Hydra: A Massively-Multiplayer Peer-to-Peer
Architecture for the Game Developer

Luther Chan, James Yong, Jiagiang Bai, Ben Leong, Raymond Tan
National University of Singapore

ABSTRACT

We present the design and implementatiorlgdira, a peer-to-peer
architecture for massively-multiplayer online games. Bppgort-
ing a novel augmented server-client programming model \&ith
protocol that guarantees consistency in the messages ¢tmdmi
when nodes fail, existing game developers can realize the-be
fits of a peer-to-peer architecture without the burden ofdtiag
the complexities associated with network churn. Our keytréiour
tion is the development of a programming interface thattigifive
and easy to use, and that can be supported transparently ré¢tth
work layer. We have implemented a prototype of Hydra and we
demonstrate that our proposed architecture is practicdkelvglop-
ing two games under the Hydra framework: a simple “captuee th
flag” tank game and a squad-based real-time strategy (RT8¢.ga
Our experience in developing these games suggests thatour p
posed programming model is suitable for game developmeunt. O
preliminary experiments also show that Hydra imposes oslyall
message overhead and is thus scalable.

1. INTRODUCTION

Massively-multiplayer online games have been a huge commer
cial success in recent years. Existing deployments of saaleg
have been built on a server-client architecture, even a® $ave
claimed that such centralized architectures are inhgramtscal-
able [20]. This claim has been shown to be untrue by Blizzard’
World of Warcraft, which has some 8.5 million players gldpals
at March 2007, approximately 500,000 players online at amy o
time, and servers supporting several thousand playersltsine
ously [6].

Nevertheless, we believe that it is still worthwhile to deye
a peer-to-peer architecture for such games because byitaxgplo
the bandwidth and computational capabilities of the cliensts,
their deployment costs can be significantly reduced and imeso
cases, their performance improved with reduced latenEiesthis
reason, there have been a large number of proposals of pgeet
architectures for networked games [18, 4, 16, 23, 15, 5].

Our key insight is that the server-client model is well-ursteod
and works well. Therefore, instead of forcing game devaiope
have to think differently when developing their games foregp
to-peer environment, our approach is to support the seiemnt

Permission to make digital or hard copies of all or part of thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage @at copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission from the authors.

NetGames '07 September 19-20, 2007, Melbourne, Australia

model transparently, thereby insulating game developers the
complexities of network churn in such an environment.

In this light, we adopt a new approach ltydra, our network
architecture for peer-to-peer massively-multiplayer garinstead
of addressing issues of efficient event delivery and mudticaer-
lays, Hydra seeks to provide a simple augmented servartgie-
gramming model to the game developer and implements a set of
protocols to support the required interface. We hide theptera
ities associated with the recovery from node failures (ijropos-
ing some conditions on how the game application should gsoce
incoming messages, (ii) by having the game applicationigeosn
interface to the network layer for the checkpointing andorgion
of application game state, and (iii) by providing basic gueees
on consistency in message delivery without using locks fXHom-
currency control [10].

Also, we understand that it is probably infeasible to delosn-
mercial games on a purely peer-to-peer architecture bedausl|
practical purposes, such games will require support fdingiland
persistent storage. We believe however that this is not eararbe-
cause itis not difficult to implement such functionality isgparate
centralized system and have the basic peer-to-peer gapgrate
with these functions into a hybrid architecture [20].

The key contribution of our work is in the development of a-pro
gramming interface that is intuitive and easy to work with.e W
demonstrate that our proposed architecture is practicairipfe-
menting two games over Hydra: a simple “capture the flag” tank
game and a squad-based real-time strategy (RTS) game. @an ex
rience in developing these games suggests that our proposed
gramming model is suitable for the game development. Ouinpre
inary experiments show that Hydra imposes only a small ngessa
overhead and is thus scalable.

The remainder of this paper is organized as follows: in $adj
we provide a review of existing and related work. In Sectipw8
describe the programming model and interface of the Hydrhiar
tecture and in Section 4, we describe how we support thatace.
Our evaluation results are presented in Section 5. Finatbydis-
cuss future work in Section 6 and conclude in Section 7.

