
Improving Neighbor Discovery with
Slot Index Synchronization

Shuaizhao Jin∗, Zixiao Wang†, Wai Kay Leong†, Ben Leong†, Yabo Dong∗, Dongming Lu∗
∗School of Computer Science and Technology, Zhejiang University
†Department of Computer Science, National University of Singapore

∗{jinszhao, dongyb, ldm}@zju.edu.cn
†{zixiao, waikay, benleong}@comp.nus.edu.sg

Abstract—Neighbor discovery is essential for docking applica-
tions, where mobile nodes communicate with static nodes situated
at various rendezvous points. In existing neighbor discovery
protocols, the probabilistic protocols perform well in the average-
case but have aperiodic, unpredictable and unbounded discovery
latency. While the deterministic protocols can provide a bounded
worst-case discovery latency, they achieve this by sacrificing
the average-case performance. In this paper, we propose a new
synchronization technique, called Mobility-Assisted Slot index
Synchronization (MASS). MASS improves the average-case per-
formance of deterministic neighbor discovery protocols via slot
index synchronization, without incurring additional energy con-
sumption. We evaluate MASS through both theoretical analysis
and simulations of the real traces from a tourist tracking system
deployed at Mogao Grottoes, a famous cultural heritage site in
China. We show that MASS can reduce the average discovery
latency of state-of-the-art deterministic neighbor discovery pro-
tocols by up to 2 orders of magnitude.

I. INTRODUCTION

The availability of cheap wireless sensor nodes has made
docking applications [3] feasible for widespread deployment.
In docking applications, there are two sets of sensor nodes:
static and mobile nodes. Static nodes are placed at fixed
rendezvous points and mobile nodes are attached to moving
objects of interest. Some examples of docking applications
include the uploading of cargo transit history [15], the tracking
of cattle movement during feeding times [28], the tracking
of hikers via their encounters with trail-side waypoints [10]
and our application, which tracks tourists at a cultural heritage
site [18].

For the conservation work in Mogao Grottoes, a famous
cultural heritage site in China, it is essential to track and study
how the movement of tourists around the caves affects the
micro-climate. The current system in place consists of static
nodes placed in the caves and mobile nodes carried by the
tour guides. The static nodes emit beacons which are picked
up by the mobile nodes for each tour group that enters a cave.
Not only is the detection of the tour group important, it is
also essential to accurately measure the duration of stay within
each cave. In addition, power is also a constraint as modern
infrastructure is not allowed to be installed in the caves to
supply power to the static nodes.

In the current system, the static nodes are configured at
a duty cycle of 0.6% (they wake up and send beacons for
30 ms every 5 s) and the mobile nodes are always active and
continuously listen for the beacons. While this achieves an

average discovery latency of 2.5 s, the mobile nodes have to
be charged daily, which is inconvenient and is also a major
impediment to our plans for scaling up the system. Our goal is
to reduce energy consumption by introducing duty cycling for
the mobile nodes, without compromising discovery latency.

Neighbor discovery protocols will allow both the static and
mobile nodes to duty cycle while ensuring discovery. Our
key insight is that discovery latency can be minimized by

synchronizing the active and sleeping slots of the nodes. This
is because when the slot indices are synchronized, the nodes
will discover each other at the next earliest active slot.

While this might sound straightforward, it turns out that
synchronizing the nodes for a docking application introduces a
number of challenges. First, the synchronization must be done
in a distributed manner as the static nodes cannot directly com-
municate with each other. Instead, they can only communicate
by using the mobile nodes to relay information. Second, the
synchronization should converge quickly in order to achieve
any gains. Finally, the intrinsic inaccuracies in the clocks of
the sensors will result in clock drift. If the synchronization of
the slots drifts by a small amount, the resulting latency could
potentially become the worst case, instead of being optimal.
In other words, synchronization could significantly degrade
performance instead of improving performance if we are not
careful.

We propose and evaluate Mobility-Assisted Slot index Syn-

chronization (MASS), which improves the average-case per-
formance of deterministic neighbor discovery protocols via
slot index synchronization. In MASS, the nodes first elect a
reference node in a distributed manner and then synchronize
their slot indices with that reference node. We exploited the
natural visiting patterns of tourists to elect the reference node.
For our Mogao Grottoes traces, MASS is able to synchronize
all the 60 static nodes within three hours, which is less than
half of the 10-hour operational period of the site. But even if
it is not able to synchronize all the nodes, we can still reduce
the discovery latency for the nodes that are synchronized. To
mitigate the impact of the clock drift, MASS employs existing
techniques to estimate the clock skew between the nodes and
compensate for the clock drift with respect to the elected
reference node. The experiments show that our sensor nodes
can achieve the error of 0.98 ms and 2.4 ms per hour for 50%
and 90% of the time, respectively, which is well within one
slot interval.



We evaluate MASS via simulation using a real 31-day trace
obtained from the existing Mogao Grottoes tourist tracking
system and show that MASS can reduce the discovery latency
of 4 existing deterministic protocols (BlindDate [27], Search-
light [1], Disco [3] and U-Connect [11]) by about 2 orders of
magnitude over 75% of the time. Therefore, with MASS, we
are able to achieve a discovery latency of less than 5 s for 70%
of the time, even when the duty cycle of the nodes is reduced
to 0.5% to save power. By reducing the duty cycle from 100%
to 0.5%, our mobile nodes will be able to last 200 times longer
and be charged every 6 months instead of daily.

To the best of our knowledge, we are the first to propose
the use of slot index synchronization to improve neighbour
discovery latency in docking applications. We addressed the re-
sulting challenges by utilizing existing techniques such as clock
skew estimation and clock drift compensation, and proposing
a synchronization process and priority metric. It remains as
future work to thoroughly investigate how MASS performs on
practical sensor networks, especially on the tourist tracking
system deployed at the Mogao Grottoes.

