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Abstract— In this paper we show how information contained in ® ® ®
robust network codgs can be used fpr passive inference_ of.pdisle \ /
locations of link failures or losses in a network. For distributed

randomized network coding, we bound the probability of being

able to distinguish among a given set of failure events, and fig 1. An example in which distinct logical link segments ardistinguish-
give some experimental results for one and two link failures in able with only end-to-end measurements. Here failure of etthe left-most
randomly generated networks. We also bound the required field or right-most link results in the same observation at the sink.

size and complexity for designing a robust network code that

distinguishes among a given set of failure events.

under different failure patterns.
In this paper, we look at the extent to which network
The distributed randomized network coding approach of [tbdes allow us to distinguish among differdait ure patterns,
provides a simple way to achieve robustness to link failimesi.e. sets of links that fail simultaneously. Failure pattethat
multisource multicast. In this approach, interior netwonddes result in different sink observations under a network cogle c
independently and randomly choose linear mappings frope distinguished from each other by that code. As in all end-
inputs to outputs. Coefficient vectors specifying the agare to-end tomography approaches, failures can be localized on
linear combinations are sent with each data block or packap to segments of thiogical topology, which are segments
allowing decoding at the sinks under different combinatiorbetween branches in the network. Furthermore, for a given
of link failures or packet losses, as long as the remainitg raopology and given source and sink locations, failures of
is sufficient. distinct logical segments may be indistinguishable by end-
In this paper we make the observation that the coefficietat-end observations if the segments lie on exactly the same
vectors transmitted in a distributed randomized netwodiro® set of source-sink paths, since the corresponding enddo-e
setup are not simply a necessary overhead for recovery aifservations are identical. This is illustrated in Figure=ar
the coded messages at the sinks, but may be used to dedaagven network and given locations of sources and sinks, we
additionally, useful information on the location of linkili@es consider two failure patterns andp. to beindistinguishable
or packet losses. This is because losses on different linkshe set of source-sink paths containing at least one Iink i
affect the coefficient vectors obtained at the sinks difidye p; is identical to the set of source-sink paths containing at
Knowledge of the original network topology and networleast one link inps, anddistinguishable otherwise.
code allows inference, from changes in the coefficient vacto The problem we consider here is in some sense the opposite
obtained at the sinks, of possible locations of losses in tbé that in [2], which also deals with link failures, but is
network. concerned with the minimum number of different groups of
The problem of monitoring interior network state or perforfailure patterns the network needs to be aware of, repriesent
mance parameters such as link failures, loss rates, or glelthye minimum amount of control information needed to ensure
using end-to-end observations is commonly known as netwarintinued transmission of data across different failutéepas.
tomography, based on the analogy with the medical tomogfEhis paper, on the other hand, is concerned with how many
phy problem of non-intrusive imaging. Such monitoring cafailures patterns can be distinguished.
be useful for network maintenance or management. In ourThe rest of the paper is organized as follows: Section I
case, we have a form of passive network tomography, sinpevides some background and a brief overview of related
our inferences are based on passive end-to-end obsewvatioork, Section Ill describes our network model, Section IV
of existing network traffic, rather than the use of activgives the main results, Section V gives our mathematical
probes. In particular, the network code coefficient vecpday development and proofs, Section VI gives some simulation
double duty by allowing link failure monitoring in additido results, and Section VII concludes the paper with a summary
allowing the sink nodes to correctly decode the incoming dadf the results and a discussion of further work.