2. RELATED WORK

There have been a number of proposals for supporting peer-to
peer networked games and, in general, the focus of thesegatsp
has been on the synchronization of game state across hggits, t
cally using a DHT substrate. Knutsson et al. proposed thefibe
Scribe publish-subscribe system [7] (based on the Pastily[R2H])
to support a simple model of a massively-multiplayer gan8§j.[1
Bharambe et al. likewise developed Mercury [4], a DHT-liketr
ing protocol for multi-attribute range queries. They claimat be-
cause massively-multiplayer games have less stringesmidgtre-

quirements than first-person shooters (FPS), the multithai@mcy
arising from the underlying DHT lookups is acceptable arelyth
validate their system through simulations. There has atemia
number of other DHT-based proposals in the literature [86,13].

Bharambe et al. subsequently came to the conclusion thauifs
in DHTs can be too slow for finding required replicas” for irgte-
tive games like Quake Il and thus developed Colyseus, a ssbem
perform speculative fetching based on locality and predhidity in
data access patterns [5]. They evaluated Colyseus by mimxin
periments with a modified Quake Il FPS engine and demondtrate
that the load per node is lower than that for a centralizegteser
architecture.

In addition to peer-to-peer approaches, there are a number o
other distributed architectures for peer-to-peer gamesnia et al.
proposed amirrored architecture, which is a hybrid peer-to-peer
and server-client architecture [8]. Rhalibi et al. progbsesim-
ilar architecture implemented on JXTA where a DHT is used as
the underlying communication substrate and validated itigle-
menting a game called “Time Prisoners” [20]. Assiotis etaddo
proposed an architecture with multiple servers each resplanfor
one region of the virtual game world [1]. The focus on theirkvo
however is in achieving efficient event delivery, replicaticonsis-
tency and liveness, and not on fault tolerance. Our workedsff
from these works because our focus is on developing a pregram
ming interface that can be supported transparently at theank
layer, instead of designing a network architecture for &fficy or
reliability. Optimal Grid [17], is a project that attempts &chieve
a similar goal, but in a Grid environment.

There are several proposed architecturesdfeiributed virtual
environments (DVESs) andcollaborative virtual environments (CVES).
DVEs, like DIVE [11] and MASSIVE [13], were designed mainly
for local use and supported only a small number of partidgan
CVEs differ from DVEs in that they focus on the collaboratios+
tween avatars [3, 14]. None of these proposals address ¢oifisp
needs of modern multiplayer games and they typically asstme
availability of IP multicast, like the distributed multgyer game
MiMaze [19].

3. PROGRAMMING MODEL

Existing networked games tend to be locality-based, whiebams
that the virtual game world can be divided naturally intoioeg. In
fact, Hydra assumes that the game world is divided into iisje-
gions that are each managed by a single server. The clieht wil
connect to the respective server that manages the regidme ofrt
tual world in which the player’s avatar is currently resiglirClients
can only interact with other clients that are connected ¢osiime
server. For games that require a smooth transition betweemne-
gions, it is the responsibility of the game application tavage the
transition.

Hydra only delivers messages to the servers for the clients,
does not actually manage the connections; all connectien®an-
aged at the application layer by the game servers. The maweme
of a player’s avatar from the region managed by one servérab t
managed by another requires either the client to transfecdh-
nection from one server to the other, or to establish simelbas
connections to both servers.

In this section, we define the interfaces for the game cliants
servers, and the programming model that a game server is&xhe
to conform to in order to preserve correctness.

3.1 GameClient Interface

The network interface is relatively straightforward foetgame
client: it can send either reliable or unreliable messages 0DP

to a game server, which is specified by a unique identifier and n
an IP address. Unreliable messages are each sent once o a bes
effort basis, while reliable messages are retransmitted tiney

are successfully delivered. Hydra provides no orderingajtees

for the reliable messages, but ensures that message @réepre-
served for unreliable messages. Unreliable messagesrithafpeat

the server after later messages have been executed arg siisypl
carded. We are considering adding support for a blocking-RiRC
interface for the client.

