
Proceedings of the12th International Conference on Networks 2004 (ICON 2004), Singapore, November 2004.

Achieving One-Hop DHT Lookup and
Strong Stabilization by Passing Tokens

Ben Leong and Ji Li
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street
Cambridge, MA 02139, USA

{benleong, jli}@mit.edu

Abstract— Recent research has demonstrated that if network
churn is not excessively high, it becomes entirely reasonable
for a Distributed Hash Table (DHT) to store a global lookup
table at every node to achieve one-hop lookup. We present a
novel algorithm for maintaining global lookup state in a DHT
with a Chord-like circular address space. In our DHT, events
are disseminated with a parallelized token-passing algorithm
using dynamically-constructed dissemination trees rooted at the
source of the events. We show that we are able to achieve
good one- and two-hop routing performance at a modest cost
in bandwidth. Furthermore, our scheme is bandwidth-adaptive,
and automatically detects and repairs global address space
inconsistencies.

I. BACKGROUND

Most of the initial Distributed Hash Tables (DHTs) were
designed to cope with membership changes in highly dynamic
(i.e., high churn) networks [1], [2], [3], [4]. Since storage has
grown significantly cheaper and higher bandwidth networks
have become more common in recent years, recent research
has demonstrated that if network churn is not excessively high,
it has become entirely reasonable to store a global lookup table
at every node to achieve one-hop lookup [5], [6].

In this paper, we present a DHT that uses a novel token-
passing mechanism to maintain global lookup state at each
node. We expect our DHT to be useful for peer-to-peer overlay
networks where nodes need to look up the IP address of
target nodes that are referenced by some identifier in a flat
address space. An example of such an application would be
the P6P IPv6-to-IPv4 overlay network [7]; another possibility
is a DNS-over-DHT application that uses a DHT to look up
DNS NS-entries, unlike previously proposed DNS-over-DHT
schemes that used DHTs to store and retrieve DNSA-entries
directly [8], [9]. Our DHT is also likely to be useful for
supporting mobile hosts that obtain their IP addresses via
DHCP; our DHT can be used in place of mobile IP as the
host registration mechanism.

We compare our scheme to Gupta et al.’s one-hop routing
scheme [5] and show that we are able to achieve similar
levels of lookup performance with comparable amounts of
background maintenance traffic, at a somewhat lower com-
plexity by not requiring the network to maintain a fixed event-
dissemination hierarchy and without asymmetric bandwidth
consumption across nodes within the network. Our main
contribution is a novel routing state dissemination algorithm

that broadcasts events efficiently to all nodes using small
messages, which we calltokens.

In any DHT, nodes must periodically probe their immediate
neighbors in the address space in order to ensure routing
correctness. If a neighbor is found to have failed, a node must
then attempt to repair the address space by contacting the next
best replacement for the failed neighbor. Our key insight isthat
since the nodes in the network already have to exchangestay-
alive messages periodically, it would be desirable to propagate
node join/departure events by piggybacking them on stayalive
messages where possible and forwarding them along the ring.
A naive scheme to pass tokens sequentially along the ring
takes a long time and is relatively inefficient; so instead, we
use a parallelized token-passing scheme.

A DHT with a circular address space can end up loopy
after a network partition [10]. Our token-passing algorithm
has the additional beneficial side-effect of detecting and au-
tomatically fixing global inconsistencies in the address space.
The process that maintains and repairs the address space is
called stabilization. The key idea is simple: to detect a loop
in the address space, all we need to do is to traverse the entire
ring and make sure that we come back to where we started.
Our parallelized token-passing algorithm achieves this effect.
Once a loop is detected by the appropriate nodes, the local
stabilization protocol kicks in and repairs the inconsistency.

II. OVERVIEW

Like Chord [1], our DHT is organized as a one-dimensional
circular address space where each node is assigned a node
identifier (nid). As shown in Fig. 1, the node responsible for
a key is the node whoseid most closely follows the key,
which we also call thesuccessor. We use the cryptographic
hash function SHA-1 [11] to determine thenid of a new node
from some identifier (perhaps a hostname or an IP address),
so that with high probability, thenids do not collide and are
uniformly distributed over the entire circular address space.

