Proceedings of thé2th International Conference on Networks 2004 (ICON 2004), Singapore, November 2004.

Achieving One-Hop DHT Lookup and
Strong Stabilization by Passing Tokens

Ben Leong and Ji Li
MIT Computer Science and Atrtificial Intelligence Laborator
32 Vassar Street
Cambridge, MA 02139, USA
{benleong, jl} @mit.edu

Abstract— Recent research has demonstrated that if network that broadcasts events efficiently to all nodes using small
churn is not excessively high, it becomes entirely reason messages, which we cabkens.

for a Distributed Hash Table (DHT) to store a global lookup Lo . .
table at every node to achieve one-hop lookup. We present a In any DHT, nodes must periodically probe their immediate

novel algorithm for maintaining global lookup state in a DHT heighbors in the a_ddress_ space in order to ensure routing
with a Chord-like circular address space. In our DHT, events correctness. If a neighbor is found to have failed, a nodet mus

are disseminated with a parallelized token-passing algaim then attempt to repair the address space by contacting &te ne
using dynamically-constructed dissemination trees root at the gt replacement for the failed neighbor. Our key insigtttas

source of the events. We show that we are able to achieve_. :
good one- and two-hop routing performance at a modest cost since the nodes in the network already have to exchatage

in bandwidth. Furthermore, our scheme is bandwidth-adaptive, @alive messages periodically, it would be desirable to propagate
and automatically detects and repairs global address space node join/departure events by piggybacking them on stayali
inconsistencies. messages where possible and forwarding them along the ring.
A naive scheme to pass tokens sequentially along the ring
takes a long time and is relatively inefficient; so instead, w
Most of the initial Distributed Hash Tables (DHTs) werg;se a parallelized token-passing scheme.
o!esign_ed to cope with membership changes_in highly dynamica pHT with a circular address space can end up loopy
(i.e., high churn) networks [1], [2], [3], [4]. Since stoebas after a network partition [10]. Our token-passing algarith
grown significantly cheaper and higher bandwidth networls the additional beneficial side-effect of detecting and a
have become more common in recent years, recent resegatically fixing global inconsistencies in the addresacep
has demonstrated that if network churn is not excessivelly,hi The process that maintains and repairs the address space is
it has become entirely reasonable to store a global looKulp tacg|jed stabilization. The key idea is simple: to detect a loop
at every node to achieve one-hop lookup [5], [6]. in the address space, all we need to do is to traverse the entir
In this paper, we present a DHT that uses a novel tokefjg and make sure that we come back to where we started.
passing mechanism to maintain global lookup state at a8y parallelized token-passing algorithm achieves tHiscef
node. We expect our DHT to be useful for peer-to-peer overlgyhce 5 loop is detected by the appropriate nodes, the local

networks where nodes need to look up the IP address @pilization protocol kicks in and repairs the inconsiste
target nodes that are referenced by some identifier in a flat

address space. An example of such an application would be
the P6P IPv6-to-IPv4 overlay network [7]; another posiibil II. OVERVIEW
is a DNS-over-DHT application that uses a DHT to look up
DNS NS-entries, unlike previously proposed DNS-over-DHT Like Chord [1], our DHT is organized as a one-dimensional
schemes that used DHTSs to store and retrieve PNShtries circular address space where each node is assigned a node
directly [8], [9]. Our DHT is also likely to be useful for identifier (zid). As shown in Fig. 1, the node responsible for
supporting mobile hosts that obtain their IP addresses wakey is the node whos&l most closely follows the key,
DHCP; our DHT can be used in place of mobile IP as thehich we also call thesuccessor. We use the cryptographic
host registration mechanism. hash function SHA-1 [11] to determine théd of a new node

We compare our scheme to Gupta et al.’s one-hop routifi@m some identifier (perhaps a hostname or an IP address),
scheme [5] and show that we are able to achieve simile@ that with high probability, theiids do not collide and are
levels of lookup performance with comparable amounts ghiformly distributed over the entire circular addresscepa
background maintenance traffic, at a somewhat lower com-Each node maintains its routing information in a cache.
plexity by not requiring the network to maintain a fixed eventA node cache is simply an ordered list containing the IP
dissemination hierarchy and without asymmetric bandwiddddresses and status of the known nodes in the network,
consumption across nodes within the network. Our maindexed by theirnids. For efficiency, the list is stored as a
contribution is a novel routing state dissemination aldponi B-tree.

|. BACKGROUND

lookup traffic is also used to help update and maintain the

N960 NI
.
N115 network routing state.