3.2 GameServer Interface

The game server is implemented on the assumption that it is
solely responsible for a region of the virtual world. Messagre
delivered by Hydra to the server in a priority queue thatsant
coming messages from the clients in a partial ordering. The-m
sages are sorted in ascending order according to a disarete-t
tamp, called dick, assigned by Hydra. The server will pop mes-
sages off the queue and process them, and the manner in which
the messages are processed must adhere to three conditions i
der for Hydra to guarantee that the game application is stersi
following the recovery of a failed node.

|. Simulation Pause. The Hydra system maintains a current tick
count that the game application may access g#&hTi ck() . The
server should pause its simulation if the tick count of thessages
at the top of the queue is larger than the current tick coust, i
implement the following pseudocode in its simulation loop:

tick now = getTick();
while (now < currentTick) {

yield();
now = get Ti ck();

}

currentTi ck = now,

Process messages from queue with tick now.

In order words, the simulation must process incoming messay
the main queue no faster than the current tick. If the curtiekt
does not change, the game simulation will be paused inddfinit

Il. Simulation Determinism. The network interface for the
game server is similar to that for the game client: a server atso
send either reliable or unreliable messages to its clievds ODP.
However, the messages that a server sends to its clientkisiisa
be synchronized with the simulation at the server. The aptiom
is that the server will process incoming messages in bastwsd-
ing to their ticks and that messages will only be sent at bagnd
between ticks, i.e. if a message is sent by the server afté¢neal
messages with tick have been popped off the queue and all the
messages with tick+ 1 are still on the queue (and hence not yet
processed), then the outgoing message is the messageponides
ing to the simulation state after all the incoming messag#stick
t have been processed.

The simulation should also be deterministic, i.e. if thetual
game world is in a stat§ before processing a batch of the messages
with tick ¢, the new state of the game woidd and all the messages
that are sent after processing the batch of messages shoudle-b
terministic and dependent only on the contents of the pemzks
messages with tick. While most games will require some form
of randomization, this requirement for simulation deterisin can
easily met with the use of pseudo-random number generatars a
pre-determined seeds.

I11. Load/Save I nterface. The game server must also support a
method to checkpoint and save its internal state to an ostpeam
and a corresponding method to initialize its state from gwuin
stream. While this requirement may seem a little out of pfaca

Figure 1. Hydra system architecture.

persistent game world, many existing single-player ganeesug-
port some form of load/save functionality hence this regient is
not unreasonable. Like outgoing messages, a checkpoiatkis t
taken at boundary points where all the messages withttithve
been processed and before any with tick 1 are processed.

If the simulation application fails to adhere to these cotioms,
Hydra cannot guarantee that in the event of a failover, thee if
the game will necessarily be consistent. Our experienceveld
oping games under the Hydra framework has convinced ustibat t
three conditions described above are unobtrusive and iy ba
satisfied by a game developer.

4. SYSTEM ARCHITECTURE

Due to space constraints, we are only able to provide a brief
overview of the Hydra system architecture in this sectionhilé/
Hydra is a peer-to-peer distributed system and each Hydta has
both client and server functionality, the client and semerdules
are described separately for clarity. The various comptmefthe
Hydra system are shown in Figure 1.

The client module of the Hydra system consists of two compo-
nents: the game client and tlelent proxy. The game client is
a typical client that is oblivious to the Hydra system, exciep
the fact that instead of sending messages directly to theonlet
it sends messages through the proxy; similarly, insteagading
directly from the network, incoming messages for the garrentl|
are offered by the client proxy in a priority queue similaithat at
the server.

The game servers, as described in Section 3.2, are implethent
as components calledices, each managing the game state for a
specific region of the virtual game world. Since it is possifir
a single host to manage several regions of the virtual gamelwo
simultaneously when the number of clients is small, muétiglices
may be contained in a component called Hhalra server. Each
Hydra node consists of a client module and a Hydra server.