Each node maintains its routing information in a cache.
A node cache is simply an ordered list containing the IP
addresses and status of the known nodes in the network,
indexed by theirnids. For efficiency, the list is stored as a
B-tree.

K300

K550

K900

K105

K250

N505

N304

N380

N210

N115

N897

N960

N675

N700

N10

Fig. 1. Circular identifier address space with ten nodes and five keys.

A. Node Joins and Departures

Like all other DHTs, we assume that a node that wishes
to join the network will know of at least one other node
that is already in the network. The join operation is a two-
step procedure: (i) The new node makes a regular iterative
lookup for the successor to itsnid in the ring using the
node(s) that it knows about. (ii) Once the successor is found,
the new node sends a request to its successor to import the
entries required to initialize its cache. Simultaneously,it also
generates a join token with its successor as the final destination
node and passes the token anti-clockwise to its predecessor.
A join is considered complete once a node finds its successor
and completes the cache transfer.

Records of nodes that have recently failed or departed are
also transferred in this initial cache transfer. Node failures or
departures are detected by timeouts. When a node discovers
that its predecessor has failed, it generates a token containing
information about the failed node (i.e., a leave token) and
passes the token to its new predecessor.

If a node finds that another node in the network already
has its chosennid, it obtains a newnid by adding an index
to its original identifier and hashing again. It then attempts to
join the network again at this newnid. Since the probability
of collisions within the address space is extremely small, it is
likely that a node will be able to find a uniquenid without
any difficulty.

B. Basic Lookup Algorithm

The basic lookup algorithm is straightforward. A node
simply contacts the best-known successor in its cache for the
queriedid. If information on the destination had earlier been
propagated successfully to the node performing the lookup,
it would find the correct node in one hop. If not, the node
contacted would most likely be able to provide a better next
hop node. In the worst possible case, we can simply traverse
the ring one node at a time to reach the destination node. We
are guaranteed to eventually arrive at the correct node as long
as the ring is not broken and the address space is consistent and
not loopy An example of a network with a loopy configuration
is shown in Fig. 2. A quick note here is that when a node
receives a query or reply, it updates the timestamp of the entry
in its cache corresponding to the sender (or creates an entry
for the sender if one does not already exist). In this way, the

lookup traffic is also used to help update and maintain the
network routing state.

C. Distributed Token-Passing Algorithm

A token is a message containing information on network
events like node joins and node failures, together with entries
for the source and destination nodes. A node entry consists of
a node’sid and its IP address. The event description contains
information on the type of event (i.e., join/leave) and alsoa
timestamp.

When a node receives a token, the receiving nodex can
choose one of the two following actions:

• x can simply pass the token to its predecessor; or
• it can generateq secondary tokens.

The decision as to whether to generate secondary tokens
depends on the policy adopted and the resources available.
In general, a node checks its cache to see if it can find
q − 1 node entries that are approximately uniformly spaced
in the remaining segment of the address space to be traversed
by the token. If so and if it decides that it has sufficient
outgoing bandwidth, the node may choose to generate theq

secondary tokens. If not, it simply passes the original token to
its predecessor. If all nodes choose to generateq secondary
tokens then each token will be propagated to all nodes in
logq n hops, wheren is the network size.

Starting from a token with destination,nd, a node x

generatesq secondary tokens as follows:

• nodex (with identifier nx) picks q − 1 nodes with iden-
tifiers n1, n2, · · · , nq−1 distributed approximately uni-
formly in the segment of address space (nx, nd) from
its cache, wherenx, n1, n2, · · · , nq−1 are monotonically
decreasing in the anti-clockwise direction within the
circular id address space.

• x generates a token with destinationnd and sends it to
nodenq−1.

• x then proceeds to send nodeni a token with ni+1

marked as the destination, fori = q − 2, · · · , 1, in order.
If a given nodenj is found to have failed, another node
in its vicinity is chosen instead.

• finally, x generates a token with destinationn1 and passes
it to its predecessor.