I. INTRODUCTION



Il. BACKGROUND AND RELATED WORK I1l. M ODEL

A. Network coding We copsidgr networks with directed error—f_ree links. Ngt-
work coding is done only at branch nodes (i.e. nodes with
The field of network coding has its origins in the work otlegree three or more), as there is no capacity or reliability
Ahlswede et al. [3] and Li et al. [4]. Li et al. [4] prove thatadvantage from coding within a logical link. Thus, in thetres
linear coding with finite symbol size is sufficient for mulist of the paper we will consider logical links rather than plegsi
connections, showing that network codes may potentially hiaks, using the terms ’link’ and 'logical link’ interchaegbly.
simple and practical. Koetter and &dard [5] present an  Our basic mathematical framework and model is based on
algebraic framework for linear network coding, which pa®s that in [3], [5]. A network is represented as a directed graph
the basic model and mathematical foundation for this work. = (V, £), whereV is the set of network nodes arfl is
They also demonstrate that network coding can be usedtfie set of links, such that information can be sent noiskless
provide robust solutions to multi-source multicast netsor from nodei to j for all (i,5) € &£, and|€| = 5. i andj are
with link failures, in which only sink nodes need to changealled theorigin and destination respectively of link (i, j).
behavior in response to different failures. The origin and destination of a link € £ are denoted(l)
Distributed randomized network coding, introduced in Handd(l) respectively.
et al. [1], gives an approach for robust multi-source ma#itc  Link [ is anincident outgoing link of nodev if v = o(l),
in a distributed setting. In this technique, nodes indepetld and anincident incoming link of v if v = d(I). We call an
select random linear mappings from inputs onto outputs oviecident incoming link of a sink node @rminal link. Link !
some finite field, which achieves all feasible connectiorth wicarries the random proce3g(/).
probability tending to 1 as the field size grows. The sinkgdnee There are r independent information sources
only know the overall linear combination of source processe(;, X, ..., X,. SourceX; is generated at a nodg < &, and
in each of their incoming signals. This information is sentulticast to all nodeg € {3, ..., 34} foralli € [1, 7], which
through the network as a vector, for each signal, of coefitsie we refer to as multi-source multicast. The nodes. .., o,
corresponding to each of the source processes, updatedhat ege calledsource nodes and thed nodesp, .. ., 34 are called
coding node by applying the same linear mappings to tlgk nodes.
coefficient vectors as to the information signals. Robisgne A multicast transmission problem is specified by a network
to link failures and errors in the random selection of codeg source and sink locations, and source rates. For a given
improves with excess capacity in the network [6]. Chou gtansmission problem, a network codeviid if every sink
al. [7] have proposed and demonstrated by simulation a packg able to reconstruct all the source information withouber
based implementation in which source packets are dividegilure of a linkl is modeled as removal dffrom G.
into generations, and only packets in the same generat®n ar\e assume that the time unit is chosen such that the capacity
linearly combined. of each link is one bit per unit time, and the random processes
Concurrent independent work by Sanders et al. [8] and Jaggj have a constant bit and entropy rate of one bit per unit time.
et al. [9] considers multicast on acyclic delay-free graphedges with larger capacities are modelled as parallel edges

giving centralized deterministic and randomized polyr&imi and sources of larger entropy rate are modelled as multiple
time algorithms for finding network coding solutions over @ources at the same node.

subgraph Consisting of flow solutions to each sink. The processesy;, Y(l) generate binary sequences. We
assume that information is transmitted as vectors of bitishvh
B. Network tomography are of equal length, represented as elements in the finite field

Fou. The length of the vectors is equal in all transmissions,

The problem of monitoring or inference of internal networland all links are assumed to be synchronized with respect to
characteristics from end to end measurements is commotHg symbol timing.
known as network tomography. Such characteristics includeFor simplicity we consider linear codifgn acyclic delay-
link status, losses and delay characteristics. free graphs; burst [4] or pipelined [8] network codes on