Like all peer-to-peer systems, there is a rendezvous natesh
queried whenever a new node joins the system. This component
is called theglobal tracker. In addition to acting as the point of
contact for new nodes, the global tracker keeps track ofeéhesss
and slices in the system. Since slices are addressed byeusiiga
identifiers @licelDs), the global tracker is queried when a client
proxy or server needs to determine the IP address and pag-cor
sponding to the server(s) hosting slices for a specific iciVe
have currently implemented the global tracker as a simpieese
application. The global tracker can also be implemented dis-a
tributed system with a DHT [21].

4.1 Hydrain Operation

To recover from node failures, each slice is replicated albbem
of times (determined by the degree of redundancy requir€ae
copy (usually the original) is therimary dice, while the remaining
replicas are callethackup slices. The primary slice together with
the set of backup slices is referred to asiee instance.

Instead of sending messages directly to the network, a game
client will forward its messages to a client proxy. The ctiproxy
maintains a tick count (“message tick”) that is incremeraeceg-
ular intervals (currentlyl50 ms in our implementation) and tags
outgoing messages with the message tick. A tagged outgeiing r
able message is multicast to all the servers hosting theapyiand
backup slices while an outgoing unreliable message is aniyte
the primary slice. The client proxy resolves the IP addressd
ports of the hosting Hydra servers by querying the globalkiea

Each slice also maintains a tick count (“slice tick”). Prima
slices will automatically increment their tick counts atader equal
to that for the proxy ticks. Backup slices do not incremeeirttick
counts automatically.

When a Hydra server receives a message from a client proxy, it
will route the message to the appropriate slice. How a skeelles
a message depends on (i) whether it is a primary or backug; slic
(ii) the type of the incoming message (reliable/unreliqlalied (iii)
its current tick count compared to the message tick.

Primary Slice. If the receiving slice is a primary slice and the
message tick is greater than or equal to the slice tick, tresage is
added to the priority queue for the game application. If tlessage
tick is less than the slice tick and if it is unreliable, thessage is
discarded; if the message is reliable, its tick will be updato the
current slice tick and added to the queue. All messageskieli
or unreliable) that are added to the queue are also forwamnit
backup slicesn order and reliably (i.e. retransmitted if necessary).
These forwarded messages also contain the previous gicé.8.
current slice tick— 1).

Backup Slice. If the receiving slice for a reliable message from
a client is a backup slice, the message is put into a sepaaekeip
queue instead of the priority queue for the game application

When a backup slice receives a forwarded message from the pri
mary slice, the message is put into the game applicationifyrio
queue. Since the forwarded messages contain informatidheon
last slice tick of the primary slice, the current tick of thadkup
slice is updated accordingly. In effect, the backup slicesat need
to increment their local slice ticks automatically becatisy are
“clocked” by the primary slice. Reliable messages in thekbpc
queue are flushed when a corresponding copy is received frem t
primary slice.

Game Server Messages. While Hydra differentiates between
the primary and backup slices, all slices behave as if theyttsr
sole server for their instance and they will generate oungones-
sages for the clients accordingly. Since messages are rideda
through the Hydra server, the key difference is that outgones-
sages from the primary slice will be forwarded to the cliemtsle
the outgoing messages from the backup slices will be dischard

Like clients, the slices may also send either reliable oelinr
able messages over UDP. Because of simulation determitiiem,
primary and backup slices will all generate the same outpoies-
sages with identical identifiers. The uniqueness of thetifienal-
lows clients to determine if a received message is a dupligating
the recovery process for node failures (which occasiorgdiger-
ates duplicate server messages).

