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ABSTRACT
Since its introduction in 2016, BBR has grown in popularity rapidly
and likely already accounts for more than 40% of the Internet’s
downstream traffic. In this paper, we investigate the following
question: given BBR’s performance benefits and rapid adoption, is
BBR likely to completely replace CUBIC just like how CUBIC replaced
New Reno?

We present a mathematical model that allows us to estimate
BBR’s throughput to within a 5% error when competing with CUBIC
flows. Using this model, we show that even though BBR currently
has a throughput advantage over CUBIC, this advantage will be
diminished as the proportion of BBR flows increases.

Therefore, if throughput is a key consideration, it is likely that
the Internet will reach a stable mixed distribution of CUBIC and
BBR flows. This mixed distributionwill be aNash Equilibriumwhere
none of the flows will have the performance incentive to switch
between CUBIC and BBR. Our methodology is also applicable to
other recently proposed congestion control algorithms, like BBRv2
and PCC Vivace. We make a bold prediction that BBR is unlikely to
completely replace the CUBIC on the Internet in the near future.
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1 INTRODUCTION
First introduced by Google in 2016, BBR [4] offers better throughput
and consistently lower delays than other loss-based TCP variants.
BBR has since become widely deployed on the Internet. A recent
measurement study in late 2019 estimates that BBR likely already
accounts for more than 40% of the Internet’s downstream traffic [20].
In this paper, we try to answer the following research question:
should we therefore expect the majority of Internet users to switch to
BBR in the near future?
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This is an important question because the stability of the In-
ternet depends on the competing flows interacting well with one
another. We have not experienced a congestion collapse [17] for
many years likely because the vast majority of flows have been
well-understood AIMD/MIMD-window-based TCP flows [9]. The
last major change in the Internet congestion landscape happened
when CUBIC replaced New Reno [22, 31]. That transition was how-
ever relatively incremental because both CUBIC and New Reno
are loss-based and cwnd-based. Therefore, all existing in-network
solutions, policing algorithms, and AQMs already deployed on the
Internet could largely remain unchanged.

On the other hand, if BBRwere to replace CUBIC as the dominant
congestion control algorithm for the Internet, it represents a fun-
damental paradigm shift. Many classic networking questions that
have supposedly been settled would have to be re-evaluated. For
example, it was said that router buffers ought to be sized inversely
proportional to

√
𝑁 , where 𝑁 is the number of flows [2]. Later,

it was shown that even tiny buffers might suffice under certain
conditions [11]. However, these rules of thumb assumed that flows
were loss-based. BBR is loss-agnostic [27]. In other words, a BBR-
dominant future Internet [20] could have potentially wide-ranging
consequences and even fundamental issues like buffer sizing will
need to be revisited [19].

The first step toward predicting the future composition of the
Internet’s congestion control landscape is to understand the in-
centive(s) for switching to BBR. Companies like Dropbox [16],
YouTube [5], and Spotify [7] that have adopted BBR have cited bet-
ter throughput as the most common reason for making the switch.
To determine if switching to BBR would continue to yield better
throughput, we need to understand how BBR flows interact with
CUBIC flows.While a model was earlier proposed byWare et al [30],
we found that some of the assumptions made were not realistic and
verified experimentally that their model does not make accurate
predictions. To address this gap, we developed a new model that is
able to accurately model BBR’s performance to within 5% error for
most realistic buffer sizes.

With an accurate model of competing CUBIC and BBR flows,
we formulate the interactions between CUBIC and BBR flows as a
normal form game. By doing so, we can abstract the setting in which
websites chose their congestion control algorithms as a simple game
in which some players (websites) try to maximize a utility (through-
put) by selecting some pre-defined strategies (i.e. either running
CUBIC or BBR). We can then apply standard game-theoretic analy-
sis to determine if a Nash Equilibrium exists. A Nash Equilibrium
(NE) is a strategy distribution in which none of the players stand to
gain anything by switching strategies given that the strategies of
all the other players remain the same. In the context of our problem,
a Nash Equilibrium is a stable distribution of CUBIC and BBR flows
such that none of the flows have any incentive to switch congestion
control algorithms.
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By solving the normal form game, we show that a NE distri-
bution of CUBIC and BBR flows will exist in most networks with
realistic configurations. Our model is also able to predict these NE
distributions and we verify empirically with a large number of ex-
periments that these predictions are accurate. Our contributions in
this paper can be summarized as follows:

(1) We present a new mathematical model for predicting the
bandwidth shares of competing CUBIC and BBR flows. We
verify our model with extensive experiments to show it is
demonstrably more accurate at predicting bandwidth shares
than the current state-of-art model by Ware et al. [30].

(2) With our model, we are able to predict that BBR’s throughput
gains over CUBIC steadily reduce as the proportion of BBR
flows increases.

(3) We adapt our model to determine this Nash Equilibrium (NE)
distribution for multiple flows with the same RTT and show
(both mathematically and empirically) that this NE is at a
mixed distribution of CUBIC and BBR flows. We also show
that our analysis seems to hold for BBRv2, an upgraded ver-
sion of BBR that is currently being developed at Google [6].

In summary, we present a mathematical model for understanding
how CUBIC and BBR compete with each other and use its results
to predict the future of the Internet’s congestion control landscape.
We predict that while BBR, or perhaps BBRv2, is likely to become
more popular, it is not likely that the majority of the Internet will fully
switch fromCUBIC to BBR if better throughput is the key consideration.
We observed that there are diminishing returns in BBR’s throughput
advantage over CUBIC as the proportion of BBR flows increases.
As more and more flows switch to BBR on the Internet, CUBIC is
likely to become more competitive until the point where there is
no longer an incentive to switch between the two.

While a limitation of our model is that we assume that all flows
have the same RTTs, we argue that this assumption is plausible,
since a majority of today’s Internet traffic is served via CDNs [24].
This means that it is quite plausible for the flows at local bottlenecks
to have similar RTTs. We augment our model to predict a Nash
Equilibrium distribution of CUBIC and BBR flows in a network
and show that the ultimate mix of CUBIC and BBR on the Internet
will mainly depend on the bottleneck buffer size and RTTs of the
competing flows.

2 MODELLING INTERACTIONS BETWEEN
BBR AND CUBIC

In this section, we first describe a basic model that will allow us to
predict the throughput shares when a CUBIC flow competes with a
BBR flow at a common bottleneck. Next, we extend this model to
a setting with multiple CUBIC and BBR flows. For simplicity, we
will assume that all the competing flows have the same base RTT.
We note that the majority of today’s Internet traffic is served via
CDNs [24], so it would not be uncommon for the majority of flows
at local bottlenecks to have similar RTTs. In this light, we argue
that this assumption is likely applicable in many contexts.