The rest of the paper is organized as follows: in Section II,
we present an overview of existing neighbor discovery proto-
cols as well as clock synchronization and drift compensation
techniques. In Section III, we describe our docking application
scenario, our key insight and explain the challenges for our
system. In Section IV, we describe the MASS algorithm. We
evaluate MASS in Section V and conclude in section VI.

II. RELATED WORK

Clock Synchronization. There are two common approaches
for clock synchronization in multihop wireless networks [25]:
(i) reference-based clock synchronization; and (ii) distributed
clock synchronization. In reference-based clock synchroniza-
tion, the nodes synchronize their clocks with respect to one
or more reference nodes. These reference nodes are known as
roots in tree-based protocols [6, 23], gateways in cluster-based
protocols [4], and time servers in NTP-based protocols [31].
The main drawback of reference-based protocols is that they
are not robust to the failures of reference nodes. Furthermore,
they all assume that a reliable means of communication exists
between the nodes. This assumption does not hold for our
tourist tracking system.

In distributed clock synchronization, all nodes run the same
distributed synchronization algorithm, which will cause their
local clocks to converge to a common global time value. Some
techniques to achieve global synchronization include having
each node advance its clock to the fastest clock [21, 34], or to
the average clock values of the local nodes [13, 20, 22]. Glossy
is a recent network flooding architecture that achieves an
average time synchronization error below one microsecond [5].
However, it is not suitable in docking applications because the
mobile nodes are not always connected. To cope with frequent
topology changes and long inter-contact duration, Choi et
al. developed distributed asynchronous clock synchronization
(DCS) for delay tolerant networks [2]. Global clock synchro-
nization is achieved by asynchronously compensating for clock

errors using relative clock information exchanged among nodes
in DCS. The drawback of distributed synchronization algo-
rithms is that convergence is slow (it typically takes hundreds
of iterations) [8]. Furthermore, such protocols only work well
in a closed system, where no new nodes join the network once
it starts.

Neighbor Discovery Protocols. Neighbor discovery proto-
cols are needed in duty-cycled networks to ensure discovery. In
these protocols, time is typically divided into slots of equal size.
At each slot, sensor nodes either sleep or wake up according
to some pattern determined by the protocol. Such protocols
can be divided into two broad categories: probabilistic and de-

terministic. In probabilistic protocols, the sleep-wake schedule
is based on some randomized function [17]. With the right
parameters, probabilistic protocols can achieve good average-
case performance. Unfortunately, the worst-case performance
is unbounded, i.e., there is a small chance that two nodes will
never discover each other.

On the other hand, deterministic protocols provide a bounded
worst-case latency as the sleep-wake schedule is designed to
ensure discovery within one sleep-wake period. Prime-based
protocols such as Disco [3] and U-Connect [11] guarantee a
bounded discovery latency based on the Chinese Remainder
Theorem [19]. Quorum-based deterministic protocols [12, 26]
have slots that are grouped into a 2-dimensional m×m array
for a period of m2. Each node picks one row and one column
of the entries as its active slots, thus ensuring that any two
nodes will have at least two overlapping active slots in each
period. The state-of-the-art Searchlight [1] protocol further
reduces the overlapping slots to at least one by grouping the
slots into an array of size ⌊m

2
⌋ × m. The duty cycle can be

further reduced by striped probing, where the probe skips every
two slots. Extending the duration of the active slots ensures
overlap and guarantees detection. BlindDate [27] is a recently
proposed protocol to improve the performance of Searchlight
by having two dynamic probe slots traversing towards each
other in opposite directions within each period. BlindDate also
requires the extension of active slots like Searchlight. Sun et al.
proposed Hello [24], a generalized framework for deterministic
protocols that can represent existing protocols such as Quorum,
Disco, U-Connect and Searchlight, using a set of parameters.
They proved that Searchlight is the optimal symmetric protocol.
Our technique, MASS, complements existing deterministic pro-
tocols and can significantly reduce discovery latency through
slot index synchronization.

III. A CASE FOR SLOT INDEX SYNCHRONIZATION

In this section, we introduce the background for our target
docking application system, and show that slot index synchro-
nization is a promising technique to improve the performance
of deterministic neighbor discovery protocols. We also explain
why distributed synchronization algorithms are not feasible for
our application.

A. Tourist Tracking in Historical Sites

Mogao Grottoes, also known as the Caves of the Thousand
Buddhas, is a famous cultural heritage site in China. It consists



Fig. 1: Mogao Grottoes

of hundreds of caves cut into the side of a cliff, some of
which have Buddhist murals painted all over the walls and
ceilings. Figure 1 shows a small section of the Mogao Grottoes.
Thousands of tourists visit the Mogao Grottoes every day,
and the high volume of human traffic is causing deterioration
to the priceless historical artwork. Therefore, it is important
to monitor and limit the number of visitors to each cave
to mitigate the over-exposure of the artwork due to human
contact.

The challenge of tracking tourists in such a historical site is
that modern infrastructure such as power supply lines cannot
be installed. Neither are fixtures allowed to be drilled into the
walls for fear of damaging the cultural artefacts. The current
tracking system deployed uses static low-power sensor nodes
placed at the corners of the caves which periodically emit
beacon signals. Each tour guide holds a mobile sensor node
that continuously listens for and logs these beacons as the tour
group visits each cave. At the end of the tour, the durations
of the stay for each tour group in the caves is extracted and
recorded from the mobile nodes.

The tourist tracking system is an example of a docking

application. As the cave walls block the radio signals, static
nodes cannot communicate with each other directly. It is also
not feasible to deploy more nodes to create a fully connected
wireless sensor network due to conservation restrictions on the
number of nodes that can be deployed.

The lack of power infrastructure also means that static nodes
have to be powered by battery, which implies that energy con-
sumption is a very important consideration. To reduce energy
consumption, the static nodes currently perform duty cycle
where they spend 30 ms every 5 s listening and broadcasting
beacons. On the other hand, the mobile nodes have to be
continuously listening to detect static nodes as well as record
the entering and leaving time of tourists, thereby requiring
daily battery recharging. A neighbor discovery protocol could
be used to allow both the static and mobile nodes to duty cycle,
at the cost of increased discovery latency.