N897
N210 C. Didtributed Token-Passing Algorithm
A token is a message containing information on network

N700

events like node joins and node failures, together withiesntr
Ne75 N304 for the source and destination nodes. A node entry condists o
& a node’sid and its IP address. The event description contains
N505 information on the type of event (i.e., join/leave) and adso
timestamp.
When a node receives a token, the receiving nodean
choose one of the two following actions:

« x can simply pass the token to its predecessor; or
« it can generatg secondary tokens.

Like all other DHTs, we assume that a node that wish@he decision as to whether to generate secondary tokens
to join the network will know of at least one other nodgjepends on the policy adopted and the resources available.
that is already in the network. The join operation is & tWQp general, a node checks its cache to see if it can find
step procedure: (i) The new node makes a regular iteratlye | node entries that are approximately uniformly spaced
lookup for the successor to itsid in the ring using the iy the remaining segment of the address space to be traversed
node(s) that it knows about. (i) Once the successor is foung, the token. If so and if it decides that it has sufficient
the new node sends a request to its successor to import Ufgoing bandwidth, the node may choose to generatey the
entries required to initialize its cache. Simultaneousl@lso gecondary tokens. If not, it simply passes the original ke
generates a join token with its successor as the final déstina jis predecessor. If all nodes choose to genegasecondary

node and passes the token anti-clockwise to its predecesgens then each token will be propagated to all nodes in
A join is considered complete once a node finds its SUCCESEY 1, hops, wheren is the network size
q ’ '

and completes the cache transfer. . Starting from a token with destinatiom;, a node x
Records of nodes that have recently failed or departed Y&nerates secondary tokens as follows:

also transferred in this initial cache transfer. Node faituor

departures are detected by timeouts. When a node discovers

Fig. 1. Circular identifier address space with ten nodes amdkieys.

A. Node Joins and Departures

nodex (with identifiern,) picks ¢ — 1 nodes with iden-

that its predecessor has failed, it generates a token cimgai tifiers ni,ny, -+, nq— distributed approximately uni
. : . . formly in the segment of address space;,(nq) from
information about the failed node (i.e., a leave token) and . .

its cache, wherey,, n1,no, -+, ng—1 are monotonically

passes the token to its new predecessor.

If a node finds that another node in the network already
has its chosemid, it obtains a newnhid by adding an index
to its original identifier and hashing again. It then attesnot

decreasing in the anti-clockwise direction within the
circularid address space.
o x generates a token with destinatieg and sends it to

o X . X . . noden,_;.

join the network again at this newid. Since the probability a i

of collisions within the address space is extremely smils i ° v then proceeds t(.) sgnd npdxg a token V\{'th it 1
marked as the destination, for= ¢ —2,---,1, in order.

likely that a node will be able to find a uniqued without

- If a given noden; is found to have failed, another node
any difficulty. -

in its vicinity is chosen instead.
B. Basic Lookup Algorithm « finally, z generates a token with destinationand passes

The basic lookup algorithm is straightforward. A node It 1O its predecessor.
simply contacts the best-known successor in its cache #or thhis is illustrated in Fig. 3.
gueriedid. If information on the destination had earlier been
propagated successfully to the node performing the lookup,
it would find the correct node in one hop. If not, the node
contacted would most likely be able to provide a better next
hop node. In the worst possible case, we can simply traverse
the ring one node at a time to reach the destination node. We
are guaranteed to eventually arrive at the correct noderas o
as the ring is not broken and the address space is consiatént a
not loopy An example of a network with a loopy configuration
is shown in Fig. 2. A quick note here is that when a node N60 N45
receives a query or reply, it updates the timestamp of theyent _ ,

. 2. An example of a loopy address space configuration. arhews

in its cache corresponding to the sender (or creates an erﬁ ate the direction of SUCCESSOF pointers.

for the sender if one does not already exist). In this way, the

N10

obtains a list of new node entries from one neighbor, it
will generate a repair token containing all these entries
to its other adjacent neighbor.