2.1 Background
BBR Overview. BBR (Bottleneck Bandwidth and Round-trip prop-
agation time) is a rate-based congestion control algorithm proposed

by Google in 2016 [4]. BBR estimates its share of the bottleneck
bandwidth and the minimum round-trip time (RTT) of the path to
regulate the TCP send rate. While doing so, BBR maintains a cap on
its in-flight data at twice the bandwidth-delay product (BDP). BBR
is implemented as a state machine with the following 4 states to
make periodic and sequential measurements to keep its estimates
up-to-date:

(1) Startup: To quickly learn the bottleneck bandwidth, BBR per-
forms an exponential search by doubling its sending round
every iteration. By doing so, it is able to find bottleneck band-
width in 𝑂 (log2 (BDP)) round trips. BBR transitions to the
Drain phase once it detects that the pipe is full by looking
for a plateau in bandwidth estimates.

(2) Drain: BBR drains packets it has accumulated in the queue
during the aggressive Startup phase by reducing its in-flight
packets to 1 BDP. Once it estimates that the queue is fully
drained, but the pipe remains full, BBR enters the ProbeBW
phase.

(3) ProbeBW: BBR spends a majority of time in the ProbeBW
state, and probes for bottleneck bandwidth using a technique
called gain cycling. BBR undergoes a cycle of 8 RTTs: it first
sends packets at 1.25 times the maximum receive rate to
probe for extra bandwidth at the bottleneck. To compensate
for this aggression. it sends packets at 0.75 times for the next
RTT, and for the remaining 6 RTTs, it maintains its sending
rate at the maximum receive rate.

(4) ProbeRTT: BBR needs to empty the bottleneck buffer in
order to accurately estimate the minimum RTT (RTT𝑚𝑖𝑛).
BBR enters the ProbeRTT phase once every 10 seconds, re-
ducing its in-flight packets to 4 in an attempt to drain the
buffer.

CUBIC Overview. TCP CUBIC [13] is a loss-based algorithm,
which means that when it encounters a packet loss, it shrinks its
congestion window (cwnd) by a factor of 0.7. Otherwise, it increases
cwnd using Equation (1).

cwnd(𝑡) = 𝐶 × (𝑡 − 𝐾)3 +𝑊𝑚𝑎𝑥 (1)

where𝑊𝑚𝑎𝑥 is the window size just before the window is reduced
and 𝐾 = 3

√︁
𝑊𝑚𝑎𝑥 × (1 − 𝛽𝑐𝑢𝑏𝑖𝑐 )/𝐶 . CUBIC’s implementation in the

Linux kernel sets 𝐶 = 0.4, 𝛽𝑐𝑢𝑏𝑖𝑐 = 0.3. For the purposes of our
model, the key aspect of a CUBIC flow is that it reduces to 0.7 times
𝑊𝑚𝑎𝑥 after it experiences a packet loss.

2.2 Issues with Model by Ware et al.
To the best of our knowledge, the current best state-of-art model
for the interactions between CUBIC and BBR is the model by Ware
et al. [30]. Their model predicts the aggregate bandwidth of the
competing BBR flows as

𝐵𝐵𝑅𝑓 𝑟𝑎𝑐 = (1 − 𝑝)
(
𝑑 − 𝑃𝑟𝑜𝑏𝑒𝑡𝑖𝑚𝑒

𝑑

)
(2)

where

𝑝 =
1
2
− 1
2𝑋

− 4𝑁
𝑞

(3)

𝑃𝑟𝑜𝑏𝑒𝑡𝑖𝑚𝑒 =

(𝑞
𝑐
+ .2 + 𝑙

) ( 𝑑
10

)
(4)
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Figure 1: BBR bandwidth share for 50-Mbps bottleneck link
at 40ms RTT.

where 𝑝 represents the competing CUBIC flows’ aggregate fraction
of the bottleneck bandwidth 𝑐 . 𝑁 is the number of competing BBR
flows, 𝑞 is the average queuing delay in the bottleneck buffer and
𝑋 is the size of the bottleneck buffer in BDP. 𝑙 is the base RTT of
all the flows and 𝑑 is the duration of the time the flows compete.

Their model predicts that BBR flows get a fixed share of the bot-
tleneck bandwidth regardless of the number of competing CUBIC
flows. While qualitatively this model does make some interesting
observations (for example, Ware et al. were the first to highlight
that BBR’s in-flight cap is key in determining how it competes
with other CUBIC flows), we have found their model to deviate
significantly from actual BBR performance in experiments. We can
see this from the results in Figure 1 for a simple experiment with a
CUBIC flow competing with a BBR flow at a 50-Mbps bottleneck
link, with each flow lasting for 2 minutes and having a base RTT
of 40ms.

With some analysis, we found that the inaccuracies in Ware et
al.’s model [30] are due to the following assumptions:

(1) The most problematic assumption is that the buffer is always
full. This assumption was most likely made in the interest of
simplicity since even the experiments in [30] demonstrate
that this assumption is not true.

(2) The second assumption is an over-simplification that BBR’s
RTT is the base congestion-free RTT plus 𝑝 × 𝑞, where 𝑝
is CUBIC’s share of the link capacity and 𝑞 is the size of
the bottleneck buffer. Since a flow’s throughput is directly
proportional to its average buffer occupancy, this calculation
implies that CUBIC’s average buffer occupancy is responsi-
ble for bloating BBR’s 𝑅𝑇𝑇𝑚𝑖𝑛 estimate. However, since BBR
measures the minimum RTT during the ProbeRTT phase, it
stands to reason that this bloating of the 𝑅𝑇𝑇𝑚𝑖𝑛 should be
affected by CUBIC’s minimum buffer occupancy, and this is
not the average buffer occupancy. This problem is further
exacerbated when compounded with their first assumption
that the buffer is always full. This effectively fixes CUBIC’s
buffer occupancy and uses what is in reality CUBIC’s max-
imum buffer occupancy to calculate BBR’s bloated 𝑅𝑇𝑇𝑚𝑖𝑛

estimate.
We make none of these assumptions in our new model. When
there are multiple CUBIC flows involved, we derive a confidence
interval instead of assuming CUBIC’s share of the link capacity
to be fixed. This interval not only accurately predicts the actual
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Figure 2: Network model.

average bandwidth of the competing flows, but also captures the
stochasticity of these interactions caused by the varying degrees of
synchronization between the CUBIC flows across trials and network
conditions.

2.3 Basic 2-Flow Model
In this section, we describe a simple model that can predict the
bandwidth shares of two competing CUBIC and BBR flows passing
through a simple drop-tail queue. In this model, both the flows have
the same base/minimum 𝑅𝑇𝑇 and compete at a bottleneck with
link capacity 𝐶 and buffer size 𝐵.

Assumptions. Our model makes the following assumptions:
(1) The link is always fully utilized. Since our analysis is

centered around the bottleneck of the connection, we as-
sume that the link is always utilized and there are always
a non-zero number of packets in the buffer. To allow this
assumption to hold in the presence of loss-based flows like
CUBIC, we also assume the buffer is sufficiently sized [19]
(at least 1 BDP) and that the CUBIC flows do not suffer any
premature packet loss.