The discovery latency is determined by the neighbor dis-
covery protocol and the duty cycle rate determines the trade-
off between discovery latency and energy consumption. In our
case, it is equally important to also measure the duration of stay
for tourists in the caves to monitor the environmental effects
of human traffic.

B. Slot Index Synchronization

Probabilistic neighbor discovery protocols like Birthday [17]
have lower average-case discovery latencies, but the worst-case

C

B

A

_

3 8 9 10 12 1311 142 4 5 76 0 10 1

3 8 9 10 12 1311 142 4 5 76 0 10 1

0 1 2 3 4 5 6 7 8 10 11 12 13 09 14

t1 t2 t3

Fig. 2: Disco with a pair of primes (3, 5)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400  1600

C
u
m

m
u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

Discovery Latency (slots)

Searchlight-S
BlindDate

Disco
U-Connect

Fig. 3: Cumulative distribution of discovery latency for the various
protocols at duty cycle of 5%.

latency is unbounded. Deterministic protocols like Disco [3]
and Searchlight [1] have slightly higher average discovery
latencies but bounded worst-case latencies. Our key observation
is that slot index synchronization has a significant impact on

the discovery latency for deterministic protocols.
To illustrate this, Figure 2 shows the discovery process

between three nodes that run Disco with the parameters (3,
5). This gives a duty cycle of about 50% and a period of 15
slots. The shaded and white boxes represent active and sleeping
slots respectively. In this example, node A and B are strictly
synchronized, and node C is out-of-sync by one slot. Suppose
all three nodes come into contact at time t1, node A and B will
discover each other at time t2 with a latency of two slots, while
node C will discover the rest at time t3 with a latency of five
slots. It is clear from this illustration that when the nodes are
synchronized, the worst-case latency is the largest gap between
the active slots.

To investigate the improvement that can be achieved with
synchronized nodes, we enumerated all possible slot offsets
between a pair of nodes running the same symmetric protocol,
and recorded the discovery latency as the number of slots it
takes from first contact to the first intersecting active slot for
the two nodes. We treated adjacent active slots as a successful
detection as well, because perfect alignment rarely exists in real
life and partially overlapping slots are sufficient for detection.
This is especially important for BlindDate and Searchlight-S
(Searchlight with striped probing) because perfect alignment
may cause failure of detection. To overcome this, these proto-
cols extend the active slot so as to ensure overlap of adjacent
active slots.

We computed the distribution of the discovery latency of the
different protocols with duty cycles of 5% and 1% [1, 24, 27],
and plot the result for 5% duty cycle in Fig. 3. The result for
1% duty cycle is similar. Our analysis shows that, with the
same duty cycle, Searchlight-S is the best performing protocol
with the lowest average-case and worst-case latency.

We also compared the average-case and worst-case latency
of each protocol against the case where both nodes have their
slot indices synchronized in Table I. The key observation is



TABLE I: Average and worst-case discovery latency. Values in brackets indicate the latency in seconds.

Overall Performance Synchronized Index

Average
Latency

Improvement

Worst-case
Latency

Improvement
Parameter(s)Protocol

Average
Latency

Worst-case
Latency

Average
Latency

Worst-case
Latency

(slots)[s] (slots)[s] (slots)[s] (slots)[s]

5% Duty-cycle, 25 ms per slot

Searchlight-S [1] 151 [3.78] 399 [9.98] 12.3 [0.31] 37 [0.93] 12.28 10.78 40
BlindDate [27] 168 [4.20] 685 [17.13] 13.8 [0.35] 46 [1.15] 12.17 14.89 12
Disco [3] 194 [4.85] 1,071 [26.78] 12.7 [0.32] 36 [0.90] 15.28 29.75 (37, 43)
U-Connect [11] 423 [10.6] 960 [24.00] 14.6 [0.37] 30 [0.75] 28.97 32.00 31

1% Duty-cycle, 5 ms per slot

Searchlight-S 4,711 [23.56] 9,999 [50.00] 65.7 [0.33] 197 [0.99] 71.70 50.76 200
BlindDate 6,387 [31.94] 17,821 [89.11] 71.4 [0.36] 238 [1.19] 89.45 74.88 60
Disco 10,125 [50.63] 35,655 [178.28] 64.1 [0.32] 180 [0.90] 157.96 198.08 (181, 211)
U-Connect 11,123 [55.62] 22,800 [114.00] 74.6 [0.37] 150 [0.75] 149.10 152.00 151

that the average and worst-case latency are significantly lower
when the nodes are synchronized on their slot indices. This
result is intuitive since two synchronized nodes follow the
same sleep-wake pattern and thus wake up at the same time.
What is surprising is the amount of improvement. Even for the
best performing protocol, Searchlight-S at 1% duty cycle, the
average latency is reduced by 72 times. With the slot size of
5 ms, we can reduce the average latency from 24 s to 0.33 s,
and the worst-case latency from 50 s down to about 1 s.

While slot index synchronization improves performance
greatly, we cannot always guarantee the synchronization be-
tween two nodes due to the inherent errors in the sensor
hardware. Hence, the effectiveness of slot synchronization is
dependent on the accuracy of synchronization.

C. Distributed Synchronization Not Feasible

In a docking application, static nodes are not able to commu-
nicate with each other directly and have to rely on mobile nodes
to relay information. One approach to achieve synchronization
would be to use a distributed clock synchronization algorithm
such as DCS [2]. The duty cycle of the nodes can then be
derived from the resulting reference clock, and synchronizing
their clocks will naturally synchronize the slot indices.

However, this approach does not work for two reasons. First,
we have found that DCS either fails or takes an extremely long
time to synchronize the clocks of nodes to within an accuracy
of one slot duration. This means that either node indices will
never be synchronized, or the improvement would be small
due to the long convergence time. Second, DCS is designed
to work in a closed system, where no nodes leave or join the
system. Otherwise, it can no longer guarantee convergence. In
our docking application, the mobile nodes can leave and new
mobile nodes may enter the system at any time.