2) Successful/failed Lookupslf new nodes are discovered
in the process of a lookup, a node will create two repair
tokens containing the newly discovered node entries and
forward them to its successor and predecessor. Repair
tokens containing a leave event are generated instead in
the case of a timeout.

3) From being queried. A node may receive a query from
a node that it does not already know about. If so, the
gueried node also generates two repair tokens to inform
its neighbors about the querying node.

A token is destroyed under one of the following circum- Noges will also keep track of recently received events. If

stances: _ o a node discovers that it is receiving extremely frequent joi
1) whenitreaches a node with an identifier greater or equgid leave events from a given node, further tokens from the

Fig. 3. Generation of secondary tokens.

to its intended destination; offending node will be dropped for a specified period of time.
2) if it reaches a node whose predecessor is the specifigils is similar to BGP route flap damping [15].
destination;

3) if it reaches a node that has on record an event & Sabilization
the specified node, which has a more recent timestamp, j. o Chord, the correctness of our lookup algorithm is

|r}dc|jcat|ng that the event carried by the said token is 0ufnendent only on the correctness of the the predecessor and
ol-date. successor pointers. When multiple nodes attempt to join the
D. Merging of Tokens ring at approximately the same location, temporary incensi

Whenever a node receives a token, it updates its node Cag:%%ues may arise in the address space.

with all the information contained within the token. Althgtu Definition 1: We say that the network is (i)

we could conceivably generate one token for each network Weakly stable if, for all nodes u, we have

event, we can reduce message overhead by sending out tokenspredec_essor(_5_1‘0065307“(U)) = u; (ii) strongly sta-

only at fixed time intervals and and combining tokens that Pl€if, in addition, for each node, there is no node

arrive within the same interval. Suppose a nadeeceives v such thatu < v < successor(u); and (iii) loopy

two tokens —(source: n;, destination: n4;, events: e, es) if it is weakly but not strongly stable (see [10]).

and (source: nsy,destination: ngo,events: esz), such that 1) Weak Sabilization: Each node is responsible for finding

ng1 < ngz Within a given time interval. Instead of forwardingand maintaining its own successor and predecessor. When a

two tokens, the node can choose to forward the tdkenrce: node hears from another node whagkis closer than its

n., destination: ngo, €vents: ey, eq, e3) instead. With such a current predecessor or successor, the new node is autaityatic

scheme, an event is also stripped from a token if it had ajreaskt as the predecessor or successor accordingly. If a nahes le

been delivered to a node by an earlier token. about a node that could possibly be its new predecessor or

successor indirectly from another node, the node will probe

this new node and set it as the predecessor or successor only
With node failures and departures, it is likely that somi it receives a positive response on the probe. In addition,

tokens will be lost if a node receives a token but fails befokgach node will also periodically check with its successor to

it can successfully forward it. In such an event, the resuthat ask for its successor’s predecessor. This process is knewn a

a consecutive segment of the ring will not be notified of thgeak stabilization.

dropped event. We fix this problem with repair tokens. Repair Thaorem 1: The weak stabilization protocol will

toke_ns are I_ike r_e_gular tokens except that t_hey_ do no_t have a eventually cause our network to converge teakly
destination identifier and can be forwarded in either dioegt Sable staté.

i.e. both clockwise and anti-clockwise. Since they have no
destination, repair tokens cannot be split into secon ir :
P P dzpn probable that a network will end up loopy (except perhaps

tokens like regular tokens. They are forwarded only in ori " L X
direction until they reach a node that had already been edtifi‘;%er a network partltlo_n), It is St'!l desirable for a I.DHT 10
ve a scheme that will automatically detect and fix global

of the event that they carry and are thereby destroyed. Reﬂ}ﬁ

tokens are generated under the following circumstances: Inconsistencies in the address space, if such inconsistenc
. should arise. Our token-passing algorithm has a nice béalefic
1) Set Reconciliation. At a very low frequency, nodes

exchange_ nOde_ cache digests with neighboring nodesye yse the same weak stabilization algorithm as Chord. Thef pan be
to reconcile their caches [12], [13], [14]. When a nod®und in the Chord Technical Report [10].