(2) The BBRflows alwaysmaintain 2 BDP packets in flight.
This assumption is in line with the observations made by
Ware et al. [30], where they showed that BBR becomes cwnd-
bound when it competes with CUBIC. The standard imple-
mentation of BBR has a cwnd twice its estimated BDP. To
allow this assumption to hold, we consider buffers that are
at least 1 BDP in size.

(3) The packets from the two flows are uniformly distributed in
the buffer.

(4) The BBR flows are mostly loss-agnostic (This is true for
BBRv1 [4])

(5) The reduction inBBR’s bandwidth during the ProbeRTT
phase is negligible. We make this assumption because
BBR’s ProbeRTT phase lasts only for around 200ms, which
is negligible compared to its 10 s long ProbeBW phase.

(6) All flows have the same base/minimum RTT.
The notation used for our model is listed in Table 1 for convenient
reference.

Modeling throughput. Consider the bottleneck illustrated in
Figure 2. At any given point in time, the throughput achieved by
a flow is going to be the number of bytes it has in flight divided
by its round-trip time. The in-flight bytes for both the CUBIC and
BBR flows will be their respective buffer shares 𝑏𝑏 and 𝑏𝑐 plus the
amount of data they have on the wire. Since both the flows see
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Table 1: Model Notation

Symbol Meaning

𝐶 Bottleneck link capacity
𝐵 Bottleneck buffer size
𝑅𝑇𝑇 Base RTT (propagation delay)
𝑅𝑇𝑇 + BBR’s over-estimate of the RTT
𝑏𝑐 CUBIC’s average buffer occupancy
𝑏𝑏 BBR’s average buffer occupancy
𝑄𝑑 Queuing delay
𝑏𝑐𝑚𝑖𝑛 CUBIC’s minimum buffer occupancy
𝑏𝑐𝑚𝑎𝑥 CUBIC’s maximum buffer occupancy
𝜆𝑏 BBR flow’s bandwidth
𝜆𝑐 CUBIC flow’s bandwidth
𝜆𝑐𝑚𝑖𝑛 CUBIC’s smallest bandwidth share
𝜆𝑐𝑚𝑎𝑥 CUBIC’s largest bandwidth share
𝑊𝑚𝑎𝑥 CUBIC’s largest cwnd

the same bottleneck queuing delay because they share the same
bottleneck, we can write their bandwidths as follows:

𝜆𝑐 =
𝜆𝑐𝑅𝑇𝑇 + 𝑏𝑐
𝑅𝑇𝑇 +𝑄𝑑

(5)

𝜆𝑏 =
𝜆𝑏𝑅𝑇𝑇 + 𝑏𝑏
𝑅𝑇𝑇 +𝑄𝑑

(6)

However, since we know that BBR is limited by its cwnd (which
is capped by 2 × BDP) when competing with a CUBIC flow [30],
we can rewrite Equation (6) as follows:

𝜆𝑏 =
2𝜆𝑏𝑅𝑇𝑇 +

𝑅𝑇𝑇 +𝑄𝑑

(7)

where 𝑅𝑇𝑇 + is BBR’s overestimate of the minimum RTT.
The queuing delay𝑄𝑑 is the total number of bytes both the flows

have in the buffer divided by the rate at which these bytes are
drained (link capacity 𝐶)

𝑄𝑑 =
𝑏𝑏 + 𝑏𝑐
𝐶

(8)

Relating 𝑅𝑇𝑇 + to CUBIC’s buffer occupancy. BBR flows see
a bloated 𝑅𝑇𝑇 because during its ProbeRTT phase, the bottleneck
buffer is not completely empty and there are still some CUBIC
packets that have not drained. Then, 𝑅𝑇𝑇 + can be written as:

𝑅𝑇𝑇 + = 𝑅𝑇𝑇 + 𝑏𝑐𝑚𝑖𝑛

𝐶
(9)

here, 𝑏𝑐𝑚𝑖𝑛 is the smallest number of packets a CUBIC flow has
in the buffer during BBR’s ProbeRTT phase. We will assume this
to be CUBIC’s buffer share when it backs off after a packet loss.
Combining Equations (7) and (9) and simplifying, we get:

𝑏𝑏 + 𝑏𝑐 = 2𝑏𝑐𝑚𝑖𝑛 +𝐶 · 𝑅𝑇𝑇 (10)

where 𝑏𝑏 + 𝑏𝑐 is effectively the average buffer occupancy. This is
assuming the buffer size is greater than 1 BDP (or𝐶 ×𝑅𝑇𝑇 ). We can
use this result together with Equation (8) to rewrite Equation (5) as
follows:

𝜆𝑐 =
𝜆𝑐𝑅𝑇𝑇 + 𝑏𝑐

2𝑅𝑇𝑇 + 2𝑏𝑐𝑚𝑖𝑛

𝐶

(11)

CUBIC Minimum Buffer Occupancy. 𝑏𝑐𝑚𝑖𝑛 is CUBIC’s mini-
mum buffer occupancy, which occurs when the CUBIC flow backs
off after a packet loss. Since we know that CUBIC backs off to 0.7
times its maximum buffer occupancy after a packet loss, we can
calculate 𝑏𝑐𝑚𝑖𝑛 as follows:

𝑏𝑐𝑚𝑖𝑛 = (0.7𝑊𝑚𝑎𝑥 ) − (𝜆𝑐𝑚𝑖𝑛𝑅𝑇𝑇 ) (12)

where 𝜆𝑐𝑚𝑖𝑛 represents the share of the bottleneck bandwidth the
CUBIC flow receives during backoff, and (𝜆𝑐𝑚𝑖𝑛 × 𝑅𝑇𝑇 ) is the
number of bytes on the pipe after this backoff. Since the relevant
buffer shares of BBR and CUBIC are an indicator of how much
bottleneck bandwidth they are receiving at any point in time, we
can write 𝜆𝑐𝑚𝑖𝑛 as:

𝜆𝑐𝑚𝑖𝑛 =
𝑏𝑐𝑚𝑖𝑛

𝑏𝑐𝑚𝑖𝑛 + 𝑏𝑏
𝐶 (13)

To calculate 𝑏𝑐𝑚𝑖𝑛 in Equation (12), we need to calculate the
largest window size𝑊𝑚𝑎𝑥 for the competing CUBIC flow. We esti-
mate𝑊𝑚𝑎𝑥 as follows:

𝑊𝑚𝑎𝑥 = 𝑏𝑐𝑚𝑎𝑥 + 𝜆𝑐𝑚𝑎𝑥𝑅𝑇𝑇 (14)

where 𝑏𝑐𝑚𝑎𝑥 is simply the buffer occupancy a CUBIC flow has
when it completely fills the bottleneck buffer:

𝑏𝑐𝑚𝑎𝑥 = 𝐵 − 𝑏𝑏 (15)

and 𝜆𝑐𝑚𝑎𝑥 is the bandwidth CUBIC gets when it puts 𝑏𝑐𝑚𝑎𝑥 packets
in the buffer:

𝜆𝑐𝑚𝑎𝑥 =
𝑏𝑐𝑚𝑎𝑥

𝑏𝑐𝑚𝑎𝑥 + 𝑏𝑏
𝐶 (16)