Because of the shortcomings of the distributed algorithms,
we adopt a reference-based technique for synchronization,
where a node is elected to be the reference node that all other
nodes synchronize with. Our key observation is that although
the mobile nodes do not follow a pre-determined path, the
movement is not completely random. Thus, we exploited the
movement pattern of tourists and designed a simple algorithm
to elect the reference node.

IV. MOBILITY-ASSISTED SLOT SYNCHRONIZATION

We have shown that slot index synchronization can signifi-
cantly improve latency. In this section, we describe the design
of Mobility-Assisted Slot index Synchronization (MASS) for
our tourist tracking application at Mogao Grottoes.

Since static nodes cannot directly communicate with each
other, mobile nodes are used to relay information between
the static nodes. The challenge is that mobile nodes do not
move along pre-determined paths. Thus, we cannot determine
prima facie which static node will be visited next. However,
we observed from the traces of our real-world application
that the paths of the mobile nodes tend to follow a certain
set of patterns. We can exploit the patterns to elect relatively
stable reference nodes in a distributed manner, and have the
non-reference nodes synchronize their slot index with these
reference nodes. In addition, we use the clock of the reference
node as the reference clock for clock drift compensation.

All static and mobile nodes will adopt the same neighbor-
discovery protocol with a common set of parameters. Thus,
if all (or most) of the static nodes have their slot indices
synchronized, mobile nodes can likewise have their slot indices
synchronized with every static node. This results in a very small
discovery latency when they come into contact with any of the
synchronized static nodes.

A. Distributed Reference Election & Synchronization

To elect the reference nodes, we introduce the notion of
a priority metric P . Each static node s computes a priority
Ps based on information carried by the mobile nodes in a
distributed way. In addition, each static node s also stores
the recorded priority of its reference, Ps.ref obtained from the
mobile nodes. Similarly, each mobile node, m, also stores the
priority (Pm) of the last static node that it is synchronized with.
When a mobile node m encounters a new static node s, the
static node first updates its priority Ps. Then, the priorities Ps,
Ps.ref , and Pm are compared and exchanged.

If Pm is larger than Ps and Ps.ref , then the static node will
synchronize its clock and slot index according to that of the
mobile node, and set its reference Ps.ref to Pm. Indirectly, the
static node will have now synchronized with the static node
that the mobile node has last synchronized with. On the other



pri = Pr

ref = ∅

Static node r

pri = Ps

ref = Pp

Static node s

ref = ∅

Mobile node m

Mobile node m has no initial reference. Static node r also has no
reference while static node s has previously synced with node p.

pri = Ps

ref = Pp

Static node s

ref = ∅

Static node r

m
pri = P ′r

ref = P
′
r

Node m encounters node r, synchronizes with r and updates its
reference to Pr .

m

ref = Pp

ref = ∅

Static node r

ref = Pp

Static node s

pri = P ′r pri = P ′s

Now m leaves and encounters node s. Suppose P ′

r
< P ′

s
and

P ′

s
< Pp , node m syncs with node s and updates its reference to Pp.

m

ref = Pp

Static node r

ref = Pp

pri = P ′′r

ref = Pp

Static node s

pri = P ′s
synchronized

Suppose now m returns to node r, and suppose even after updating
P ′′

r
, P ′′

r
< Pp, then node r will sync with m and record Pp as its

reference. Now nodes r and s will be in sync.

Fig. 4: Reference node election.

TABLE II: Summary of update rules for reference node election

Condition Static node Mobile node

Pm > Ps and Pm > Ps.ref Ps.ref ← Pm No Change
Pm < Ps or Pm < Ps.ref No Change Pm ← max(Ps, Ps.ref )

hand, if Pm is smaller than Ps or Ps.ref , the mobile node
will synchronize its slot index with the static node. It will also
set its reference Pm to the larger of Ps and Ps.ref . Figure 4
illustrates the steps of this process and Table II summarizes the
above update rules. With this simple algorithm, the node with
the largest priority value will be elected as the reference node,
from which other nodes will take reference. It remains for us
to describe how a static node s determines and computes its
priority Ps.

Node Priority. For our reference node election algorithm to
work well, not only does the priority Ps need to be a metric
that can be easily computed in a distributed way, the resulting
priority for different static nodes should also preferably be
distinct. In our docking application, we observed that some
caves were more popular than others due to either its intrinsic
attractiveness to the tourists, or its relative location, i.e., it
might be near route entrances. Such caves will have more
visitors than others. Thus, we decided to utilize the average
inter-arrival time between mobile nodes at each static node s
to obtain its priority Ps.

The static nodes compute P by measuring the time elapsed
since the last visit to the cave. The priority is accumulated using
an exponentially-weighted moving average (EWMA) with a
smoothing factor α = 1

8
. In other words, the equation to update

Pi to Pi+1 is:
Pi+1 = αt+ (1− α)Pi (1)

where t is the elapsed time since the last visit to this cave.
In Figure 5, we plot the actual average inter-arrival time

 2

 4

 6

 8

 10

 12

 14

 16

 18

1
0

0
1

6
1

3
0

1
4

8
3

2
8

1
0

9
4

2
5

7
4

0
7

2
4

6
7

1
5

5
2

0
2

7
9

1
2

3
8

4
4

2
7

3
6

7
4

0
9

2
3

7
2

9
3

9
7

2
4

9
1

5
2

2
4

4
1

7
1

2
3

1
2

0
3

1
7

2
3

3
1

2
0

4
2

9
6

2
9

2
4

6
3

2
3

A
v
e

ra
g

e
 I

n
te

r-
a

rr
iv

a
l 
T

im
e

 (
m

in
)

Caves at Mogao Grottoes

Average Inter-Arrival Time
Corresponding Priority

Fig. 5: Average inter-arrival time and the priority of different caves
at Mogao Grottoes for day one.

of each cave over one day of a real trace and the computed
priority Pi. Although the computed priority is often not close
to the actual daily average values, the trends are similar, i.e.,
the more frequently visited nodes will have a higher priority.