This is illustrated in Fig. 3.

N10

N60 N45

N36

N24N86

N79

Fig. 2. An example of a loopy address space configuration. Thearrows
indicate the direction of successor pointers.

nx

n1

n2

nd

nq−1

nq−21

2

q − 1

q − 2

q

Fig. 3. Generation ofq secondary tokens.

A token is destroyed under one of the following circum-
stances:

1) when it reaches a node with an identifier greater or equal
to its intended destination;

2) if it reaches a node whose predecessor is the specified
destination;

3) if it reaches a node that has on record an event on
the specified node, which has a more recent timestamp,
indicating that the event carried by the said token is out-
of-date.

D. Merging of Tokens

Whenever a node receives a token, it updates its node cache
with all the information contained within the token. Although
we could conceivably generate one token for each network
event, we can reduce message overhead by sending out tokens
only at fixed time intervals and and combining tokens that
arrive within the same interval. Suppose a nodex receives
two tokens –(source: ns1, destination: nd1, events: e1, e2)
and (source: ns2, destination: nd2, events: e3), such that
nd1 < nd2 within a given time interval. Instead of forwarding
two tokens, the node can choose to forward the token(source:
nx, destination: nd2, events: e1, e2, e3) instead. With such a
scheme, an event is also stripped from a token if it had already
been delivered to a node by an earlier token.

E. Fault Tolerance

With node failures and departures, it is likely that some
tokens will be lost if a node receives a token but fails before
it can successfully forward it. In such an event, the result is that
a consecutive segment of the ring will not be notified of the
dropped event. We fix this problem with repair tokens. Repair
tokens are like regular tokens except that they do not have a
destination identifier and can be forwarded in either direction,
i.e. both clockwise and anti-clockwise. Since they have no
destination, repair tokens cannot be split into secondary repair
tokens like regular tokens. They are forwarded only in one
direction until they reach a node that had already been notified
of the event that they carry and are thereby destroyed. Repair
tokens are generated under the following circumstances:

1) Set Reconciliation. At a very low frequency, nodes
exchange node cache digests with neighboring nodes
to reconcile their caches [12], [13], [14]. When a node

obtains a list of new node entries from one neighbor, it
will generate a repair token containing all these entries
to its other adjacent neighbor.

2) Successful/failed Lookups.If new nodes are discovered
in the process of a lookup, a node will create two repair
tokens containing the newly discovered node entries and
forward them to its successor and predecessor. Repair
tokens containing a leave event are generated instead in
the case of a timeout.

3) From being queried. A node may receive a query from
a node that it does not already know about. If so, the
queried node also generates two repair tokens to inform
its neighbors about the querying node.

Nodes will also keep track of recently received events. If
a node discovers that it is receiving extremely frequent join
and leave events from a given node, further tokens from the
offending node will be dropped for a specified period of time.
This is similar to BGP route flap damping [15].

F. Stabilization

Like Chord, the correctness of our lookup algorithm is
dependent only on the correctness of the the predecessor and
successor pointers. When multiple nodes attempt to join the
ring at approximately the same location, temporary inconsis-
tencies may arise in the address space.

Definition 1: We say that the network is (i)
weakly stable if, for all nodes u, we have
predecessor(successor(u)) = u; (ii) strongly sta-
ble if, in addition, for each nodeu, there is no node
v such thatu < v < successor(u); and (iii) loopy
if it is weakly but not strongly stable (see [10]).

1) Weak Stabilization: Each node is responsible for finding
and maintaining its own successor and predecessor. When a
node hears from another node whoseid is closer than its
current predecessor or successor, the new node is automatically
set as the predecessor or successor accordingly. If a node learns
about a node that could possibly be its new predecessor or
successor indirectly from another node, the node will probe
this new node and set it as the predecessor or successor only
if it receives a positive response on the probe. In addition,
each node will also periodically check with its successor to
ask for its successor’s predecessor. This process is known as
weak stabilization.

Theorem 1: The weak stabilization protocol will
eventually cause our network to converge to aweakly
stable state1.