From the results from Equations (13) to (15), we can expand
Equation (12) to calculate 𝑏𝑐𝑚𝑖𝑛 as follows:

𝑏𝑐𝑚𝑖𝑛 +
𝑏𝑐𝑚𝑖𝑛

𝑏𝑐𝑚𝑖𝑛 + 𝑏𝑏
𝐶 ·𝑅𝑇𝑇 = 0.7× (𝐵 −𝑏𝑏 +

𝐵 − 𝑏𝑏
𝐵

𝐶 ·𝑅𝑇𝑇 ) (17)

Putting it all together. Using the relation from Equation (10)
and approximating 𝑏𝑏 + 𝑏𝑐 = 𝐵, we can write Equation (17) as:

𝐵 −𝐶 · 𝑅𝑇𝑇
2

+
𝐵−𝐶 ·𝑅𝑇𝑇

2
𝐵−𝐶 ·𝑅𝑇𝑇

2 + 𝑏𝑏
𝐶 ·𝑅𝑇𝑇 = 0.7×(𝐵−𝑏𝑏+

𝐵 − 𝑏𝑏
𝐵

𝐶 ·𝑅𝑇𝑇 )

(18)
Since 𝐵, 𝐶 , and 𝑅𝑇𝑇 are known quantities, we can solve Equa-

tion (18) to get a BBR flow’s buffer occupancy when competing
with another CUBIC flow. This 𝑏𝑏 value can then be plugged into a
simplified version of Equation (11) to solve for 𝜆𝑐 and 𝜆𝑏 :

𝜆𝑐

(
𝑅𝑇𝑇 + 2𝑏𝑐𝑚𝑖𝑛

𝐶

)
= 2𝑏𝑐𝑚𝑖𝑛 +𝐶 · 𝑅𝑇𝑇 − 𝐵𝑏 (19)

𝜆𝑏 = 𝐶 − 𝜆𝑐 (20)

2.4 Modelling Multiple Flows
For a network with multiple CUBIC and BBR flows with the same
RTT, we make the following observations:

(1) First, the 2-flow model described in §2.3, only needs to take
into account a CUBIC flow’s maximum and minimum buffer
occupancy. Hence, for a bottleneck with a total 𝑁 flows with
𝑁𝑐 of them being CUBIC flows and 𝑁𝑏 of them being BBR
flows, we can model all the CUBIC flows as one aggregate
CUBIC flow with a combined bandwidth 𝜆𝑐 .
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(2) Similarly, we model all the BBR flows as another aggregate
BBR flow with the bandwidth 𝜆𝑏 . This is because we assume
that the behavior of the aggregate BBR flow is practically
identical to a single BBR flow when all the participating BBR
flows will be cwnd bound. This is because we expect the BBR
flows to be synchronized even while competing with other
CUBIC flows and be fair to each other because of having
similar RTTs [4].

(3) Next, while 𝑏𝑐𝑚𝑎𝑥 remains largely unchanged (since CUBIC
flows always attempt to fill the buffer, regardless of whether
there is one flow or many flows), 𝑏𝑐𝑚𝑖𝑛 can vary for the
aggregate CUBIC flow. This is because with multiple flows,
depending on the loss pattern and start times of the compet-
ing flows, they can have varying levels of synchronization
between the multiple CUBIC flows. We consider the maxi-
mum and minimum levels of synchronization separately.

In other words, to model a network with multiple CUBIC and
BBR flows, we use the same model described in §2.3 but replace 𝜆𝑏
and 𝜆𝑐 with 𝜆𝑏 and 𝜆𝑐 , respectively. The one key difference is that
instead of using Equation (12), we consider 2 boundary cases:

(1) CUBIC Synchronized. If all the CUBIC flows are synchro-
nized, the lower bound for 𝑏𝑐𝑚𝑖𝑛 would be given by:

𝑏𝑐𝑚𝑖𝑛 = (0.7�̂�𝑚𝑎𝑥 ) − (𝜆𝑐𝑚𝑖𝑛𝑅𝑇𝑇 ) (21)

(2) CUBIC De-Synchronized. On the other hand, if only one
of 𝑁𝑐 CUBIC flows back-off at any time, i.e. all the flows are
perfectly de-synchronized, the upper bound for 𝑏𝑐𝑚𝑖𝑛 would
be given by:

𝑏𝑐𝑚𝑖𝑛 =

(
(𝑁𝑐 − 0.3)

𝑁𝑐
�̂�𝑚𝑎𝑥

)
− (𝜆𝑐𝑚𝑖𝑛𝑅𝑇𝑇 ) (22)

Solving the model for these 2 scenarios will provide us with a good
estimate for the bandwidth shares of the BBR and CUBIC flows. In
practice, we find that the empirical results are generally much closer
to the case where CUBIC flows are synchronized (i.e. Equation (21)).
The average bandwidths of the individual flows can be obtained as
follows:

𝜆𝑐 =
𝜆𝑐

𝑁𝑐
(23)

𝜆𝑏 =
𝜆𝑏

𝑁𝑏
(24)

3 MODEL VALIDATION
In this section, we validate our models in §2.3 and §2.4 using real
experiments. Since all the flows in our model have the same RTTs,
we normalize the buffer size to the bandwidth-delay product (BDP)
in the graphs in this section to make it easy to compare across
different network conditions.

3.1 Basic 2-Flow Model
We first evaluate the accuracy of our simple model that predicts
the bandwidth shares of two competing CUBIC and BBR flows. To
this end, we launched a CUBIC and BBR flow through a 50Mbps
bottleneck link. The buffer size was varied from 1 BDP all the way

up till 30 BDP in steps of 0.5 BDP. We repeated the same experiment
with a 100Mbps bottleneck link.

In Figure 3, we plot the observed throughput share of the BBR
flow against buffer size and compared it to the values predicted by
Ware et al. [30]. Over a large range of buffer sizes, our model can
predict the throughput achieved by a BBR flow competing with a
CUBIC flow within 5% of the actual value. In contrast, Ware et al.’s
model has an error of at least 30% error, and this is for shallower
buffers. As discussed in §2.2, this is because they made assumptions
that do not hold in shallow to moderately sized bottleneck buffers.

An interesting observation from Figure 3 is that both the pre-
dictions of our model as well as Ware et al.’s model are relatively
stable across different link speeds and RTTs, i.e. the plots for other
link speeds and RTTs have a similar shape and error.

3.2 Multiple Flows
To evaluate the accuracy of ourmodel formultiple flows, we launched
10 flows (5 CUBIC flows vs. 5 BBR flows) through a 100 Mbps bot-
tleneck link with all the flows having a base RTT of 40ms. The
buffer size was varied from 1 BDP to 30 BDP in steps of 1 BDP.
We repeated the same experiments with 20 flows (10 CUBIC flows
vs. 10 BBR flows). All the flows in these experiments were started
simultaneously and lasted for 2 minutes.