It is entirely plausible that for some docking applications,
the static nodes have similar visiting frequencies and the
computed priorities might be very close to one another. In such
cases, the inter-arrival time might not be the best metric and
another metric could be used. However, our reference election
algorithm is still applicable if a good metric can be found.

B. Clock Drift Compensation & Slot Synchronization

Once a reference node is elected, each node will synchronize
their clocks to that reference node. However, clock drift will
introduce errors, even if a node is perfectly synchronized at
the start. Hence, both static and mobile nodes in our system
must continuously estimate and compensate for clock drift.

Clock Skew Estimation. There are many existing algo-
rithms for clock skew detection and estimation [7, 14, 30].
Zhong et al. showed that it is possible to continuously detect
and estimate the clock skew between two nodes [33]. We
believe that any of the state-of-the-art techniques could be used
for MASS. For validation, we performed a simple experiment:
a sensor node periodically sends beacons at different intervals
to three sensor nodes that keep listening to compute relative
clock skew, using the following formula [9, 29]:

δAB =
(tAi+1 − tAi )− (tBi+1 − tBi )

tAi+1
− tAi

where tAi and tBi are the local time at the sender’s and
receiver’s clock when the ith beacon was sent and received.
The MAC-layer time-stamping technique was used to mitigate
the variance of the delivery time [16].

In Figure 6(a), we plot the average estimated relative clock
skew and the standard deviation in parts per million (ppm)
for beacon intervals from 1 s to 120 s. We found that a larger
beacon interval leads to a more accurate and stable estimation.
In Figure 6(b), we plot the relative clock skew between the
sending node and the three receiving nodes with the beacon
interval of 60 s over a few hours. We observed that the three
receiving nodes can reliably detect and measure their relative
clock skew against the sending node with an error within
1.5 ppm. In Figure 6(c), we plot the time difference between the
clocks of two nodes with and without clock drift compensation,
which suggests that it is possible to estimate and compensate
for the clock drift in our system.



-4

-3

-2

-1

 0

 1

 2

 3

 4
 20  30  40  50  60  80  120 10  100N

o
rm

a
liz

e
d
 R

e
la

ti
v
e
 C

lo
c
k
 S

k
e
w

 (
p
p
m

)

Beacon Interval (s)

(a) Mean and variance of clock skew measured at
one node using different time intervals.

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12

R
e
la

ti
v
e
 S

k
e
w

 (
p
p
m

)

Time Elapsed (h)

Node 1

Node 2

Node 3

(b) Clock skew measured at 1-min intervals be-
tween the sending node receiving nodes.

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15

C
lo

c
k
 d

ri
ft

 (
m

s
)

Elapsed time (h)

No compensation
With compensation

(c) Amount of clock drift between two nodes with
and without clock drift compensation.

Fig. 6: Clock skew of the three receiving nodes.

(a) Searchlight-S (b) Searchlight-S+1 (c) Searchlight-S+1/2

Fig. 7: Additional active slots to the Searchlight-S protocol with p =

12.

Clock Drift Compensation. Once we have an estimate of
the clock skew, sensor nodes can compensate for its clock drift
against the reference node by adjusting its clock periodically.
Due to the granularity of the clocks, the period of adjustment
cannot be too small. We found that having the nodes adjust
their clocks every 100 s worked well for our sensor hardware.

From our Mogao Grottoes traces, tourists (and therefore
the mobile nodes) will typically stay in each cave for more
than 120 s (see Figure10(c)), which as Figure 6(a) suggests,
is sufficiently long to get a good estimate of the clock skew.
Since the average inter-arrival time of the mobile nodes at each
cave is less than 18 minutes (see Figure 5), the expected clock
drift during this interval is within one slot (5 ms) with clock
drift compensation.

Slot Alignment While it is possible for the nodes to align
their slot timing to the reference node, we found that the
resulting improvements from doing so are marginal. As such,
we adopt a simple index synchronization process — the nodes
simply update the current slot index to the reference node’s
slot index. Because every node is running the same neighbor
discovery protocol, every active slot of such synchronized pairs
of nodes will overlap.

C. Mitigating the Pitfalls of Small Synchronization Errors

Even with clock drift compensation, we cannot guarantee
perfect synchronization all the time. It turns out to be a big
problem that can potentially lead to the worst-case scenario
for discovery latency. In particular, an offset of two slots will
result in the worst-case scenario for Searchlight-S (the optimal
symmetric protocol) [24].

To overcome this potential pitfall, we introduce a small mod-
ification to the duty-cycle pattern for the neighbor discovery
protocol by adding an extra number of active slots. We illustrate
this with Searchlight-S. In Searchlight-S, nodes wake up at
every p slots and a probe slot traverses from the first position
to p/2 across p/2 sub-cycles (see Figure 7(a)), resulting in
a period of p(p/2). To prevent the worst-case latency from

TABLE III: Combined latencies of the modified Searchlight protocols
for cycles offset by 0 and 1 at 5% duty-cycle.

Searchlight-S Searchlight-S+1 Searchlight-S+1/2

Latency (slots)
Avg Worst Avg Worst Avg Worst

Offset 0, 1 12.3 37 18.5 57 15.3 47
Offset 2 199.5 399 29.4 59 47.6 99
Offset 3 163.5 359 29.2 59 43.4 99
Average 125.1 265 25.7 58.3 35.4 81.7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900

C
u
m

m
u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

Discovery Latency (slots)

Searchlight-S, p=40
Searchlight-S+1/2,  p=50

Searchlight-S+1, p=60

Fig. 8: Distribution of latency for the modified Searchlight protocols
at 5% duty cycle.

occurring when the cycles of two nodes have an offset of
2, we set the node to wake up at every kp + 2 slots (see
Figure 7(b)). We call this scheme Searchlight+1. With the
additional active slots, the duty cycle of Searchlight+1 will
be 1.5 times that of Searchlight with the same p. To keep the
duty-cycle constant, p has to be increased by 1.5 times, thereby
incurring a slightly larger latency. One possible way to reduce
this additional delay is to halve the number of extra active slots
by only introducing them every 2 sub-cycles (See Figure 7(c)).
We call this modified scheme Searchlight+1/2.