This problem has been considered by a large number afyclic networks with link delays are essentially equinéle
papers, some of which are surveyed in [10]. Existing ajor cyclic networks, such as the random geometric graphs in
proaches may be classified in various ways. Active measuper simulations of Section VI, our approach is to code over an
ment approaches, such as those of [11], [12], involve sgndiacyclic subgraph. This is in some cases suboptimal compared
additional probe traffic, whereas passive approaches [jb8] ao cyclic coding approaches such as those of [5], [4], but the
to infer network characteristics from existing networkffica overhead of specifying such codes is higher, which is less
Approaches may also be classified into unicast [14], [12] attractive for non-static networks. In a linear code, trgnal
multicast [15] approaches, depending on whether unicast¥6(j) on a link j is a linear combination of processés;
multicast traffic/probes are used. While many existing worlgenerated at node = o(j) and signalsY' (/) on links ! such
focus on wired networks, network tomography for sensor
networks has also been considered [16]. Lwhich is sufficient for multicast [4]



a network code that is valid under all failure events in a
Y(1) Y (2) setC, and distinguishes among them without any monitoring
ambiguities. A simple lower bound on the minimum field size

\@/ q needed for such a code is

{ qg>1C

1
Tt

wherer andt¢ are the number of sources and terminal links

respectively. This is obtained by noting tHéf cannot exceed
Y(3) = a1,3X1 + fi,3Y (1) + f2,3Y(2) the maximum number of possible valugé of the coefficient
vectors of the terminal links. An upper bound is given by the
following theorem.

Theorem 2: SupposeC is a set of distinguishable failure
events. A network code that is valid under all failure events
in C and distinguishes among them without any monitoring
Y(j) = Z ai; Xi + Z fY () ambiguitfce‘ifan be obtained in any finite field of size greater

{i: a;=v} {l:d(l)=v} than |C‘( 2 + d) O

Theorem 3: SupposeC is a set of distinguishable failure

events. A valid network code of field sizﬂC|('c‘T’1 +d)

) ) ) network code that is valid under all failure eventsdnand

~ Suppose an acyclic graph, source and sink locations, &f|diinguishes among them without any monitoring ambigsiti
link failure statistics are given, and suppose we are iBtete .4 pe obtained using a randomized procedure in expected
in |dent|fy|ng some of the more likely f_a|lure events._|.:0|C Ntime O ((%)" | (nIr + dr?376 + |C|rt)), wherel is the
stance, if each failure occurs with relatively small prabgh . -l

we may wish to distinguish among failure patterns that cslnsfnax'm,um in-degree of a node. U

of up to some small number of links. Among these patternsA92in, these are very general bounds; we would expect to
of interest, there may be some that are indistinguishabie fr 90 Substantially better on many networks.

each other as noted earlier with the example of Figure 1.

Sets of indistinguishable failure patterns are groupeettogy V. MATHEMATICAL DEVELOPMENT AND PROOFS

into failure events, and the remaining failure patterns areq . proofs use the following lemma from [17], which, like
cpn_:slde_red |ndIVIdua_1I failure events. For a given gef the Schwartz-Zippel Lemma, bounds the probability that a
distinguishable favorite events, and a given failure event’, multivariate polynomial evaluated at a random point equals

a monitoring ambiguity is said to exist for a network code ot js tighter as it takes into account the maximumetegr
if the corresponding coefficient vectors on the terminakdin of each variable. Its proof in [17] uses the Schwartz-Zippel
are identical to those for some other failure eventinThis ma.

definition is independent of the actual method of inferring Lemma 1: Let P be a nonzero polynomial ili[¢,, &, .. ]

failure events from sink observations; one basic approach-lil which the largest exponent of any varialgleis at mostz

X S
to have a lookup table of the observations corresponding a{ﬂd whose total degree is less than or equalitoValues for
different failure/loss events.