2) Strong Stabilization: Although, it is in generally highly
improbable that a network will end up loopy (except perhaps
after a network partition), it is still desirable for a DHT to
have a scheme that will automatically detect and fix global
inconsistencies in the address space, if such inconsistencies
should arise. Our token-passing algorithm has a nice beneficial

1We use the same weak stabilization algorithm as Chord. The proof can be
found in the Chord Technical Report [10].

side-effect in that it automatically allows us to detect global
inconsistencies in the address space.

Theorem 2: The combination of our parallel token-
passing algorithm with the weak stabilization proto-
col will cause our network to converge to astrongly
stable state within at mostO(n2) rounds of token-
passing.

There are two key intuitions behind the correctness of this
theorem: first, if the network is loopy, the token-passing
algorithm will allow at least one pair of nodes to detect
an inconsistency; second, whenever such an inconsistency is
detected, the weak stabilization algorithm will kick in andfix
the inconsistency. To see that the token-passing algorithmwill
allow at least one pair of nodes to detect an inconsistency, the
key is to recognize that the net effect of our parallelized token-
passing algorithm is to choosen

q
nodes recursively from the

set of all nodes and to send messages in one direction along
the ring between each pair of consecutive nodes.

III. A NALYSIS

In this section, we estimate the predicted lookup perfor-
mance and cost of our routing state dissemination algorithm
and show that it scales well for networks with up to a million
nodes.

We consider a network with a steady state size ofn nodes,
wheren ranges from 2,000 to a million nodes. Saroiu et al.
found in a measurement study of the Gnutella and Napster
file sharing networks that the median lifespan of peer-to-peer
hosts is about 60 minutes [16]. Another recently completed
measurement study on the KaZaa filesharing network found
that median lifespan of KaZaa hosts is 2.4 minutes while the
90th percentile is 28.25 minutes [17].

We consider a mean node lifetime of 60 minutes in our
analysis. Forn = 10, 000, this translates to approximately
5.6 node join/leave events per second; forn = 1, 000, 000,
it translates to approximately 560 events per second. In our
worst-case analysis, we assume that tokens take one second
to complete each hop and that tokens are not merged. These
are very conservative assumptions since Internet latencies are
in the order of a few hundred milliseconds and it is highly
likely that tokens can be merged to save messaging overhead.
Also, we assume for simplicity that each token carries only
one join/leave event.

A. Expected One-Hop Lookup Performance

Our basic dissemination algorithm makes it extremely likely
that a lookup will succeed within one hop since ideally, every
node will have a record of all other nodes in its cache. Lookup
will usually fail on the first try only if the information on a
new node or on a departure has not propagated to the node
performing the lookup. Table I shows the required propaga-
tion times and their associated estimated worst-case one-hop
lookup failure rates for networks with various parameter values
for n andq (the number of parallel tokens per hop) and for 3
different scenarios: (i) tokens are never dropped, (ii) tokens are
dropped with probability 0.01% and (iii) tokens are dropped

TABLE I

ESTIMATED WORST-CASE PROPAGATION TIMES AND ONE-HOP FAILURE

RATES

Network Event One-hop lookup failure rate
size, q Propagation No 0.01% 0.1%
n Time (s) drops drop drop

2 11 0.611% 0.720% 1.699%
2,000 3 7 0.389% 0.459% 1.084%

4 6 0.333% 0.393% 0.943%
2 17 0.944% 1.113% 2.615%

10,000 3 11 0.611% 0.720% 1.699%
4 9 0.500% 0.590% 1.392%
2 20 1.111% 1.309% 3.070%

100,000 3 13 0.722% 0.851% 2.005%
4 10 0.556% 0.655% 1.546%
2 24 1.333% 1.570% 3.674%

1,000,000 3 15 0.833% 0.982% 2.310%
4 12 0.667% 0.786% 1.852%

with probability 0.1%, on each token-passing hop. As tokens
are acknowledged, a token is dropped only when a node fails
immediately after receiving a token, without the opportunity to
pass it on to the next node. Such occurrences are expected to be
rare (which is why we consider only small drop probabilities
of 0.1% or less).