We compared the average-case and worst-case latencies for
our modifications when the slots indices are offset by 0, 1, 2
and 3, to Searchlight-S in Table III. We see that the latencies
when the slots are offset by 2 can be significantly reduced, at
the cost of slightly longer cycles, which increases the overall
latency by a small amount. Figure 8 shows that our modified
schemes slightly increase the overall latency.

V. EVALUATION

In this section, we evaluated the effectiveness of MASS in
enhancing existing deterministic neighbor discovery protocols



Fig. 9: Visiting route of the tour groups at Mogao Grottoes on 1 Aug
2013. The number on the arrows indicates the number of mobile nodes
that took that path. Shaded caves indicate the reference nodes elected
by the end of the day.

using our custom trace-based simulator. Our simulator sim-
ulates the interactions between the mobile and static nodes
using the real traces of tourist movements collected at Mogao
Grottoes. The operating hours of the Mogao Grottoes are from
8:00 am to 6:00 pm daily, so we have approximately 10 hours of
data for each day. The data set used for our simulations consists
of 31 days of traces over the one-month period in August 2013,
containing 8,658 movement routes for the mobile nodes and
69,271 cave visits. As an example, the routes for a particular
day are shown in Figure 9, where each cave is assigned a
unique ID.

A. Power Conservation and Latency Reduction

In neighbor discovery protocols, the power saving is de-
termined by the duty cycle, which is the proportion of time
that a node stays active. The typical duty cycles used in these
protocols are 1% and 5%, and the slot size is typically 25 ms [1,
24, 27].

In Figure 10(a), we plot the cumulative distribution of the
discovery latency of the five most common neighbor discovery
protocols using a 5% duty cycle and a slot size of 25 ms. We
see that as expected, Searchlight-S is the best deterministic
protocol, which is consistent with our earlier analysis.

As energy consumption is an important factor in docking
applications, we tried to reduce energy consumption by de-
creasing the duty cycle to 1% (while maintaining the original
slot size of 25 ms) and plot the results in Figure 10(b). The
discovery latency for all protocols increased by about a factor
of 10. Furthermore, the worst-case latency can now be longer
than the time that the tourists spend in the caves, which can
potentially cause detection failures. We plot the distribution
of the time that the mobile nodes spend in the caves in
Figure 10(c), which confirms our intuition and shows that the
worst-case neighbor discovery latency needs to be below 200 s
for the reliable tracking of tourists.

We can reduce the discovery latency by using a smaller slot
size. However, how small we can go depends on the hardware
and operating system of the nodes. Zhang et al. suggested that
the smallest feasible size for a slot is 5 ms, because any smaller
size will cause jitter and make the system unstable [32]. Also,
5 ms of air time might be insufficient to exchange usable data.

However, we argue that once discovery happens, the nodes can
switch to a different communication protocol for the exchange
of information. Thus, we set the slot size to 5 ms with a duty
cycle of 1% and plot the new cumulative distribution of the
discovery latency in Figure 11(a). We see that as expected, the
discovery latency improves, but the latency increases to almost
5 times that of the original as in Figure 10(a).

Adding Synchronization. Next, we investigated how syn-
chronization would improve discovery latency. We repeated the
simulation with a duty cycle of 1% and a slot size of 5 ms after
introducing synchronization with DCS and MASS. We plot the
results in Figures 11(b) and 11(c) respectively.

As expected, synchronization has no impact on the perfor-
mance of the Birthday protocol. Although in general, syn-
chronization improves the latency for deterministic protocols,
the improvements with DCS are marginal. This is because
DCS is not able to converge sufficiently fast in our scenario.
For MASS, the discovery latency for the same protocols was
reduced to less than one second about 75% of the time, which
suggests that most of the nodes were successfully synchro-
nized. The worst-case latency, however, remained the same,
likely because either some nodes could not be synchronized
such as cave 12 and 29, or they had to be re-synchronized at
the start of each day.

The reduction in discovery latency is important for our
tourist tracking application because our goal is to accurately
track the duration of stay for tourists in each cave. The median
time that visitors spend in each cave is 250 s. Detecting the
visitors with a 25 s delay (at 1% duty cycle) results in an error
of 10%. By reducing the discovery latency to less than 1 s, we
can improve the estimation accuracy by more than 20 times.

B. Performance gains using MASS

As the duty cycle affects the discovery latency of neighbor
discovery protocols, we plot the percentage improvement of
the average discovery latency with MASS over the original
protocols in Figure 12. An improvement of 90% means that
the resulting average discovery latency with MASS is 10% of
the original latency. The results show that as the duty cycle
increases, the improvement decreases for Searchlight-S and
BlindDate. This is because at larger duty cycles, the original
protocols already achieved relative low discovery latencies and
there is little room for improvement. On the other hand, Disco
and U-Connect show the same improvement across different
duty cycles.