E. Fault Tolerance

2) Strong Sabilization: Although, it is in generally highly

TABLE |

side-effect in that it automatically allows us to detecthgb
ESTIMATED WORSTCASE PROPAGATION TIMES AND ONEHOP FAILURE

inconsistencies in the address space.

RATES

Theqrem 2: The Comblnatlon of our p_grallgl token- Network Event One-hop lookup failure rate|

passing algorithm with the weak stabilization proto- size, | ¢ | Propagation| No 0.01% | 0.1%

col will cause our network to converge tosongly n Time (s) drops drop drop
stable state within at most(n?) rounds of token- 2 11 0.611% | 0.720% | 1.699%
passing. 2,000 [3 7 0.389% | 0.459% | 1.084%
S . . 4 6 0.333% | 0.393% | 0.943%
There are _two key intuitions bghmd the correctness of _thm > 17 0.9424% | 1.113% | 2.615%
theorem: first, if the network is loopy, the token-passing 10,000 [3 11 0.611% | 0.720% | 1.699%
algorithm will allow at least one pair of nodes to detect 4 9 0.500% | 0.590% | 1.392%
an inconsistency; second, whenever such an inconsistency |i 2 20 1-1112@ 1-3092@ 3-0702@
detected, the weak stabilization algorithm will kick in afed | 100.000 | 2 = 0.722%] 0.851%] 2.005%
the inconsistency. To see that the token-passing algomithim 4 10 0.556% 0.655% | 1.546%
Y- 10 passing alg 2 24 1.333% | 1.570% | 3.674%
allow at least one pair of nodes to detect an inconsistehey, t | 1,000,000[3 15 0.833% 1 0.982% | 2.310%
key is to recognize that the net effect of our parallelizdetto 4 12 0.667% | 0.786% | 1.852%

passing algorithm is to choosé nodes recursively from the
set of all nodes and to send messages in one direction along

the ring between each pair of consecutive nodes. with probability 0.1%, on each token-passing hop. As tokens

I11. ANALYSIS are acknowledged, a token is dropped only when a node fails
In this section, we estimate the predicted lookup perfd'r_nmedlately after receiving a token, without the opportyte

mance and cost of our routing state dissemination algorithrllf?ils'S iton to the next node. Such occurrences are expected to b

and show that it scales well for networks with up to a millioh"® (which is why we consider only small drop probabilities
nodes of 0.1% or less).

We consider a network with a steady state sizex afodes, T \t/)\{e \INOUIthke to S'%hlhtght :Eai th? fallluredprobab[[htles n q

wheren ranges from 2,000 to a million nodes. Saroiu et al?® tﬁ f.artet € ptrr? a2|5| 1es ‘3 a 100 (ijpt ?esﬂno succ(;ee

found in a measurement study of the Gnutella and Naps nenrst iry within seconds immediately after a node
Irst joins the network. Even under the worst-case scendido o

file sharing networks that the median lifespan of peer-terpe o .)
hosts is about 60 minutes [16]. Another recently completé) 1% c_zlrpp probability on each. Foken-passmg hop in a network
a million nodes, the probability that a lookup will retuttre

measurement study on the KaZaa filesharing network foufl D . 9
that median lifespan of KaZaa hosts is 2.4 minutes while tif"€ct answer within two hops far= 2 is 1 - (3.674%)* =
90th percentile is 28.25 minutes [17]. 99.9%.

We consider a mean node lifetime of 60 minutes in oW. Maintenance Bandwidth
analysis. Forn = 10,000, this translates to approximately

5.6 node join/leave events per second; for= 1,000,000, gystem, we have only two major components: (i) the initial

it translates to approximately 560 events per second. In g, and cache transfé&rand (i) join/leave tokens that are
worst-case analysis, we assume that tokens take one se agated to all nodes. A token containing a single event is

to complete each hop and that tokens are not merged. Thgg&,ytes in size and it consists of the following components:
are very conservative assumptions since Internet laterge S0\ 5b/P header:
in the order of a few hundred milliseconds and it is highly Sour)c/:e entry (16 bytesi'd + 4 bytes IP address);

likely that tokens can b_e me_zrged to save messaging pverheaq. Destination entry (16 bytesid + 4 bytes IP address):
Also, we assume for simplicity that each token carries only)
o Token type (1 byte);

one join/leave event. « Event entry (16 bytesid + 4 bytes IP address); and
A. Expected One-Hop Lookup Performance « Event description (4 bytes timestamp + 2 byte serial