Synchronization. To synchronize messages between a client
proxy and a primary slice, they separately maintain a ticknto
that increments at regular intervals (currentf0 ms). The client

Primary Backup
Slice commit Slice
» -

— Reliable messages

Client Prox

Client Prox

¢ ¢

---» Unreliable message

Figure 2: Flow of messages from client to primary and backup
dices.

proxy synchronizes with the primary slice when it first jairigo
synchronize with a primary slice, a client proxy sends a syles-
sage containing the timestamp of the system clock. Uporiviage
this sync message, the primary slice responds immediatiéyav
message that contains the received timestamp and its ttiglen

When the client proxy receives the response message, itds ab
to estimate the round trip time (RTT) to the primary sliceeTime
taken for a message from the client proxy to reach the prirskicg
is assumed to be half the RTT. Since the tick interval is kndva
client proxy adjusts its message tick accordingly so thatsages
will arrive “just in time” at the primary slice (i.e. have a sEage
tick that is one larger than the slice tick).

If the primary slice receives a message from a client proxy wi
a message tick that is smaller or significantly larger thacutrrent
tick, it will inform the client proxy to synchronize again.

4.2 Handling Node Failures

The details of the failover protocol are somewhat involved a
due to space constraints, we provide only a brief overviethis
section. The general principle is that each slice instacoepris-
ing of a primary slice and its set of backup slices, is resjmagor
ensuring that it is replicated appropriately and handlesf#ilure
of nodes independently from other slice instances. Whemaepy
slice starts up, itis configured to generate a pre-detemininenber
of backup slices.

Creation of Backup Slice. Backup slices are created by the pri-
mary slice in a few steps. First, the primary slice queriesglobal
tracker to obtain a list of available servers. Then it cotstam
available server and requests for a backup slice of the pppte
type to be created. Once this is done, the associated cliexies
are informed to forward packets to the newly created (emglige.
It also updates all existing backup slices with the new listackup
slices. Concurrently, the primary slice obtains a cheakjpof the
current game state via the load/save interface and sendsitiaé
ization data to the newly created backup slice. Once thesfiean
of the checkpoint data is completed, the backup slice symihes
with the primary slice so that it will be able to determine thoé of
the primary slice. The backup slice also executes the setefred
messages from the checkpoint to bring its simulation state the
current state.

Failure of Backup Slice. Since the primary slice communicates
directly with the backup slices periodically via a relialdleannel,
the failure of a backup slice will soon be detected followangme-
out. When a backup slice fails, a primary slice simply creataew
backup slice to replace the failed backup slice.

Failure of Primary Slice. A backup slice expects to receive
committed messages from the primary slice periodically hasl
its tick clocked by the messages sent by the primary slicaceSi
the backup slice is synchronized with the primary slicesiable

to determine the tick of the primary slice. When the tick of th
backup slice is too far behind the tick of the primary slidewyill
check with the clients if the primary slice has timed out. Hét
majority of the clients respond that the primary slice hasetil out,
the primary slice is declared to have failed. The leadertelec
protocol is started and one of the backup slices takes ovéreas
primary slice and uses the messages in its backup queuent bri
its simulation state up to date. The simulation resumeseatith
the failed primary slice would be if it had not failed. Whilbet
unreliable messages sent by the clients during the failpeend
will be lost, the reliable messages in the backup queue tilllbe
committed.

Failures of the game clients are handled by the game apiplicat
and not Hydra, though there is some state associated withiéms
proxies that is maintained at the servers and Hydra will qrenf
some basic house keeping. The handling of client failureshea
left to the game developers because it is an issue that thesdsl
have to deal with at present and it almost always requiresesom
action at the application layer.

4.3 Load Balancing

We have only implemented the basic Hydra architecture alwléa
protocol. A key factor that affects Hydra's feasibility apat-
form for massively-multiplayer games is scalability. Tarsoex-
tent, Hydra delegates the responsibility for scalabilityhie game
developer. Itis up to the game developer to divide the ganmidwo
into separate regions so the expected load on each sliceyirder
of clients connected) will not be excessive, or to implensarhe
form of admission control. Scaling is achieved not by insmeg
the number of connections per slice, but by increasing timebau
of slices for the game world.