In Figure 4, we plot the per-flow average throughput against
the confidence interval predicted by our multi-flow model. We see
from our results that the per-flow average throughput for BBR falls
within the confidence interval predicted by our model. In fact, we
found the measured per-flow average throughput to be very close
to the boundary where the CUBIC flows are de-synchronized. We
checked the traces of our experiments and verified that the CUBIC
flows were indeed generally not found to be synchronized in these
experiments. It should be noted here that while it looks like the
model by Ware et al. matches our model’s ‘Synch’ bound in deeper
buffers, it is not because their model assumes that the competing
CUBIC flows are perfectly synchronized. In fact, they assume that
the buffer occupancy of the competing loss-based flows does not
vary at all - therefore CUBIC flows being either synchronized or
not has no impact on the assumptions of their model.

3.3 Varying the Proportion of Flows
Since our goal is to understand the evolution of the Internet’s
congestion control landscape, it is also important to understand
how BBR’s average per-flow bandwidth share will change as the
share of BBR flows at the bottleneck increases.

To this end, we launched 10 flows through a 100 Mbps bottleneck
for buffer sizes of 3 and 10 BDP. Each of these flow were either
CUBIC or BBR. Over multiple runs, we increased the share of the
flows running BBR and measured the average bandwidth achieved
by BBR flows over a duration of 2 minutes. All the flows were
launched simultaneously. This experiment was then repeated for
20 flows.

In Figure 5, we plot the average per-flow throughput against the
number of BBR flows (out of 10 or 20). We see that the measured
average per-flow throughputs indeed fall within the upper and
lower bounds predicted by our multi-flow model. We note that in
some cases, the measured values are closer to the boundary where
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(d) 100 Mbps link, 80 ms RTT

Figure 3: Predicted throughput vs. actual throughput when a CUBIC flow competes with BBR.
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(a) 5 CUBIC vs. 5 BBR, 100 Mbps link, 40 ms RTT
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(b) 10 CUBIC vs. 10 BBR, 100 Mbps link, 40 ms RTT

Figure 4: Predicted vs. actual throughput when multiple CUBIC and BBR flows compete.

the CUBIC flows are synchronized and in other cases where they are
not. Again, we checked the traces of our experiments and verified
that the behavior of the CUBIC flow did correspond to the closer
line in the experiments.

The most important takeaway from these experiments is that
BBR’s average per-flow bandwidth reduces as the proportion of
flows running BBR at the bottleneck increases. This suggests that
as more and more users on the Internet start using BBR as their
congestion control algorithm, the throughput advantage currently
enjoyed by BBR over CUBIC will be reduced. At some stage, the

average throughput for BBR could fall below that of CUBIC! We
will use this observation in §4 to show that a Nash Equilibrium
distribution of CUBIC and BBR must exist when multiple flows
with the same base RTT compete at a common bottleneck link. This
trend also suggests that as more BBR flows join the bottleneck, their
collective buffer occupancy increases only sub-linearly.
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(b) 20 flows, 3 BDP Buffer

 0

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10

A
vg

 p
er

-f
lo

w
 B

an
dw

id
th

 (
M

bp
s)

# of BBR flows

Predicted Region
CUBIC Synch bound

CUBIC De-synch bound
Actual throughput (BBR)

(c) 10 flows, 10 BDP Buffer

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20
A

vg
 p

er
-f

lo
w

 B
an

dw
id

th
 (

M
bp

s)

# of BBR flows

Predicted Region
CUBIC Synch bound

CUBIC De-synch bound
Actual throughput (BBR)

(d) 20 flows, 10 BDP Buffer

Figure 5: Diminishing returns for BBR.
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4 APPLYING GAME THEORY
In this section, we apply game theory using our model in §2.4 to
predict how the Internet might evolve in the near future.

Performance is multi-faceted and context-dependent. For simplic-
ity, we focus on throughput and assume the flows will choose the
congestion control algorithm that offers them the highest through-
put, since better throughput is often cited as the reason for switch-
ing congestion control algorithm [5, 7, 16].

We model users (websites) as agents that currently choose either
CUBIC or BBR as their congestion control (CC) algorithm. If a
user can enjoy higher throughput by switching to the other CC
algorithm, then there would be an incentive to switch. A Nash
Equilibrium (NE) distribution of CUBIC and BBR flows occurs when
none of the users have any incentive to switch, either because doing
so will not result in increased throughput, or worse, will result in
lower throughput.

We show that a NE must exist when flows with similar RTTs
compete at a bottleneck and discuss how this analysis applies to
more complicated setting with other (non-BBR) congestion control
algorithms and more complex utility functions. Networks with
flows with different RTTs remain future work.

4.1 NE for flows with similar RTTs
Consider a networkwith𝑛 flows sharing a common bottleneck, each
running either CUBIC or BBR as their congestion control algorithm.
In this network, we define a given distribution of CUBIC and BBR
flows to be a NE, if none of the flows have any incentive to switch
from CUBIC to BBR or vice versa to achieve better performance.
Since all the flows have the same RTT and are essentially symmetric,
there are a total of 𝑛 + 1 possible distributions for 𝑛 flows. For
each of these distributions, we can measure the average bottleneck
bandwidth received by all the BBR flows and plot them on a graph
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as shown in Figure 6. The dotted line on this graph represents the
fair-share line, where the average bandwidth of the BBR flows is
equal to the fair-share bandwidth (i.e. link capacity divided by the
total number of flows).

It has been observed that when a small number of BBR flows
compete with a large number of CUBIC flows, they are able to get
a disproportionately large share of the bottleneck bandwidth [30].
Given this result, we know that there exists a distribution (with
a small number of BBR flows) that lies above the fair-share line
in Figure 6, which we label as A. We also know that when all the
flows at the bottleneck run BBR, they will take up all the bottleneck
bandwidth. The average bandwidth for the BBR flows will then, by
definition, be the fair-share bandwidth. We can use this observation
to plot point B in Figure 6. We expect all the distributions between
these two distributions to lie on a line connecting points A and B.

Next, we consider the distributions along the line from A to B.
There are one of 2 possibilities: (i) either the line AB is always lies
above the fair-share line, or (ii) the line AB intersects the fair-share
line at some point C. We note that for the points above the fair-
share line, BBR flows will have on average higher throughput; for
the points below this line, the CUBIC flows will have on average
higher throughput. What this also implies is that for the points
above the fair-share line, some CUBIC flow will have an incentive
to switch to BBR; the converse would be true for the points below
the fair-share line.

Case 1: AB is above the fair-share line. For any point between
A and B, some CUBIC flow would be incentivized to switch to BBR.
As more flows switch from CUBIC to BBR, we move along the AB
line until we reach B. Point B, where all flows are BBR, is then the
Nash Equilibrium distribution. This is because no flows have the
incentive to switch to CUBIC because it would result in a loss of
throughput.

Case 2: AB intersects the fair-share line at C. We claim that
C is a Nash Equilibrium distribution. To understand why we can
zoom in and examine what happens at C (Figure 6). There are 2
possibilities:

(1) A CUBIC flow can switch to BBR. This would correspond
to the current state of the network moving to the right of
C. This means the average throughput of the BBR flows will
drop below that of the CUBIC flows. Therefore, a CUBIC
flow will never switch to BBR.