Our basic dissemination algorithm makes it extremely jikel numbe? + 3 byte description).)
that a lookup will succeed within one hop since ideally, gver The acknowledgment for a token is expected to be about 30
node will have a record of all other nodes in its cache. Lookdjytes in size and it consists of the following components:
will usually fail on the first try only if the information on a « 28-byte UDP/IP header;
new node or on a departure has not propagated to the node Token serial number (2 bytes).
performing the lookup. Table | shows the required propaga-Hence, each token exchange is expected to cost approxi-
tion times and their associated estimated worst-case ope-mately 128 bytes. Based on these numbers, Table Il shows
lookup failure rates for networks with various parametduga
for n andg (the number of parallel tokens per hop) and for 3 2We amortize the bandwidth costs for transferring an entirehe over a

. q . . i node’s lifetime of 60 minutes.
different scenarios: (i) tokens are never dropped, (iiptckare

’ - 3This serial number is simply a nonce that helps a node to ke of
dropped with probability 0.01% and (iii) tokens are droppe@ken acknowledgments.

In terms of the expected communication costs for our

TABLE I

BACKGROUND BANDWIDTH REQUIRED 01 Ngﬁﬁg(ggf T 1 2200
Network Size of Background bandwidth required W T Prene 1 oo
size, initial cache Cache Join/leave 008 1 1800
n transfer transfer events Total X
2,000 40 kbytes 11.1bps | 1.14 kbps| 1.15 kbps| & 1 1600
10, 000 200 kbytes | 55.6 bps | 5.69 Kbps| 5.75 KbpS| & oosl 1 1400
100, 000 2 Mbytes | 0.556 kbps| 56.9 Kbps| 57.5 Kbps| 2 ‘ 1 oo 8
1,000,000 | 20 Mbytes | 5.56 kbps | 569 kbps | 575 kbps | 5 @
% 00a b - 1000 %
TABLE Ill - | 1% 2
REQUIRED BACKGROUND EVENT MAINTENANCE BANDWIDTH ! 1 8%
Network Token Gupta et al's One-Hop scheme [5] ooy 1 400
size, -passing Slice Unit Other 1 200
n scheme Leader Leader TR R S R e R e e :,,,7;;_':\;;?%,_:
2,000 1.174 kbps| 2.36 kbps| 2.56 kbps| 1.96 kbps 0 250 200 0 200
10, 000 5.69 kbps| 11.8 kbps| 5.12 kbps| 3.67 kbps Time (s)
100, 000 56.9 kbps| 117 kbps | 33.9 kbps| 22.9 kbps Fig. 4. Comparison of one-hop lookup failure rates between token-
1,000,000 | 569 kbps | 789 kbps | 322 kbps | 215 kbps passing scheme and Gupta et al’s one-hop scheme (starangemts have

been cropped for clarity).

the expected background bandwidth costs to support net-
works of various sizes. Table Il shows a comparison of the
background event maintenance bandwidth between our token-o.0os
passing scheme and Gupta et al.'s one-hop scheme, where the |
number of slicesk, and the number of units per slice, is op-

timized for minimal bandwidth consumption [5]. Even thougﬁ 0.0012
our scheme imposes a higher average bandwidth per nodes(at, ., |
least under the assumption that tokens are not merged),aevefar

able to avoid the upstream bottlenecks associated witle sl§: 0.0008
leaders. S

0.0006

0.0018 T
Gupta etal. —+—
Token Passing ---x---

T

T

T

T

IV. SIMULATION RESULTS 0.0004

In order to evaluate our algorithm, we obtained the simu-
lation code for the one-hop lookup scheme by Gupta ét al. }) _
which was written in thep2psim [18] peer-to-peer protocol 020(;‘ = P ps R X’/Xiw
simulation framework, and compared its performance to the Time (s)
performance of an implementation of our one-hop tokefig. 5. Comparison of two-hop lookup failure rates betweem mken-
passing DHT. We used a simulation topology with 2,00@assing scheme and _Gupta et al's one-hop scheme (starangietnts have