We would like to highlight that the failure probabilities in
Table I are the probabilities that a lookup does not succeed
on thefirst try within 25 seconds immediately after a node
first joins the network. Even under the worst-case scenario of a
0.1% drop probability on each token-passing hop in a network
of a million nodes, the probability that a lookup will returnthe
correct answer within two hops forq = 2 is 1− (3.674%)2 =
99.9%.

B. Maintenance Bandwidth

In terms of the expected communication costs for our
system, we have only two major components: (i) the initial
join and cache transfer2; and (ii) join/leave tokens that are
propagated to all nodes. A token containing a single event is
98 bytes in size and it consists of the following components:

• 28-byte UDP/IP header;
• Source entry (16 bytesnid + 4 bytes IP address);
• Destination entry (16 bytesnid + 4 bytes IP address);
• Token type (1 byte);
• Event entry (16 bytesnid + 4 bytes IP address); and
• Event description (4 bytes timestamp + 2 byte serial

number3 + 3 byte description).
The acknowledgment for a token is expected to be about 30

bytes in size and it consists of the following components:
• 28-byte UDP/IP header;
• Token serial number (2 bytes).
Hence, each token exchange is expected to cost approxi-

mately 128 bytes. Based on these numbers, Table II shows

2We amortize the bandwidth costs for transferring an entire cache over a
node’s lifetime of 60 minutes.

3This serial number is simply a nonce that helps a node to keep track of
token acknowledgments.

TABLE II

BACKGROUND BANDWIDTH REQUIRED

Network Size of Background bandwidth required
size, initial cache Cache Join/leave
n transfer transfer events Total

2, 000 40 kbytes 11.1 bps 1.14 kbps 1.15 kbps
10, 000 200 kbytes 55.6 bps 5.69 kbps 5.75 kbps
100, 000 2 Mbytes 0.556 kbps 56.9 kbps 57.5 kbps

1, 000, 000 20 Mbytes 5.56 kbps 569 kbps 575 kbps

TABLE III

REQUIRED BACKGROUND EVENT MAINTENANCE BANDWIDTH

Network Token Gupta et al.’s One-Hop scheme [5]
size, -passing Slice Unit Other
n scheme Leader Leader

2, 000 1.14 kbps 2.36 kbps 2.56 kbps 1.96 kbps
10, 000 5.69 kbps 11.8 kbps 5.12 kbps 3.67 kbps
100, 000 56.9 kbps 117 kbps 33.9 kbps 22.9 kbps

1, 000, 000 569 kbps 789 kbps 322 kbps 215 kbps

the expected background bandwidth costs to support net-
works of various sizes. Table III shows a comparison of the
background event maintenance bandwidth between our token-
passing scheme and Gupta et al.’s one-hop scheme, where the
number of slices,k, and the number of units per slice,u, is op-
timized for minimal bandwidth consumption [5]. Even though
our scheme imposes a higher average bandwidth per node (at
least under the assumption that tokens are not merged), we are
able to avoid the upstream bottlenecks associated with slice
leaders.

IV. SIMULATION RESULTS

In order to evaluate our algorithm, we obtained the simu-
lation code for the one-hop lookup scheme by Gupta et al.4,
which was written in thep2psim [18] peer-to-peer protocol
simulation framework, and compared its performance to the
performance of an implementation of our one-hop token-
passing DHT. We used a simulation topology with 2,000
nodes in the steady state. The node lifetimes are exponentially-
distributed with a mean of 60 minutes. Initially, nodes join
the network at a mean rate of 10 nodes per second for 200 s.
Subsequently, nodes that depart (after their lifespans runout)
will rejoin after an exponentially-distributed interval with a
mean of 6 minutes. Routing state is cleared each time that
a node leaves and rejoins the network. Gupta et al.’s one-
hop scheme takes approximately 40 s after the initial wave of
node joins (t = 200) to reach a steady state and as shown in
Fig. 4, the one-hop steady state lookup failure rate is 0.4%.
Our token-passing DHT (withq = 4) achieves the same steady
state one-hop failure rate somewhat more rapidly. As shown in
Fig. 5, the steady state two-hop failure rate for both schemes
is less than 0.01% on average.