(2) A BBR flow can switch to CUBIC. On the other hand,
a BBR flow switching to CUBIC would move the current
state of the network to the left of C, which will result in the
average throughput of the CUBIC flow dropping below that
of the BBR flows. So again, this switch is also not tenable.

Since it is not tenable to move either left or right, point C is a stable
Nash Equilibrium distribution.

Estimating the Nash Equilibrium distribution. Following
the observations in §2.4, the Nash Equilibrium distribution exists
when the combined bandwidth of all the BBR flows intersects with
the fair-share line. In other words, the Nash Equilibrium distribution
is the value for 𝑁𝑏 at which:

𝜆𝑏 =
𝜆𝑏

𝑁𝑏
=
𝐶

𝑁
(25)
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Figure 7: Combined bandwidth vs. number of flows for vari-
ous congestion control algorithms.

We can use Equation (25) in conjunction with Equations (20) and
(24) of our throughput model to predict the Nash Equilibrium dis-
tribution of CUBIC and BBR in any given fixed capacity network
where all the flows have the same base RTT!

4.2 Other Congestion Control Algorithms
The results for CUBIC and BBR in §4.1 are based on only two as-
sumptions: (i) BBR is able to obtain a disproportionately large share
of the bottleneck bandwidth for at least one distribution; and (ii)
when all the flows are BBR, the BBR flows will take up the available
bottleneck bandwidth. The latter is self-evident if we replace BBR
with another congestion control algorithm. If we can show that
the former property is also true for another congestion control
algorithm X, then an NE distribution of CUBIC and X flows must
also exist when flows with similar RTTs compete at a bottleneck.

To verify if the former property holds for the following conges-
tion control algorithms that were proposed after BBR: (i) BBRv2 [6],
(ii) Copa [3], and (iii) PCC Vivace [10], we launched an experiment
with 10 flows in a network with a 100 Mbps bottleneck and a 2 BDP
bottleneck buffer for each algorithm X. All flows in this network ran
either CUBIC or X. We measured the per-flow average throughputs
for all 11 possible distributions of CUBIC and X flows.

We plot the average per-flow throughput against the number of
non-CUBIC (X) flows in Figure 7. We found that PCC-Vivace [10],
BBR [4] and BBRv2 [6] are able to get a disproportionately large
share of the bottleneck bandwidth when there are a small number of
flows. On the other hand, Copa [3] obtains lower average through-
put for all congestion control algorithm distributions. Therefore,
we expect a Nash Equilibrium distribution to exist for BBRv2 and
PCC Vivace as well, but perhaps not for Copa.

We note that our result is valid only for the case of two competing
algorithms competing at a common bottleneck. Scenarios where
more than two CC algorithms compete at a common bottleneck
remain future work.

4.3 Complex Utility Functions
In the real world, it is likely there are senders that care not only
about throughput but also delay. For video streaming, the metric of
import would become even more complicated. However, we argue
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Figure 8: Variation in throughput and queuing delay as a
function of the congestion control algorithm distribution.

that even in such scenarios, throughput will likely still be the metric
that drives senders to switch between CUBIC and BBR.

To illustrate this, we plot the average throughput per algorithm
and average queuing delay of a 10 flow evolution experiment dis-
cussed in §4.2. The 10 flows in this experiment pass through a
bottleneck link of 100 Mbps, with a 2 BDP buffer and 40ms base
RTT. The two lines in Figure 8a represent the average through-
put and CUBIC and BBR flows receive in a given trial. The single
line in Figure 8b represents the average queuing delay, which is
a metric shared between the flows regardless of the congestion
control algorithm they run in that trial. What these graphs illus-
trate is that even though both throughput and delay are dependent
on the congestion control algorithm distribution at the bottleneck,
throughput is likely the only metric that is asymmetric enough
to drive flows to switch between CUBIC and BBR. For a flow that
cares about queuing delay, a switch between CUBIC and BBR likely
leads to a marginal gain in utility (since it is clear from Figure 8b
that increasing the proportion of BBR flows has hardly any effect
on queueing delay unless all flows were BBR.)

Therefore, we conjecture that under simple utility functions
that are linear combinations of throughput and delay, a Nash Equi-
librium distribution will still exist. This is because we expect the
decision to select between different congestion control algorithms
to still be dominated by the throughput gains in such settings. That
said, it is still unclear how the flows will react where all the partici-
pating flows have drastically different utility functions. Investigat-
ing whether Nash Equilibria will exist and what the distributions
would look like for complex utility remains future work.

4.4 Experimental Verification
In this section, we present the results of our testbed experiments
to validate the accuracy of the NE distributions predicted by our
results in §4.1.

Methodology. For each network setting, we run 10 trials of all
the 𝑛 + 1 possible combinations of the 𝑛 senders running either
CUBIC or BBR. In each trial, the senders send data for 2 minutes
and we record their average per-flow throughput. To identify the
NE, we enumerate all the combinations and check if there is any
combination such that no individual flow in that combination can
achieve higher throughput if it switches to the other TCP variant (all
other flows remaining fixed). It is common for multiple distributions
to satisfy this condition.

Nash Equilibria Found. We plot the results of NE found for
50 competing flows in Figure 9. The bottleneck bandwidth was set
to 100 Mbps and 50 Mbps with the buffer size varying from 0.5 to
50 times the BDP. All these flows had the same base RTT which
were 20, 40, and 80ms across different trials. All the NE found
empirically were in the interval predicted by our model, except
those at high BDPs. BBR is not cwnd-limited in these regions and
hence our model does not work well, which explains why the actual
NE deviates from our predictions.

Aside from the trend that there tend to be more CUBIC flows
at the NE in deeper buffers as compared to shallower buffers, the
results in Figure 9 present two more interesting trends. The first
is that we found multiple NE over different iterations of the same
experiment. This is down to the throughput gains from switching
between CUBIC and BBR being marginal around the Nash Equilib-
rium distribution. Therefore, any stochasticity across the trials can
result in the NE shifting to neighboring distributions. We observe
this phenomenon as multiple NE distributions across multiple trials.

The other trend is that when the buffer size is normalized by
the BDP, the region predicted by the model is exactly the same
regardless of the base RTT or the bottleneck link capacity. This
is evident in Figure 9, where the predicted regions in all the six
different network settings tested have the exact same shape. The
empirically observed NE also follow this trend, with all of them
roughly following the same curve across experiments with different
base RTTs and link speeds. This would suggest that where the NE
lies does not independently depend on either the link capacity 𝐶
or the 𝑅𝑇𝑇 , but the BDP. This makes sense, since the key indicator
in what bandwidth competing BBR and CUBIC flows get in §2 is
the extra packets that BBR keeps in the buffer, which depends on
the BDP (𝐶 × 𝑅𝑇𝑇 ). We saw similar trends when we repeated these
experiments for bottlenecks with 25 flows.