: . ._been cropped for clarity).
nodes in the steady state. The node lifetimes are expotigntia
distributed with a mean of 60 minutes. Initially, nodes join
the network at a mean rate of 10 nodes per second for 200 s.
Subsequently, nodes that depart (after their lifespanouth The average background maintenance bandwidth for both
will rejoin after an exponentially-distributed intervalitty a schemes in the steady state is shown in Fig. 6. In Gupta et
mean of 6 minutes. Routing state is cleared each time tl#i{s scheme, nodes can be slice leaders, unit leaders alareg
a node leaves and rejoins the network. Gupta et al’'s omedes. We have explicity shown the average maintenance
hop scheme takes approximately 40 s after the initial wave lofindwidth for slice leaders in Fig. 6 in addition to the
node joins { = 200) to reach a steady state and as shown mverage maintenance bandwidth per node. Our scheme (at
Fig. 4, the one-hop steady state lookup failure rate is 0.4%pproximately 3.6 kbps in the steady state) requires somewh
Our token-passing DHT (with = 4) achieves the same steadynore bandwidth than the 1.15 kbps predicted by our analysis
state one-hop failure rate somewhat more rapidly. As showniin Table 1. The reason for this is that Table Il lists only
Fig. 5, the steady state two-hop failure rate for both sclemnide bandwidth required for disseminating events and does
is less than 0.01% on average. not take into account the periodic weak stabilization/sliss
- _ _ messages. This stabilization bandwidth is expected to be
“Gupta et als one-hop scheme divides the nodes in the rletintw & independent of network size and hence at large network sizes
slices, each with: units. In our simulation, we used the optimal configuration . .
nd aggregate event rates, the total maintenance bandwidth

of k = 17 slices andu = 5 units per slice as computed from the networka_ _ h el
size and churn rate. Please refer to [5] for the details. will be dominated by event dissemination.

T

0.0002

namics like in a corporate environment, so they had no

35 T T T T

N ‘835:22:2.'?:?e”gﬁ.;?an"fgz —— need to handle a large number of simultaneous membership
= fokenpassing - changes efficiently [19]. Doceur et al. also proposed a lpoku
3 algorithm with a constant number of hops, assuming smaller
; | peer dynamics and allowing for lossy lookups [20].
g Gupta et al’s one- and two-hop routing schemes use a
B 2} static dissemination hierarchy to broadcast network evigjt
% Configuration parameters like the number of slices and the
§ st number of units in a slice must be fixed beforehand with
ES a good idea of the steady-state network size. Compared to
§ ol our scheme, their system is significantly more complex, has
a * many system parameters to tune and has somewhat asymmetric
S AN ve | Upstream/downstream bandwidths. Although our scheme is
e T ke s expected in theory to impose a slightly higher event notifi-
%0 260 280 300 220 20 360 %0 w0 Cation communication cost (since each token essentially ha
Time (s) to carry individual dissemination information and thusure