4Gupta et al.’s one-hop scheme divides the nodes in the network into k

slices, each withu units. In our simulation, we used the optimal configuration
of k = 17 slices andu = 5 units per slice as computed from the network
size and churn rate. Please refer to [5] for the details.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 200 250 300 350 400
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200Network Size
Gupta et al.

Token Passing

L
oo

ku
p

fa
ilu

re
ra

te

N
e

tw
or

k
S

iz
e

Time (s)

Fig. 4. Comparison of one-hop lookup failure rates between our token-
passing scheme and Gupta et al.’s one-hop scheme (start up transients have
been cropped for clarity).

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 200 250 300 350 400

Gupta et al.
Token Passing

L
oo

ku
p

fa
ilu

re
ra

te

Time (s)

Fig. 5. Comparison of two-hop lookup failure rates between our token-
passing scheme and Gupta et al.’s one-hop scheme (start up transients have
been cropped for clarity).

The average background maintenance bandwidth for both
schemes in the steady state is shown in Fig. 6. In Gupta et
al.’s scheme, nodes can be slice leaders, unit leaders or regular
nodes. We have explicitly shown the average maintenance
bandwidth for slice leaders in Fig. 6 in addition to the
average maintenance bandwidth per node. Our scheme (at
approximately 3.6 kbps in the steady state) requires somewhat
more bandwidth than the 1.15 kbps predicted by our analysis
in Table II. The reason for this is that Table II lists only
the bandwidth required for disseminating events and does
not take into account the periodic weak stabilization/stayalive
messages. This stabilization bandwidth is expected to be
independent of network size and hence at large network sizes
and aggregate event rates, the total maintenance bandwidth
will be dominated by event dissemination.

 0

 5

 10

 15

 20

 25

 30

 35

 240 260 280 300 320 340 360 380 400

Gupta et al. - slice leaders
Gupta et al. - regular node

Token passing

B
a

nd
w

id
th

co
ns

um
pt

io
n

pe
r

no
de

(k
bp

s)

Time (s)

Fig. 6. Comparison of background maintenance bandwidth between our
token-passing scheme and Gupta et al.’s one-hop scheme (start up transients
have been cropped for clarity).

V. D ISCUSSION

Our DHT lookup algorithm is suitable for networks that
experience relatively small changes in membership (≤ 100
events globally per second) and that run applications for which
it is reasonable to expect some lag in the time from which a
node joins the system to when attempts are made to locate it.
The former determines the background bandwidth required to
maintain the routing state, while the latter provides the system
with some time for node join/departure events to propagate
to all nodes within the system. At the same time, even if a
lookup is made for a node almost immediately after it joins,
the access time required to perform the lookup is also expected
to be small since the background propagation mechanism
keeps most of the caches relatively up-to-date and our ring
maintenance protocol guarantees that if a node exists, it will
eventually be found.

Our token propagation protocol makes no assumptions on
the size of the network and its feasibility depends only on the
available bandwidth and churn rate. Since token creation is
determined by the node joins/departures (which are uniformly
distributed because we use a hash function to determine the
mappings from the identifier to theid address space), load
balancing happens automatically.

Our protocol is also able to accommodate heterogeneity in
the available bandwidth among the nodes in a typical network.
A node that is required by the protocol to generate secondary
tokens may choose not to do so if it does not have sufficient
bandwidth available. It may choose simply to forward the
token to its predecessor. Similarly, a node that has access to
a lot of excess bandwidth may choose to generate more than
q secondary tokens.

VI. RELATED WORK

Rodrigues et al. proposed a one-hop DHT lookup scheme
for networks with small and somewhat controlled peer dy-

namics like in a corporate environment, so they had no
need to handle a large number of simultaneous membership
changes efficiently [19]. Doceur et al. also proposed a lookup
algorithm with a constant number of hops, assuming smaller
peer dynamics and allowing for lossy lookups [20].