That said, it is our intention to explore some further optiai
tions for improving Hydra’s scalability and we plan to impient
the following two optimizations in the near future:

1. Dynamic Broadcast Tree. The primary slice often has to
broadcast a message to all the clients connected to it and the
number of messages scales linearly with the number of con-
nected clients. A straightforward way to improve the scal-
ability of this broadcast is to organize the connected tdien
into a dynamic broadcast tree [22].

2. Server Migration. Networks are often heterogeneous. Hence,
if we can identify the higher-bandwidth nodes and have such
nodes host the primary slices, we will be able to support more
client connections. The same approach can also be adopted
to migrate a primary slice to a node that has the best latencie
to the set of connected clients.

5. EVALUATION

To demonstrate the practicality of the proposed architectwe
implementedrlankie, a simple “capture the flag” game where play-
ers control tanks with the goal of collecting a flag and bniggit
back to a home base. In addition, there are some obstaclas in t
game world that can be destroyed and tanks can also deshey ot
tanks.

In addition to a playable client, which allows a human player
to control a tank and play the game, we also have a number of
bot agents available that are able to play the game relgativell*.

1The code base for Tankie was used in a class assignment for the
introductory Al class at the National University of Singa@o In

the assignment, the students were tasked to implement ar age
to play the game. The two best-performing agents out of the 19
submissions for the class were used in our experiments.

50 T T T T T T
45 Game Packets Received ———]
Game Packets Sent -
40 1
-
z L i
5 35
S
@ 30 1
£
o 25 | 1
S 20 .
ko]
X 15 | 1
8
o 10 - 1
5 i
0 1 1 1 1 1 1
2 4 6 8 10 12 14 16

Number of Nodes

Figure 3: Plot of game packetsreceived and sent by a client.

Tankie was used for the preliminary performance evaluatidfy-
dra.

5.1 Experiment Setup

We ran our experiments on six Pentium 4 PCs running Linux ker-
nel version 2.6.20 and connected with a switch. We ran bet\8ee
and 15 separate instances of the Tankie client with one renle r
domly chosen to host the primary slice and the client instantis-
tributed over the six machines.

Each experiment was conducted as follows: clients areestart
incrementally at 5 second intervals. At 2 minutes, a backige s
is created on one randomly chosen node by the primary slité. A
minutes, the client instance hosting the primary slicellsi Once
this failure is detected, the backup slice will initiate tleeovery
protocol and take over as the primary slice. Two minutes,|ae
approximately 9 minutes, the new primary slice will in tumeate

400 T T T T T T
Game Packets Sent By Primary Slice
350 |- Game Packets Received By Backup Slice - -
Game Packets Received By Primary Slice -------

= 300 E
z
£

o 250 E
]
e

@ 200 -
g

— 150 E
Q
S

s 100 | -
[a

50 | E

o ; P
2 4 6 8 10 12 14 16

Number of Nodes

Figure 4: Plot of game packets received and sent by a Hydra
SErver.

7000 T T T T T T
g 6000 | §
F 5000 -
3
S 4000 R .
o
3
£ 3000 | -
o
S 2000 | -
£
E 1000 s
O i i
| | | |

0

0 2 4 6 8
Time (min)

10 12 14

another backup slice on another randomly chosen node. We end

the experiment at 14 minutes.

In our experiments, the primary slice failure detectiontpcol
detects the failure of the primary slice in around 5 to 8 seson
Since we only created one backup slice, leader election grtien
backup slices is unnecessary.