Fig. 6. Comparison of background rT’1aintenance bandwidtwvdset our g higher overhead), it turns out in practice, as demonstrate
Lo:fenbpefﬁ'gf’osggsnf"g ac?;is)lfpta et al’s one-hop schemeystaansients 1, our simulations, that our token-passing scheme achieves
a similar level of performance with a comparable amount of
maintenance bandwidth. In addition, our disseminatior-alg
rithm is highly bandwidth-adaptive and is expected to scale
better because bandwidth consumption is uniformly digtat
Our DHT lookup algorithm is suitable for networks thabver all nodes; nodes can also choose to pass tokens without
experience relatively small changes in memberskip100 generating and forwarding secondary tokens, thereby rtogari
events globally per second) and that run applications fackwvh less than the average load.
it is reasonable to expect some lag in the time from which aMizrak et al. also proposed a two-hop hierarchical routing
node joins the system to when attempts are made to locates@theme where some nodes are designatedpespeers [21].
The former determines the background bandwidth requiredKelips [22] is another proposed lookup algorithm that acbhse
maintain the routing state, while the latter provides theteaspn O(1) lookup performance on average by dividing the network
with some time for node join/departure events to propagdteo O(./n) affinity groups of O(y/n) nodes and using a
to all nodes within the system. At the same time, even if gossip mechanism to propagate membership changes. Harchol
lookup is made for a node almost immediately after it join®alter et al. [23] proposed an epidemic algorithm (called
the access time required to perform the lookup is also egedecName-Dropper) for the Resource Discovery Problem, which
to be small since the background propagation mechanisdiows all the machines in a weakly connected network tanllear
keeps most of the caches relatively up-to-date and our ringout every machine withiD(log” n) rounds of message
maintenance protocol guarantees that if a node existsllit wéxchanges with high probability.
eventually be found. The proposed strong stabilization algorithm was inspired
Our token propagation protocol makes no assumptions by our work on EpiChord [24]. To the best of our knowl-
the size of the network and its feasibility depends only an tlredge, among the other DHTSs, only Chord [1] has a strong
available bandwidth and churn rate. Since token creationgtabilization algorithm that will provably fix loopy networ
determined by the node joins/departures (which are uniforntonfigurations and their stabilization algorithm is specib
distributed because we use a hash function to determine their lookup algorithm and cannot be applied generally to
mappings from the identifier to th&l address space), loadother DHT routing algorithms. Oupken-passing stabilization
balancing happens automatically. mechanism can be applied to any DHT that has a circular
Our protocol is also able to accommodate heterogeneityaddress space [4], [3].
the available bandwidth among the nodes in a typical network
A node that is required by the protocol to generate secondary
tokens may choose not to do so if it does not have sufficientWe have proposed a DHT that stores a large amount of
bandwidth available. It may choose simply to forward theouting information per node in order to achieve one- and two
token to its predecessor. Similarly, a node that has accesop lookup performance. We may not always need or want
a lot of excess bandwidth may choose to generate more thaare-hop lookup performance and we may wish to trade off
g secondary tokens. some lookup performance in order to reduce the background
maintenance bandwidth consumption. An interesting featur
of our algorithm is that it can be scaled very naturally by
Rodrigues et al. proposed a one-hop DHT lookup schemeuning the events disseminated and by extending the lookup
for networks with small and somewhat controlled peer dylgorithm to allow for asynchronous parallel lookups [24].

V. DISCUSSION

VII. CONCLUSION AND FUTURE WORK

VI. RELATED WORK

It would be interesting to study how different event pruning[7]
schemes will affect lookup performance and explore if there
is in fact an optimal scheme. We expect that the performancia

penalty associated with reducing stored state to be selbdlin

with regards to the average lookup path length and latency.

For large networks with about a million nodes, the sizgq

of the initial cache transfer can be rather sizable (in the
order of 20 Mbytes). It would be interesting to evaluate the
effectiveness of a scheme where we do not initiate full cachg
transfers when a node first joins the network. Instead, their

successors will transfer only a fraction (perhaps 10%) eirth

cache entries uniformly distributed over the entire adslre§1]
space.
We believe that our one-hop DHT is somewhat more scal-
able and less complex than the one-hop scheme previousI%/
proposed by Gupta et al. [5]. We are able to avoid tH
severe upstream bandwidth bottleneck associated withemt ey14]
dissemination architecture that uses a fixed hierarchy, by

using a parallelized token-passing algorithm that dynaityic 15

[12]

constructs per-event dissemination trees. Our token¥gass
algorithm also has a nice beneficial side-effect in that 6]

automatically detects and fixes global inconsistencieshen t

address space.

ACKNOWLEDGMENTS

[17]

The authors wish to thank Anjali Gupta for sharing her
p2psim simulation code for her one-hop scheme [5].

(1]

(2]

(3]

(4]

(5]

(6]

REFERENCES

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Baistknan,
“Chord: A scalable Peer-To-Peer lookup service for interagplica-
tions,” in Proceedings of the 2001 ACM SGCOMM Conference, August
2001, pp. 149-160.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. i8heriA
scalable content-addressable network,Phoceedings of the 2001 ACM
S GCOMM Conference, August 2001.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “TapestAn
infrastructure for fault-tolerant wide-area location armliting,” UC
Berkeley, Tech. Rep. UCB/CSD-01-1141, April 2001.

