor of 3 by issuing only

3 queries asynchronously in parallel per lookup and that the

number of messages thus generated is in general no more than
that for the corresponding sequential Chord lookup algorithm.

REFERENCES

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” inProceedings of the 2001 ACM
SIGCOMM Conference, August 2001.

[2] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable Peer-To-Peer lookup service for internet applica-
tions,” in Proceedings of the 2001 ACM SIGCOMM Conference, August
2001, pp. 149–160.

[3] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An
infrastructure for fault-tolerant wide-area location androuting,” UC
Berkeley, Tech. Rep. UCB/CSD-01-1141, April 2001.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems,”in Proceedings
of the 18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2001), November 2001.

[5] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scalable and
dynamic emulation of the butterfly,” inProceedings of 21st ACM Conf.
on Principles of Distributed Computing (PODC’02), July 2002.

[6] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the xor metric,” inProceedings of the 1st
International Workshop on Peer-to-Peer Systems (IPTPS ’02), March
2002.

[7] G. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed hashing
in a small world,” inProceedings of 4th USENIX Symposium on Internet
Technologies and Systems, March 2003.

[8] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse, “Kelips:
Building an efficient and stable P2P DHT through increased memory
and background overhead,” inProceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03), February 2003.

[9] F. Kaashoek and D. Karger, “Koorde: A simple degree-optimal dis-
tributed hash table,” inProceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS ’03), February 2003.

[10] A. Mizrak, Y. Cheng, V. Kumar, and S. Savage, “Structured superpeers:
Leveraging heterogeneity to provide constant-time lookup,” in Proceed-
ings of the 4th IEEE Workshop on Internet Applications, June 2003.

[11] A. Gupta, B. Liskov, and R. Rodrigues, “Efficient routing for peer-
to-peer overlays,” inProceedings of the 1st Symposium on Networked
Systems Design and Implementation (NSDI 2004), March 2004, pp. 113–
126.

[12] B. Leong, B. Liskov, and E. D. Demaine, “Epichord: Parallelizing the
chord lookup algorithm with reactive routing state management,” MIT,
Cambridge, MA, Technical Report MIT-LCS-TR-963, August 2004.

[13] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for internet applications,” MIT LCS, Tech. Rep., 2002.

[14] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measurement study
of peer-to-peer file sharing systems,” inProceedings of Multimedia
Computing and Networking 2002 (MMCN ’02), San Jose, CA, USA,
January 2002.

[15] “FIPS 180-1. secure hash standard,” US Department of Commerce/NIST,
Tech. Rep., April 1995.

[16] The ssfnet project. [Online]. Available: http://www.ssfnet.org
[17] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil, “DHT

routing tradeoffs in network with churn,” inProceedings of the 3rd
International Workshop on Peer-to-Peer Systems (IPTPS ’04), February
2004.

[18] K. Gummadi, G. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and
I. Stoica, “The impact of DHT routing geometry on resilienceand
proximity,” in Proceedings of the 2003 ACM SIGCOMM Conference,
August 2003, pp. 381–394.

[19] L. Zhuang and F. Zhou, “Understanding Chord performance and
topology-aware overlay construction for Chord,” 2003. [Online].
Available: http://www.cs.berkeley.edu/˜zf/papers/chord perf.pdf

[20] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, andR. Morris,
“Designing a dht for low latency and high throughput,” inProceedings
of the 1st Symposium on Networked Systems Design and Implementation
(NSDI 2004), March 2004, pp. 85–98.