Reducing duty cycles is beneficial to save power, but at
a cost of the increased discovery latency. We examined how
MASS affects this trade off by further reducing the duty cycle
while keeping the slot size at 5 ms. Figure 13 shows the
distribution of the discovery latency for Searchlight-S with
MASS using smaller duty cycles. Because Searchlight-S has
the lowest worst-case latency, we could reduce the duty cycle
to 0.5% while maintaining 100% discovery success rate in
our application. As expected, MASS still manages to keep
the discovery latency extremely low 75% of the time. That



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45

F
ra

c
ti
o
n
 o

f 
d
is

c
o
v
e
ri
e
s

Discovery latency (s)

Birthday
Searchlight-S

BlindDate
Disco

U-Connect

(a) 5% duty cycle and 25 ms slot size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350

F
ra

c
ti
o
n
 o

f 
d
is

c
o
v
e
ri
e
s

Discovery latency (s)

Birthday
Searchlight-S

BlindDate
Disco

U-Connect

(b) 1% duty cycle and 25 ms slot size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400  450

F
ra

c
ti
o
n

Duration in caves (s)

(c) Duration of mobile nodes stay in caves

Fig. 10: Impact of reducing duty cycle from 5% to 1% for Birthday, BlindDate, Disco, Searchlight and U-Connect.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350

F
ra

c
ti
o
n
 o

f 
d
is

c
o
v
e
ri
e
s

Discovery latency (s)

Birthday
Searchlight-S

BlindDate
Disco

U-Connect

(a) No synchronization.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350

F
ra

c
ti
o
n
 o

f 
d
is

c
o
v
e
ri
e
s

Discovery latency (s)

Birthday
Searchlight-S

BlindDate
Disco

U-Connect

(b) With DCS.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350

F
ra

c
ti
o
n
 o

f 
d
is

c
o
v
e
ri
e
s

Discovery latency (s)

Birthday
Searchlight-S

BlindDate
Disco

U-Connect

(c) With MASS.

Fig. 11: Discovery latency of each protocols and MASS and DCS assisted versions at 1% duty cycle and 5 ms slot size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.5  2  3  4  5  6  7 8 9 1  10

Im
p
ro

v
e
m

e
n
t

Duty cycle (%)

Disco
U-Connect
BlindDate

Searchlight-S

Fig. 12: Improvement for various protocols with MASS under differ-
ent duty cycles with 5 ms slot size.

is, decreasing the duty cycle does not affect the improvements
of MASS. Only the worst-case latency is affected.

C. Effectiveness of Clock Skew Compensation

Typical clock skew ranges from ±5 ppm to ±100 ppm [33].
We showed experimentally that it is possible for clocks to drift
apart by 5 ms in just one hour (See Figure 6(c)). If the relative
clock skew is 20 ppm, and since the average inter-arrival time
of the mobile nodes in our application is 15 minutes (See
Figure 5), their clocks would have drifted apart by 18 ms,
which is much larger than our slot size of 5 ms. This would
suggest that clock drift compensation is essential to ensure the
synchronization among the nodes.

To validate this intuition, we repeated our experiments with-
out clock drift compensation and compared MASS and DCS
using the Searchlight-S protocol in Figure 14. As expected,
DCS has no impact on Searchlight-S. Without clock drift
compensation, the improvement of MASS is very limited. The
same trends are observed for the other neighbor discovery

protocols. This demonstrates that clock drift compensation is
essential to maintain the synchronicity among the nodes.

D. Random Traces

Our MASS algorithm exploits the natural visiting patterns of
the mobile nodes in a docking application for synchronization.
In this section, we examine how MASS performs if the visiting
patterns are completely random. To ensure a fair comparison,
we generated random traces that had the same node distribution
as our Mogao Grottoes traces.

Figure 15 shows the distribution of the discovery latencies
for Disco, BlindDate and Searchlight-S with and without
MASS. The results show that while MASS could still improve
the latency 30% of the time, it is not as effective as before (75%
of the time). This is because we used the inter-arrival time as
the metric for MASS, which is random in the generated traces.
Thus, our reference election algorithm could not maintain a
fixed reference node for a prolonged period of time. This
highlights that the selection of the metric is a key factor
that affects the overall performance for MASS in docking
applications.

VI. CONCLUSION

In this paper, we show that slot index synchronization is a
practical technique that can significantly improve the average-
case performance of deterministic neighbor discovery proto-
cols. By exploiting the mobility pattern of the mobile nodes in
docking applications, we developed MASS, a reference-based
slot index synchronization technique, that can improve the aver-
age discovery latency, while keeping the energy consumption
constant. We showed with simulations based on real traces,



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400

F
ra

c
ti
o
n
 o

f 
d
is

c
o
v
e
ry

Discovery latency (s)

1%
0.67%
0.5%
0.4%

0.33%
0.25%

Fig. 13: Distribution of discovery latency
of Searchlight-S with MASS at very low
duty cycles.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60

F
ra

c
ti
o
n
 o

f 
d
is

c
o
v
e
ri
e
s

Discovery latency (s)

MASS with compensation
MASS w/o compensation

DCS
Original

Fig. 14: Distribution of discovery latency for
Searchlight-S without clock drift compensation
under 1% duty cycle and 5 ms slot size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300

F
ra

c
ti
o
n
 o

f 
d
is

c
o
v
e
ri
e
s

Discovery latency (s)

Searchlight-S w MASS
BlindDate w MASS

Disco w MASS
Searchlight-S

BlindDate
Disco

Fig. 15: Distribution of discovery latency
with random routes.

that MASS can improve the average discovery latency by up
to 2 orders of magnitude. Our work represents a preliminary
investigation into improving existing deterministic neighbor
discovery protocols by introducing slot index synchronization.
It remains as future work to thoroughly investigate how MASS
will perform on real sensor networks.

ACKNOWLEDGEMENTS

This research was carried out at the SeSaMe Center. It
is supported by the Singapore NRF under its IRC@SG
Funding Initiative (administered by the IDMPO), the Na-
tional High Technology Research and Development Pro-
gram of China (No.2012AA101701), and the National Key
Technology Support Program of China (No.2013BAK01B00,
No.2014BAK16B00).

REFERENCES

[1] M. Bakht, M. Trower, and R. H. Kravets. Searchlight: Won’t you be my
neighbor? In Proceedings of MobiCom ’12, Aug. 2012.

[2] B. J. Choi, H. Liang, X. Shen, and W. Zhuang. DCS: Distributed
asynchronous clock synchronization in delay tolerant networks. IEEE

Trans. Parallel Distrib. Syst., 23(3):491–504, 2012.
[3] P. Dutta and D. Culler. Practical asynchronous neighbor discovery and

rendezvous for mobile sensing applications. In Proceedings of SenSys

’08, Nov. 2008.
[4] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchro-

nization using reference broadcasts. ACM SIGOPS OSR, pages 147–163,
2002.