4.5 Flows with different RTTs
While our model assumes that all the flows have similar RTTs, the
RTT distribution on the Internet can be quite diverse [26]. Even
though our model cannot easily be extended to a multi-RTT setting,
we conducted experiments to investigate the NE for flows that had
different RTTs. In particular, we simultaneously launched 30 flows
comprising of three groups of 10 flows with RTT of 10ms, 30ms,
and 50ms respectively. These flows shared a 100Mbps bottleneck
link with buffer sizes varying as multiples of the BDP (bandwidth-
delay product) of the flow with the shortest RTT. We ran all 2𝑛
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(b) 50 Mbps link, 40ms RTT
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(c) 50 Mbps link, 80ms RTT
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(d) 100 Mbps link, 20ms RTT
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(e) 100 Mbps link, 40ms RTT
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Figure 9: Predicted Nash Equilibrium vs. observed Nash Equilibrium points for a bottleneck with 50 flows.
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Figure 10: Nash Equilibrium distributions between CUBIC
and BBR flows with different RTTs.

possible combinations of CUBIC and BBR flows for these thirty
flows for three trials and then computed the Nash Equilibrium
distributions just like in our previous experiments. The purpose
of this experiment is not to quantitatively verify the predictions
of our model, but to verify that Nash Equilibrium distributions of
CUBIC and BBR can exist in multi-RTT networks as well. We plot
the results in Figure 10. We noticed two key trends in NE between
flows with different RTTs:

(1) Existence of NE. For all the buffer sizes tested, we were able
to find at least one Nash Equilibrium distribution of CUBIC
and BBR flows. In many instances, there were multiple NE
distributions across trials, but all these distributions roughly
had the same percentage of flows running CUBIC.

(2) Nature of the NE. In all Nash Equilibrium distributions,
all the flows choosing to run CUBIC were the flows with
the shortest RTTs. In other words, if a Nash Equilibrium
distribution had 15 out of 30 flows running CUBIC, these 15
flows would comprise of all the ten flows with 10ms RTT,
and five 30ms RTT flows.

Our results suggest that flows with larger RTTs benefited by
switching to BBR more than flows with shorter RTTs; the reverse
is true for CUBIC. This is expected from our understanding of
RTT-fairness for CUBIC and BBR. Loss-based congestion control
algorithms like CUBIC in general tend to favor flows with shorter
RTTs [18], because flows with shorter RTTs are able to get quicker
feedback and probe for bandwidth more frequently. With BBR, the
opposite is true, i.e., flows with larger RTTs obtain a larger share
of the bottleneck bandwidth than flows with smaller RTTs [14],
because BBR flows become cwnd-limited and maintain a buffer
share directly proportional to their RTT. When CUBIC and BBR
flows with different RTTs compete, it is only natural that these two
opposing trends would complement each other to give rise to NE
distributions with shorter-RTT CUBIC flows and longer-RTT BBR
flows.

4.6 BBR Predictions applied to BBRv2
Google is working to replace BBR with BBRv2 in the near future [6].
BBR has been found to be unfair to CUBIC flows in smaller buffers
and can take up to half the total available bandwidth at the bot-
tleneck regardless of flow-wise share [30]. To mitigate this issue,
BBRv2 is designed to be a less aggressive alternative to BBR. At a
high level, BBRv2 behaves like BBR, but because it has a variable
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Figure 11: Nash Equilibrium distributions between competing CUBIC and BBRv2 flows.

cwnd, it is able to react to packet loss. We repeated the experiments
in §4.4 for BBRv2 to determine if Nash Equilibrium distributions
exist, and if so, how they would compare to our predictions for
BBR.

Our results in Figure 11 suggest that multiple Nash Equilibria
also exist when CUBIC and BBRv2 flows compete at a common
bottleneck. This is in line with our observations in §4.2. Because
BBRv2 is less aggressive than BBR, the Nash Equilibria for BBRv2
generally had a higher share of CUBIC flows for the same buffer size
when compared to BBR (see Figure 7). Our results also suggest that
our current model for BBR works well for BBRv2 when the RTT
is relatively small. Augmenting the model to improve throughput
predictions for BBRv2 remains future work.

5 DISCUSSION
Nash Equilibrium for networks with different RTTs. Nash
Equilibria were earlier observed in settings where the competing
CUBIC and BBR flows have different base RTTs [21]. However,
one limitation of our model is that the analysis presented in this
paper does not apply to networks that have flows with different
RTTs. This is because with different RTTs, flows will no longer be
symmetric and the state space with all the possible distributions
will grow exponentially. Our proof in §4.1 requires that we linearize
the state space of all the possible CCA distributions in a way that
the two conditions discussed in §4.2 are met. We have not found a
way to do so for a network where flows have different base RTTs.
While we have results that suggest that Nash Equilibria generally
exist for networks with different RTTs (see §4.5), we have not been
able to extend the proof in §4.1 to this setting.

Implications on Internet Buffer Sizing. Router buffer sizing
is a long-standing problem [2, 11, 19]. Rules of thumb have been
derived over the years and trends have been moving towards “tiny”
buffers [11], to avoid Buffer Bloat [12]. However, given that BBR
keeps 2×BDP packets in flight, CUBIC flows may face starvation if
BBR becomes the dominant TCP variant on the Internet.

Model Performance for large numbers of flows. While our
experiments have validated our model for up to 50 concurrent flows,
50 is still orders of magnitude smaller than the number of concur-
rent flows passing through the bottleneck links on the Internet. It

remains to be seen how our predictions will scale to the Internet.
However, we see no reason why qualitatively our predictions would
not apply to larger networks with hundreds of concurrent flows.

More diverse workloads and more complicated metrics.
One gap in the evaluation of our model is that we have only run ex-
periments for long flows. Real Internet workloads are more diverse,
and consist of not only long flows, but also chunky video traffic,
short flows generated by ad services, and latency-sensitive traffic
from live streaming and video calling. Different application traffic
is likely to care about more complex metrics than just throughput.
It is also unlikely that the mathematical model presented in this
paper (which models the steady state behavior of CUBIC and BBR)
will be able to accurately replicate the interactions between short
flows. Improving our model and evaluation to handle more diverse
and realistic workloads remains future work.

Forced synchronization among CUBIC flows. We observed
that the actual bandwidth share for the NE found is often closer to
the CUBIC-Synched bound of our model (see Figure 5). This sug-
gests that for multiple competing CUBIC and BBR flows, the CUBIC
flows can get synchronized. We believe that this is likely because
when all the BBR flows transition (together) from ProbeRTT to
ProbeBW, they collectively add many packets to the buffer caus-
ing the buffer to overflow and the majority of the CUBIC flows to
experience packet losses at the same time, and they end up syn-
chronizing.