Gupta et al.’s one- and two-hop routing schemes use a
static dissemination hierarchy to broadcast network events [5].
Configuration parameters like the number of slices and the
number of units in a slice must be fixed beforehand with
a good idea of the steady-state network size. Compared to
our scheme, their system is significantly more complex, has
many system parameters to tune and has somewhat asymmetric
upstream/downstream bandwidths. Although our scheme is
expected in theory to impose a slightly higher event notifi-
cation communication cost (since each token essentially has
to carry individual dissemination information and thus incurs
a higher overhead), it turns out in practice, as demonstrated
by our simulations, that our token-passing scheme achieves
a similar level of performance with a comparable amount of
maintenance bandwidth. In addition, our dissemination algo-
rithm is highly bandwidth-adaptive and is expected to scale
better because bandwidth consumption is uniformly distributed
over all nodes; nodes can also choose to pass tokens without
generating and forwarding secondary tokens, thereby bearing
less than the average load.

Mizrak et al. also proposed a two-hop hierarchical routing
scheme where some nodes are designated assuperpeers [21].
Kelips [22] is another proposed lookup algorithm that achieves
O(1) lookup performance on average by dividing the network
into O(

√
n) affinity groups of O(

√
n) nodes and using a

gossip mechanism to propagate membership changes. Harchol-
Balter et al. [23] proposed an epidemic algorithm (called
Name-Dropper) for the Resource Discovery Problem, which
allows all the machines in a weakly connected network to learn
about every machine withinO(log2 n) rounds of message
exchanges with high probability.

The proposed strong stabilization algorithm was inspired
by our work on EpiChord [24]. To the best of our knowl-
edge, among the other DHTs, only Chord [1] has a strong
stabilization algorithm that will provably fix loopy network
configurations and their stabilization algorithm is specific to
their lookup algorithm and cannot be applied generally to
other DHT routing algorithms. Ourtoken-passing stabilization
mechanism can be applied to any DHT that has a circular
address space [4], [3].

VII. C ONCLUSION AND FUTURE WORK

We have proposed a DHT that stores a large amount of
routing information per node in order to achieve one- and two-
hop lookup performance. We may not always need or want
one-hop lookup performance and we may wish to trade off
some lookup performance in order to reduce the background
maintenance bandwidth consumption. An interesting feature
of our algorithm is that it can be scaled very naturally by
pruning the events disseminated and by extending the lookup
algorithm to allow for asynchronous parallel lookups [24].

It would be interesting to study how different event pruning
schemes will affect lookup performance and explore if there
is in fact an optimal scheme. We expect that the performance
penalty associated with reducing stored state to be sub-linear
with regards to the average lookup path length and latency.

For large networks with about a million nodes, the size
of the initial cache transfer can be rather sizable (in the
order of 20 Mbytes). It would be interesting to evaluate the
effectiveness of a scheme where we do not initiate full cache
transfers when a node first joins the network. Instead, their
successors will transfer only a fraction (perhaps 10%) of their
cache entries uniformly distributed over the entire address
space.

We believe that our one-hop DHT is somewhat more scal-
able and less complex than the one-hop scheme previously
proposed by Gupta et al. [5]. We are able to avoid the
severe upstream bandwidth bottleneck associated with an event
dissemination architecture that uses a fixed hierarchy, by
using a parallelized token-passing algorithm that dynamically
constructs per-event dissemination trees. Our token-passing
algorithm also has a nice beneficial side-effect in that it
automatically detects and fixes global inconsistencies in the
address space.

ACKNOWLEDGMENTS

The authors wish to thank Anjali Gupta for sharing her
p2psim simulation code for her one-hop scheme [5].

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable Peer-To-Peer lookup service for internet applica-
tions,” in Proceedings of the 2001 ACM SIGCOMM Conference, August
2001, pp. 149–160.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” inProceedings of the 2001 ACM
SIGCOMM Conference, August 2001.

[3] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An
infrastructure for fault-tolerant wide-area location androuting,” UC
Berkeley, Tech. Rep. UCB/CSD-01-1141, April 2001.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems,”in Proceedings
of the 18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2001), November 2001.