: . . 1,8, ... are chosen independently and uniformly at random
Let L be the maximum number of logical links on a SOUrC& ' F  C F. The probability thatP equals zero is at most
sink path,S the set of sources, aridl the set of terminal links. | (a ¢ ;/q)y for z < ¢ 0
Theorem 1 gives an upper bound on the probability of aEor eache € C. denote byE.(s,1) the difference in the

mr(])_nlrt]o(rjlng ambiguity for_ a tgl\ller_1 link 'T a .?P:V?nIdprqblem'coefficient corresponding to souredn the coefficient vector
which decreases approximaiely Inversely with Neld SJz& 1o minal link ! due to failure of links inc, in terms of code

2% or exponentially with code length. The bound is very coefficients{a, :, fi.;}
S,y J 1,7 S

general, depending only on three paramet$, L and g, Lemma 2: E.(s,l) has maximum degreé and is linear in

and is correspondingly pessimistic for networks that are no .
worst-case examples. In Section VI, we show by s:imulatioenaCh variable{as i, fi,; }-
' ' Proof: Note thatF,(s,!) is the sum of the contributions

much better performance on randomly generated geometric .
P y g 9 01‘ all paths froms to [ that pass through one or more links

graphs. . Lo ;
Theorem 1: For a given seC of distinguishable favorite in ¢, where the contribution of a path from through links
el in order is the produc&slllflhbfl%la Ce flwl-

events, and a given failure evenatc C, the probability of a hyla, -
monitoring ambiguity in a random linear network code is at _ , "
)1\ " Proof of Theorem 1: Consider a failure eventc C. The
most1 — (1 i B U probability of monitoring ambiguity for: is given by
In the case where rerouting or further testing following a
monitoring ambiguity is undesirable, we may wish to havePr(3c' € C,¢’ # ¢,s.t. Ev(s,1) = Ec(s,1) Vs € S, 1 € T).

Fig. 2. lllustration of linear coding at a node.

IV. MAIN RESULTS



This is upper bounded by takes O(|C|nIr) time in total, and check that they are all
, , distinct, which take€)(|C|*rt) time.
Pr(3¢ €C,c # 8t B (seers leer) = Belscers leer)) By Lemma 1, each random assignment of values is success-
ful with probability at least 1 — % n. Since ﬁ ! tries are
’ required ir717 expectation, the total expected execution tisne
O((ﬁ) IC| (ndr + dr?376 + \C|7“t)). [ ]
where s. -, 1. are respectively some source and terminal
link for which E. (s¢¢,l.) is not identically equal to VI. SIMULATIONS
aE.(sce,leer). Now, by Lemma 2, each difference term
(Eer(Se,eryleyer) — Ee(Se,ers le,er)) has maximum degrek and
is linear in each variabléa, ;, f; ;}. The product ofiC| — 1
such terms thus has maximum degrg€| — 1)L, and the
largest exponent of any variable is at m@st— 1. Therefore,
by Lemma 1, the probability that their product equals zero

=Pr H (Ec’ (sc,c’ ) lc,c’) - Ec(sc,c’v lc,c/)) -
c’eC: c'#c

Since our bounds are pessimistic except for worst-case
networks, we have run simulations to give an idea of actual
performance on random geometric graphs. The simulations do
not attempt to characterize precisely the achievable roong
erformance, but seek to give an idea of the performance of
T Fﬁndom network coding with short code lengths.
at mostl — (1 — ‘CI% : n Our experiments are run on 15-node random geometric
Proof of Theorem 2: Firstly, we want the network code tonetworks with 2 sources and 2 sinks, generated by scattering
be valid for each error evente C. This condition is equivalent nodes randomly over a unit square and connecting nodes
to the product of the transfer matrix determinants of @ll within rangep of each other. The parameter values for the
sinks for allc € C being nonzero [5]. This produd?; is an tests are chosen such that the resulting random graphs are in
expression of total degree at md6tdn, in which the largest general connected and able to support the desired connggctio
exponent of any variable is at mosgt|d [1]. while being small enough for the simulations to run effidignt
For the network code to be able to distinguish among dfor each network, we use a simple randomized algorithm
failure combinations inC, we must have, for each pair ofto generate acyclic digraphs to disallow the transmissibn o

distincte, ¢’ € C, information in cycles. Distributed randomized network icagd
is run over the resulting network; networks for which we
Ee(sc,ersle,er) = Eer(Se,erleer) # 0 cannot find a valid solution are discarded.