[5] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network
flooding and time synchronization with glossy. In Proceedings of IPSN

’11, pages 73–84, April 2011.
[6] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for

sensor networks. In Proceedings of SenSys ’03, Nov. 2003.
[7] B. R. Hamilton, X. Ma, Q. Zhao, and J. Xu. ACES: Adaptive clock

estimation and synchronization using kalman filtering. In Proceedings of

MobiCom ’08, Sep. 2008.
[8] J. He, P. Cheng, L. Shi, and J. Chen. Clock synchronization for random

mobile sensor networks. In Proceedings of CDC ’12, Dec 2012.
[9] H. Huang, J. Yun, Z. Zhong, S. Kim, and T. He. PSR: Practical

synchronous rendezvous in low-duty-cycle wireless networks. In Pro-

ceedings of INFOCOM ’13, Apr. 2013.
[10] J.-H. Huang, S. Amjad, and S. Mishra. Cenwits: A sensor-based loosely

coupled search and rescue system using witnesses. In Proceedings of

SenSys ’05, Nov. 2005.
[11] A. Kandhalu, K. Lakshmanan, and R. R. Rajkumar. U-connect: A low-

latency energy-efficient asynchronous neighbor discovery protocol. In
Proceedings of IPSN ’10, Apr. 2010.

[12] S. Lai, B. Ravindran, and H. Cho. Heterogenous quorum-based wake-
up scheduling in wireless sensor networks. IEEE Trans. Comput.,
59(11):1562–1575, 2010.

[13] Q. Li and D. Rus. Global clock synchronization in sensor networks.
IEEE Trans. Comput., 55(2):214–226, 2006.

[14] C. Liao and P. Barooah. Distributed clock skew and offset estimation
from relative measurements in mobile networks with markovian switch-
ing topology. Journal Automatica, 49(10):3015–3022, 2013.

[15] M. Malinowski, M. Moskwa, M. Feldmeier, M. Laibowitz, and J. A.
Paradiso. Cargonet: A low-cost micropower sensor node exploiting
quasi-passive wakeup for adaptive asychronous monitoring of exceptional
events. In Proceedings of SenSys ’07, Nov. 2007.

[16] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi. The flooding time
synchronization protocol. In Proceedings of SenSys ’02, Nov. 2004.

[17] M. J. McGlynn and S. A. Borbash. Birthday protocols for low energy
deployment and flexible neighbor discovery in ad hoc wireless networks.
In Proceedings of MobiHoc ’01, Oct. 2001.

[18] X. Ming, D. Yabo, L. Dongming, X. Ping, and L. Gang. A wireless
sensor system for long-term microclimate monitoring in wildland cultural
heritage sites. In Proceedings of IPSA ’08, Apr. 2008.

[19] I. Niven, H. S. Zuckerman, and H. L. Montgomery. An introduction to

the theory of numbers. John Wiley & Sons, 2008.
[20] M. Sasabe and T. Takine. A simple scheme for relative time synchro-

nization in delay tolerant MANETs. In Proceedings of INCoS ’09, Nov.
2009.

[21] J.-P. Sheu, C.-M. Chao, and C.-W. Sun. A clock synchronization
algorithm for multi-hop wireless ad hoc networks. In Proceedings of

ICDCS ’04, Mar. 2004.
[22] P. Sommer and R. Wattenhofer. Gradient clock synchronization in

wireless sensor networks. In Proceedings of IPSN ’09, Apr. 2009.
[23] W. Su and I. F. Akyildiz. Time-diffusion synchronization protocol for

wireless sensor networks. IEEE/ACM Trans. Netw., 13(2):384–397, 2005.
[24] W. Sun, Z. Yang, K. Wang, and Y. Liu. Hello: A generic flexible protocol

for neighbor discovery. In Proceedings of INFOCOM ’14, April 2014.
[25] W. Sun, Z. Yang, X. Zhang, and Y. Liu. Energy-efficient neighbor

discovery in mobile ad hoc and wireless sensor networks: A survey.
IEEE CST, pages 1448–1459, March 2014.

[26] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh. Power-saving protocols for
IEEE 802.11-based multi-hop ad hoc networks. Computer Networks,
43(3):317–337, 2003.

[27] K. Wang, X. Mao, and Y. Liu. BlindDate: A neighbor discovery protocol.
In Proceedings of ICPP ’13, Oct 2013.

[28] T. Wark, W. Hu, P. Sikka, L. Klingbeil, P. Corke, C. Crossman, and
G. Bishop-Hurley. A model-based routing protocol for a mobile, delay
tolerant network. In Proceedings of SenSys ’07, Nov. 2007.

[29] M. Xu and W. Xu. Taco: Temperature-aware compensation for time
synchronization in wireless sensor networks. In Proceedings of MASS

’13, Aug. 2013.
[30] Z. Yang, J. Pan, and L. Cai. Adaptive clock skew estimation with inter-

active multi-model Kalman filters for sensor networks. In Proceedings

ICC ’10, May 2010.
[31] Q. Ye and L. Cheng. DTP: Double-pairwise time protocol for disruption

tolerant networks. In Proceedings of ICDCS ’08, June 2008.
[32] D. Zhang, T. He, Y. Liu, Y. Gu, F. Ye, R. K. Ganti, and H. Lei.

ACC: Generic on-demand accelerations for neighbor discovery in mobile
applications. In Proceedings of SenSys ’12, Nov. 2012.

[33] Z. Zhong, P. Chen, and T. He. On-demand time synchronization with
predictable accuracy. In Proceedings of INFOCOM ’11, Apr. 2011.

[34] D. Zhou and T.-H. Lai. An accurate and scalable clock synchronization
protocol for IEEE 802.11-based multihop ad hoc networks. IEEE Trans.

Parallel Distrib. Syst., 18(12).