[5] A. Gupta, B. Liskov, and R. Rodrigues, “Efficient routingfor peer-
to-peer overlays,” inProceedings of the 1st Symposium on Networked
Systems Design and Implementation (NSDI 2004), March 2004, pp. 113–
126.

[6] R. Rodrigues and C. Blake, “When multi-hop peer-to-peerrouting
matters,” in Proceedings of the 3rd International Workshop on Peer-
to-Peer Systems (IPTPS ’04), February 2004.

[7] L. Zhou and R. van Renesse, “P6P: A peer-to-peer approachto internet
infrastructure,” inProceedings of the 3rd International Workshop on
Peer-to-Peer Systems (IPTPS ’04), San Diego, CA, February 2004.

[8] R. Cox, A. Muthitacharoen, and R. Morris, “Serving DNS using a
peer-to-peer lookup service,” inProceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS ’02), MIT Faculty Club,
Cambridge, MA, March 2002.

[9] V. Ramasubramanian and E. G. Sirer, “Beehive: Exploiting power
law query distributions for O(1) lookup performance in peerto peer
overlays,” inProceedings of the 1st Symposium on Networked Systems
Design and Implementation (NSDI 2004), March 2004.

[10] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for internet applications,” MIT LCS, Tech. Rep., 2002.

[11] “FIPS 180-1. secure hash standard,” US Department of Commerce/NIST,
Tech. Rep., April 1995.

[12] J. Byers, J. Considine, and M. Mitzenmacher, “Informedcontent delivery
across adaptive overlay networks,” inProceedings of the 2002 ACM
SIGCOMM Conference, August 2002, pp. 47–60.

[13] ——, “Fast approximate reconciliation of set differences,” Boston Uni-
versity, Tech. Rep. TR 2002-019, 2002.

[14] Y. Minsky and A. Trachtenberg, “Scalable set reconciliation,” in Pro-
ceedings of the 40th Annual Allerton Conference on Communication,
Control, and Computing, October 2002.

[15] C. Villamizar, R. Chandra, and R. Govindan, “BGP route flap damping,”
November 1998.

[16] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measurement study
of peer-to-peer file sharing systems,” inProceedings of Multimedia
Computing and Networking 2002 (MMCN ’02), San Jose, CA, USA,
January 2002.

[17] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, and J.Z. Henry
M. Levy, “Measurement, modeling, and analysis of a peer-to-peer file-
sharing workload,” inProceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP ’01), Bolton Landing, NY, USA,
October 2003.

[18] T. M. Gil, F. Kaashoek, J. Li, R. Morris, and J. Stribling.
p2psim: a simulator for peer-to-peer protocols. [Online].Available:
http://www.pdos.lcs.mit.edu/p2psim

[19] R. Rodrigues, B. Liskov, and L. Shrira, “The design of a robust peer-
to-peer system,” inProceedings of the 10th ACM SIGOPS European
Workshop, September 2002.

[20] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed file
system,” in Proceedings of the 22 nd International Conference on
Distributed Computing Systems (ICDCS’02). IEEE Computer Society,
2002, p. 617.

[21] A. Mizrak, Y. Cheng, V. Kumar, and S. Savage, “Structured superpeers:
Leveraging heterogeneity to provide constant-time lookup,” in Proceed-
ings of the 4th IEEE Workshop on Internet Applications, June 2003.

[22] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse, “Kelips:
Building an efficient and stable P2P DHT through increased memory
and background overhead,” inProceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03), February 2003.

[23] M. Harchol-Balter, T. Leighton, and D. Lewin, “Resource discovery in
distributed networks,” inProceedings of the eighteenth annual ACM
symposium on Principles of distributed computing. ACM Press, 1999,
pp. 229–237.

[24] B. Leong, B. Liskov, and E. D. Demaine, “Epichord: Parallelizing the
chord lookup algorithm with reactive routing state management,” MIT,
Cambridge, MA, Technical Report MIT-LCS-TR-963, August 2004.