5.2 Resultsand Discussion

Figure5: Plot of command responsetimefor a client nodein a
15-node experiment.

lost. We believe that this is acceptable since existing gancea-
sionally suffer from lags that last between 30 seconds torautai

In Figure 3, we plot the number of game packets sent and re- 6. FUTURE WORK
ceived by the client. We recorded the packets sent by the game Hydra is still work in progress. One of the key limitations we

application and the control packets sent by Hydra separa®ain-
ilarly, we plot the corresponding data for the Hydra serveFig-

faced in the current evaluation was access to only small eamwib
machines for running our experiments and we were thus lahite

ure 4. The number of Hydra control packets in both cases is not 15 nodes. We found that this was the maximum number of node

plotted in Figures 3 and 4 because they are significantly lsmal
than the number of game application packets. The extra messa
overhead imposed is typically less than 1%. While the nunaber
messages sent by the primary slice seems to gra@(i?) as ex-
pected since it broadcasts update messages to all thesclieat

instances that could be run on the available hosts withauging
excessive performance degradation due to CPU overloadpl@uar
is to procure more machines for experimentation in ordevede
ate the performance of Hydra with more than 15 clients co@uec
to the same slice. We also plan to evaluate Hydra over a wieke-a

can reduce the number of outgoing messages by using a dynamimetwork and evaluate the feasibility of introducing congescon-

broadcast tree [22].

Since response time is critical for networked games, we also

trol.
We are currently implementingjuad 101, a procedurally-generated

measured the duration between when a game client sends a mesmultiplayer real-time strategy (RTS) game, where eacheplagn-

sage and when it receives a response to that message. Weicall t
the command response time. In Figure 5, we plot the command re-
sponse time for a client node in a 15-node experiment. Tlalgte
state command response is approximagglg ms, which is suffi-
cient to support realtime strategy and role-playing games.

At 7 minutes, the failover introduces a period of around 5 to 8
seconds of lag when the unreliable messages sent by thescien

trols a small squad of soldiers, in a virtual landscape, figgits
other factions for territory and resources. The game waddmp
mented in Java using the Irrlicht 3D Engine [12]. In Squad, 16&
game world is divided into sectors. Each faction in the ganag m
build structures in a sector and use it as a launching aregtticks
on other enemy sectors. Under the Hydra architecture, eaatbrs
is implemented as a slice that may be hosted on differentsode

We have several reasons for implementing Squad 101. Fiest, w
hope to demonstrate that the programming model defined by Hy-

dra is sufficiently flexible for supporting a RTS game. Secdnd
Squad 101, the squads are able move from sector to sectsrefFhi
fectively translates to the migration of connections betwslices

and thus we can use Squad 101 to test and develop the comectio

migration interfaces. Third, with Squad 101, the size of ltrel-
scape is unbounded. Sectors are procedurally generatesband
theory, there can be infinitely many sectors and thereforeblbeto
support a large number of players. Last but not least, we avike
to attract real players to play our game so that we can valittet
Hydra architecture in a “live” setting. At the time of writinSquad
101 is still under development.

Finally, while cheat prevention is of significant interest het-
worked games [2, 9], cheat prevention for the Hydra archirec
remains as future work.

7. CONCLUSION

[7] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized applicationtleve
multicast infrastructurd EEE Journal on Selected Areasin
communications (JSAC), 2002.

[8] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin. An effiate
synchronization mechanism for mirrored game architesture
In Proceedings of NetGames’ 02, pages 67—73, New York,
NY, USA, 2002. ACM Press.

[9] M. DelLap, B. Knutsson, H. Lu, O. Sokolsky, U. Sammapun,
I. Lee, and C. Tsarouchis. Is runtime verification applieabl
to cheat detection? IRroceedings of the NetGames ' 04,
August 2004.

[10] S. Ferrettiand M. Roccetti. Fast delivery of game esenith

an optimistic synchronization mechanism in massive
multiplayer online games. IRroceedings of ACE ' 05, pages
405412, New York, NY, USA, 2005. ACM Press.

[11] E. Frécon and M. Stenius. Dive: a scaleable network

architecture for distributed virtual environmenBistributed

Systems Engineering, 5(3), November 1998.

[12] N. Gebhardt, T. Alten, C. Stehno, G. Davidson, A. F. €¢li
and J. Goewert. Irrlicht engine.