A. Rowstron and P. Druschel, “Pastry: Scalable, disiigld object lo-
cation and routing for large-scale peer-to-peer systemd$toceedings
of the 18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2001), November 2001.

A. Gupta, B. Liskov, and R. Rodrigues, “Efficient routirfgr peer-
to-peer overlays,” inProceedings of the 1st Symposium on Networked
Systems Design and Implementation (NSDI 2004), March 2004, pp. 113—
126.

R. Rodrigues and C. Blake, “When multi-hop peer-to-peeuting
matters,” in Proceedings of the 3rd International Workshop on Peer-
to-Peer Systems (IPTPS'04), February 2004.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

L. Zhou and R. van Renesse, “P6P: A peer-to-peer apprtmaiternet
infrastructure,” inProceedings of the 3rd International Workshop on
Peer-to-Peer Systems (IPTPS '04), San Diego, CA, February 2004.
R. Cox, A. Muthitacharoen, and R. Morris, “Serving DNSing a
peer-to-peer lookup service,” iRroceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS '02), MIT Faculty Club,
Cambridge, MA, March 2002.

] V. Ramasubramanian and E. G. Sirer, “Beehive: Explgitipower

law query distributions for O(1) lookup performance in péerpeer
overlays,” in Proceedings of the 1st Symposium on Networked Systems
Design and Implementation (NSDI 2004), March 2004.

I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. dashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peereerpgookup
service for internet applications,” MIT LCS, Tech. Rep.020

“FIPS 180-1. secure hash standard,” US Department afri@erce/NIST,
Tech. Rep., April 1995.

J. Byers, J. Considine, and M. Mitzenmacher, “Inforncedtent delivery
across adaptive overlay networks,” Rroceedings of the 2002 ACM

S GCOMM Conference, August 2002, pp. 47-60.

——, “Fast approximate reconciliation of set differes¢ Boston Uni-
versity, Tech. Rep. TR 2002-019, 2002.

Y. Minsky and A. Trachtenberg, “Scalable set recoatitin,” in Pro-

ceedings of the 40th Annual Allerton Conference on Communication,

Control, and Computing, October 2002.

] C. Villamizar, R. Chandra, and R. Govindan, “BGP routftlamping,”

November 1998.

S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measunetmsudy
of peer-to-peer file sharing systems,” Proceedings of Multimedia
Computing and Networking 2002 (MMCN '02), San Jose, CA, USA,
January 2002.

K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, and.Xenry
M. Levy, “Measurement, modeling, and analysis of a pequéer file-
sharing workload,” inProceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP '01), Bolton Landing, NY, USA,
October 2003.

T. M. Gil, F. Kaashoek, J. Li, R. Morris, and J. Stribling
p2psim: a simulator for peer-to-peer protocols. [Onlingjailable:
http://www.pdos.lcs.mit.edu/p2psim

R. Rodrigues, B. Liskov, and L. Shrira, “The design ofabust peer-
to-peer system,” inProceedings of the 10th ACM S GOPS European
Workshop, September 2002.

J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. iher,
“Reclaiming space from duplicate files in a serverless idisted file
system,” in Proceedings of the 22 nd International Conference on
Distributed Computing Systems (ICDCS 02). |IEEE Computer Society,
2002, p. 617.

A. Mizrak, Y. Cheng, V. Kumar, and S. Savage, “Structugeiperpeers:
Leveraging heterogeneity to provide constant-time logkimp Proceed-
ings of the 4th IEEE Workshop on Internet Applications, June 2003.

I. Gupta, K. Birman, P. Linga, A. Demers, and R. van ReereéKelips:
Building an efficient and stable P2P DHT through increaseanorg
and background overhead,” iRroceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS'03), February 2003.

M. Harchol-Balter, T. Leighton, and D. Lewin, “Resoardiscovery in
distributed networks,” inProceedings of the eighteenth annual ACM
symposium on Principles of distributed computing. ACM Press, 1999,
pp. 229-237.

B. Leong, B. Liskov, and E. D. Demaine, “Epichord: Paliting the
chord lookup algorithm with reactive routing state managetii MIT,
Cambridge, MA, Technical Report MIT-LCS-TR-963, August020