Poor Performance for ultra-deep buffers. We do not expect
the model described in §2 to be applicable in very deep buffers
(more than 100 times the BDP). This is because in such buffers, BBR
is not always cwnd limited. When BBR exits its ProbeRTT phase,
it starts with keeping only 1 BDP packets in flight. However, as
the flow scavenges more and more bandwidth during its periodic
ProbeBW cycles, it slowly grows the number of packets it has in
flight till it is capped by the cwnd. Since these ProbeBW cycles
happen every 8 RTTs, and in deep buffers these RTTs are much
larger than in shallow buffers, BBR becomes cwnd limited at a much
slower rate [30]. Therefore, our model would always overestimate
how well BBR would perform against CUBIC flows in deep buffers.

To demonstrate this, we conducted a simple experiment with a
single CUBIC flow competing with a single BBR flow at a 50-Mbps
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Figure 12: Performance of the model in ultra-deep (>100*BDP) buffers.

bottleneck link, with each flow lasting for 2 minutes and having a
base RTT of 40ms. We then plotted the bandwidth received by the
BBR flow in buffer sizes ranging from just 1 BDP up to 250 times
the BDP. We can see the extent of our model’s over-estimation
in ultra-deep buffers in Figure 12. It is clear that BBR’s average
throughput gradually decreases as the buffer size increases beyond
60 times the BDP. The actual throughput will dip below our model’s
predicted value when the buffers are deeper than 100 times the BDP.
We verified that the BBR flow was not cwnd-limited at these buffer
ranges in these experiments.

Assumption of 2 BDP packets in flight. Our model in §2
assumes that BBR flows always maintain 2 BDP worth of pack-
ets in flight. In practice, the actual number of packets would vary
between 1 and 2 BDP, since each ProbeBW phase starts with ap-
proximately 1 BDP of packets. As the ProbeBW phase progresses,
the overestimation of the minimum RTT will cause BBR to increase
the number of packets in flight, and the rate of increase depends on
the RTT. For higher RTT values, the number of bandwidth probes
in the 10-second ProbeBW phase will be smaller and so the average
number of packets in flight will be closer to 1 BDP. Our assumption
of 2 BDP packets in flight allows us to achieve good accuracy while
keeping the model simple. Nevertheless, it is likely that it is possible
to improve our model by estimating the number of packets in flight
during the ProbeBW phase more accurately.

Taming the Zoo. Given that the majority of Nash Equilibrium
distributions that we have found are mixed distributions of CUBIC
and BBR, it is likely that these two algorithms will have to co-exist
on the Internet for the foreseeable future. We therefore need to
work on networking solutions that work well with not just one
class of congestion control algorithms, but a diverse mix of both of
them, and probably other TCP variants [20].

Incentives to switch to better congestion control. The fact
that we can see mixed distribution Nash Equilibria for most buffer
sizes suggests that it might be hard to incentivize switching to
better congestion control on the Internet while playing nice with
existing flows. Looking back, CUBIC was clearly superior to New
Reno [23] on high BDP network paths. Therefore one of the reasons
CUBIC was able to largely replace New Reno was because it was
more aggressive and not very friendly to existing Reno flows, so
operators who cared about throughput had little option but to

switch. Moving forward, the situation between BBR and CUBIC
is much less straightforward. While BBR is able to achieve better
throughput when there are a small number of flows, the advantage
that BBR has over CUBIC diminishes as the proportion of BBR flows
increases. In this light, the incentives to pick BBR over CUBIC will
likely be very different from those to pick CUBIC over New Reno.

6 RELATEDWORK
Since the introduction of BBR in 2016, there have been a number
of works dedicated to investigating BBR [15, 25, 29]. Hock et al.
conducted the first independent study into understanding how BBR
interacts with CUBIC flows [15]. They observed that in shallow
buffers of less than 1BDP, BBR flows take a larger share of the
bandwidth compared to competing CUBIC flows. They argued that
BBR’s bandwidth probing causes buffer overflows and bursty losses
for competing CUBIC flows. The resulting packet loss causes CUBIC
to reduce its cwnd, which in turn allows BBR to take a larger share
of the bandwidth. This cycle is perpetuated with every bandwidth
probe, leading to CUBIC starving for bandwidth. This observation
is corroborated by other studies [25, 29]. Scholz et al. conducted
experiments with up to 10 BBR flows competing with 10 CUBIC
flows [25] and showed that BBR flows are always able to claim at
least 35% of the total bandwidth. Dong et al. also made a similar
observation that when a single BBR flow competes with an ever-
increasing number of CUBIC flows, BBR’s fraction of the bandwidth
remains the same [10].

To the best of our knowledge and as stated in §2.2, the current
best state-of-art model for the interactions between CUBIC and BBR
is the model byWare et al. [30]. Ware et al. demonstrated that BBR’s
performance is governed by its cwnd in deep buffers. They claimed
that for very deep buffers, BBR flows collectively take up a fixed
share of the bottleneck buffer. Unfortunately, these assumptions are
not very good and hence their model is not accurate over a large
range of buffer sizes. One of its key shortcomings is that it assumes
that bottleneck buffers are always full. Our model makes none of
these assumptions.

Our model builds upon our earlier work [21], where we showed
that a NE distribution of CUBIC and BBR flows must exist in 2-
flow games. We had earlier also empirically demonstrated that NE
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distributions exist in networks with up to 12 flows. Our earlier
experiments suggested that the share of CUBIC and BBR flows
at the NE primarily depended on the buffer size. Other network
parameters such as the bottleneck bandwidth and the number of
flows have a marginal effect on the NE distribution. Our new model
proves that the conjecture that a NE must exist between CUBIC
and BBR flows is true for the case where all the flows have the same
base RTT. While our experience seems to suggest that an NE must
exist even for flows with different RTTs, whether this hypothesis
is true remains an open question.

Game theory had previously also been applied to congestion con-
trol [1, 8, 28], albeit in different settings and contexts. Chien and
Sinclair were the first to study the interactions between modified
AIMD congestion control algorithms and evaluate the efficiency of
the Nash Equilibrium bandwidth distributions between them [8].
They showed that the Nash Equilibrium between Reno and Tahoe
flows can be efficient in drop-tail buffers and inefficient with RED-
enabled buffers. The main difference between their work and ours
is that their strategies (congestion control algorithms) for the play-
ers (individual flows) are fixed. Chien and Sinclair attempted to
calculate the Nash Equilibrium bandwidth distribution, while we
are focused on predicting the Nash Equilibria in terms of the dis-
tribution of congestion control algorithms. In the remaining two
works [1, 28], the focus was on investigating the Nash Equilibrium
bandwidth distributions between 2 flows running Reno and Vegas.

7 CONCLUSION
In this paper, we showed that BBR sees diminishing returns in its
throughput advantage over CUBIC as the proportion of BBR flows
increases. As BBR flows become more numerous, the average per-
flow bandwidth of the BBR flows will drop. This dynamic suggests
that for most realistic network scenarios, there will likely always be
a Nash Equilibrium distribution of CUBIC and BBR flows, where no
flows have any incentive to switch. We thus make a bold prediction
that it is unlikely that BBR will completely replace the CUBIC flows
on the Internet in the near future. Even as BBR (or BBRv2) continues
to grow in dominance, we believe that some flows always continue
to be CUBIC for some time to come.
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