[13] C. Greenhalgh. Awareness-based communication

There have been many proposals for implementing networked
games on peer-to-peer architectures [18, 4, 16, 23, 15, 8neés
developers are however not experts in distributed systemstreey
should not be required to be experts on peer-to-peer afgosit
Hydra seeks to bridge the gap between the research community management in the MASSIVE systeniistributed Systems
and the game developers. Our key contribution is the devsdop Engineering, 5(3), November 1998.
of a programming interface that is intuitive and easy to usel [14] C. Greenhalgh and S. Benford. Supporting rich and dyoam

that can be supported transparently at the network layeroum
work, we have demonstrated that it is practical to provideeseary
infrastructural support to implement a massively-muéir game
in a distributed peer-to-peer architecture by adoptingugmeented
server-client programming model.

In addition, while Hydra is an architecture that was speaifjc
developed for massively-multiplayer online games, wedvelithat
the techniques described are more broadly applicable tordeu
of peer-to-peer applications. In our description of Hydbmwe,

each slice instance in the Hydra system is described as a game

server object that manages one part of the game world. Inipeac
we can also implement a chat service, an in-game email syetem
an in-game auction system each as a slice instance undeytie H
framework. In fact, we believe that further work on the Hydya-
tem will provide us with insights on enabling server migoatand
load balancing for a large class of peer-to-peer distrithageplica-
tions.

8. REFERENCES

[1] M. Assiotis and V. Tzanov. A distributed architecture fo
MMORPG. InProceedings of NetGames’ 06, page 4,
October 2006.

[2] N. E. Baughman and B. N. Levine. Cheat-proof playout for
centralized and distributed online gamesINFOCOM,
pages 104-113, 2001.

[3] S. Benford, C. Greenhalgh, and D. Lloyd. Crowded
collaborative virtual environments. Proceedings of the
S GCHI conference on Human factors in computing systems,
pages 59-66. ACM Press, 1997.

[4] A. Bharambe, M. Agrawal, and S. Seshan. Mercury:
Supporting scalable multi-attribute range queries. In
Proceedings of SGCOMM 2004, August 2004.

[5] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A
distributed architecture for multiplayer games. In
Proceedings of NSDI 2006, 2006.

[6] Blizzard Inc. World of Warcraft.
http://www.warofwarcraft.com.

communication in large scale collaborative virtual
environmentsPresence: Teleoperators and Virtual
Environments, 8:14-35, February 1999.

[15] T. Hampel, T. Bopp, and R. Hinn. A peer-to-peer archile

for massive multiplayer online games. Rnoceedings of
NetGames '’ 06, page 48, October 2006.

[16] T. limura, H. Hazeyama, and Y. Kadobayashi. Zoned

federation of game servers: a peer-to-peer approach to
scalable multi-player online games. Pnoceedings of
NetGames ' 04, August 2004.

[17] J. Kaufman, T. Lehman, G. Deen, and J. Thomas.

OptimalGrid — autonomic computing on the grid, June 2003.

[18] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer

support for massively multiplayer games.Rroceedings of
IEEE INFOCOM'’ 04, March 2004.

[19] E. Lety, L. Gautier, and C. Diot. Mimaze, a 3D multi-p&ay

game on the internet. IRroceedings of the 4th International
Conference on Virtual System and Multimedia, volume 1,
pages 84-89, November 1998.

[20] A. E. Rhalibi and M. Merabti. Agents-based modeling dor

peer-to-peer MMOG architectur€omputersin
Entertainment, 3(2):3, 2005.

[21] A. Rowstron and P. Druschel. Pastry: Scalable, deaénéd

object location, and routing for large-scale peer-to-peer
systemsLecture Notes in Computer Science, 2218:329-350,
2001.

[22] S.Yamamoto, Y. Murata, K. Yasumoto, and M. Ito. A

distributed event delivery method with load balancing for
MMORPG. InProceedings of NetGames ' 05, pages 1-8,
October 2005.

[23] A.P. Yuand S. T. Vuong. MOPAR: a mobile peer-to-peer

overlay architecture for interest management of massively
multiplayer online games. IRroceedings of NOSSDAV
2005, pages 99-104, June 2005.