We repeated this process 1,000 times and generated 923
feasible 15-node random networks with 2 sources and 2 sinks.
We ran 10 trials on each network. We consider two cases: first,
taking the set of possible failure ever#s as the set of all

h duct ‘b ?'s.t'mt (ildggtrﬁncedterms failures of individual links; second, taking the $@tas the set
whose product must be nonzero. 1his pro as degree of all failures of one or two links. The raw results for these

cl(c|-nL ;
f"‘t most%i and the largest exponent of any Va”abkﬁlvo cases on the random networks, using a finite field of size
IS at most™="-5—. . _ 61, are shown as scatterplots in Figures 3 and 4 respectively
_ The largest exponent of any variable in the prodicf, — since we do not determine for each graph which failure events
is [C|({L + d). By Lemma 1,P,P; has positive proba- gre distinguishableP may contain failure events that are in-
bility of being nonzero when values for variablg§; are distinguishable. Our results thus give a pessimistic exttnof
chosen uniformly at random from a field of size greatghe probability of distinguishing among distinguishakaére
than |C|({= + d). Thus, in any finite field of size larger patterns of one or two links. The probability of unambiguity
than |C|( 'Clgl + d), there exists an assignment of values fawhen? contains only single link failure events is above 90%
variablesf; ; such thatP, P, # 0. B in general, while the corresponding probability of unanoiitig
Proof of Theorem 3. Consider a randomized procedurds somewhat lower whef® contains failure events involving
that simultaneously chooses values for varialflesuniformly  up to two links.
at random from a field of size = V\C\(lc‘% +d). For each  The aggregate fitted results for these networks with other
such assignment of values, it checks whether the resultifigite field sizes for up to two link failures are shown in Figur
network code is valid for all failure events it and distin- of 5. They show that the probability of unambiguity increase
guishes among them without monitoring ambiguities; if theith diminishing returns, agincreases. The apparent anomaly
code does not satisfy these properties, the process istegpefor networks with node density higher than 9 is probably
with another randomly chosen set of values. One way to chedilte to experimental error since our sample set contains few
if a network code is valid for a failure event is to compute thsuch networks. Repeating the experiments wjth= 7917
coefficient vectors of all links, which take3(nIr) time, and andgq = 40,009 yielded results almost indistinguishable from
to check whether the coefficient vectors of the terminaldinkhose forg = 61. For these networkdP| ranges from about
of each sink have full rank, which tak&3(dr?37%) time. To 300 (at node density 3) to about 2,700 (at node density 10).
check if the network code distinguishes between all failulé is apparent from these results that even do |P|, the
combinations irC, we can computér,. for eachc € C, which probability of unambiguity is still relatively high.

for some sources. .~ and terminal linki, .. By Lemma 2,
each difference term(E.(sc,c/;lc,e’) — Ee(Sc,ersleer)) has
maximum degred and is linear in each variablg, ;, f; ; }.
There are at most/S) = [€I0¢I=1)
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Fig. 3. Scatterplot for 923 15-node networks with 2 sources andRig. 5.
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sinks for one link failure forg = 61.
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Fig. 4. Scatterplot for 923 15-node networks with 2 sources and %6]
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sinks for up to two link failures fog; = 61.

An increase in the probability of unambiguity with mean
node degree can also be observed. This is because there @
fewer indistinguishable failure patterns of one to two $irk

more densely-connected networks.

Experiments with random networks with different numberd”!
of sources: and number of sinkg exhibited a similar trend.

VIl. CONCLUSIONS AND FURTHER WORK
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Plot of mean probability of ambiguity against mean node
degree for 923 15-node networks with 2 sources and 2 sinks for up
to two link failures for different field sizes.

potential benefits of using network coding in active probing
schemes.
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