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Abstract
The Internet hosts a diverse mix of congestion control algo-

rithms (CCAs) optimized for specific throughput-delay trade-
offs. However, traditional queuing disciplines and AQMs
struggle to manage this heterogeneity and often lead to un-
fairness and suboptimal performance. In this paper, we ex-
plore isolation techniques that can allow competing CCAs
to make their desired throughput-delay trade-offs indepen-
dent of who they compete with. More specifically, we moti-
vate Approximate Performance Isolation between competing
flows by grouping flows with similar desired throughput-delay
trade-offs in the same queue. We also present Santa, a new
practical and scalable multi-queue AQM built on the prin-
ciples of approximate performance isolation. Santa infers
each flow’s throughput-delay preferences by comparing their
buffer occupancy, and shuffles aggressive ("naughty") and
passive ("nice") flows into appropriate queues over time. We
prototype Santa on a programmable switch to demonstrate
that it is practical, scalable, and can approximate the isolation
benefits of Fair Queuing (FQ) with a handful of of queues.

1 Introduction
Today’s Internet needs to support a diverse range of applica-
tions with different performance requirements. For example,
an online game is typically much more delay-sensitive than
a file transfer, which can tolerate higher delays in exchange
for greater bandwidth. We expect application developers to
use congestion control algorithms (CCAs) that optimize for
their desired throughput-delay trade-offs. Thus, the CCA de-
ployed on a website is often highly correlated with the content
it serves. BBR is currently the most popular CCA for web-
sites serving video traffic [40]. More recent studies have even
found that websites can run different CCAs for serving differ-
ent kinds of assets on the same webpage [39].

However, since different CCAs are optimized to make dif-
ferent throughput-delay trade-offs, they often interact poorly
when competing with each other under certain conditions.
This issue can be particularly pronounced in the interactions
between CUBIC and BBR, which happen to be the two most
popular CCAs on the Internet [39]. BBR is designed to oper-
ate near the Kleinrock point to minimize queuing [13], while
CUBIC is a buffer-filler by design to maximize throughput.
However, when BBR and CUBIC flows compete in a deep
buffer, not only are they unfair, but they also inflicts high
delays on each other [54].

A natural question arises: how do we allow CCAs with con-
trasting operating points, like BBR and CUBIC, to play well
together? In other words, how do we allow BBR to achieve
low latency and CUBIC to achieve high throughput when
sharing the same bottleneck link?

Existing queuing disciplines and AQMs are not designed to
support a heterogeneous mix of CCAs and provide isolation
between different flows with different desired throughput-
delay trade-offs. While flow-level isolation can be achieved
with Fair Queuing (FQ) [18] by providing each flow with its
own queue, this is impractical at Internet-scale [33]. There
have been proposals for AQMs like L4S [26] that attempt
to incorporate a flow’s preferences, but these often require
explicit notification mechanisms and expect the end hosts to
be honest about their preferences.

We show that CCAs with different desired throughput-
delay trade-offs competing with each other can be a source
of inefficiency in a network (§2.1), but these inefficiencies
can be avoided if flows with different operating points are iso-
lated from each other (§2.2). We hence explore practical and
scalable ways to achieve this performance isolation between
flows without relying on fair queuing. More specifically, we
present a way to achieve Approximate Performance Isola-
tion by placing flows with similar desired throughput-delay
trade-offs in the same queue(§2.3)

As a proof of concept, we present Santa, a novel, practical,
and scalable multi-queue AQM that is built on the principles
of approximate performance isolation (§4). Santa assigns
flows to different queues based on their desired throughput-
delay trade-offs. It converges to an appropriate queue as-
signment by comparing the bandwidth share of a flow com-
pared to the other flows in its current queue over the duration
of a round. Flows that receive significantly higher or lower
bandwidth than the fair share are called the naughty and nice
flows respectively, and are shuffled between queues between
rounds. By using the relative performance of flows, Santa is
able to distill them across queues according to their desired
throughput-delay trade-offs – thereby achieving approximate
performance isolation.

We implement Santa on a programmable Intel Tofino
switch to demonstrate that it is practical (§5) and show that
we can achieve approximate performance isolation scalably
with a small number of queues (§6). Despite its limitations,
we use Santa to motivate approximate performance isolation
as a practical design goal for Internet AQMs.
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Figure 1: All networks can be thought of as a trade-off space. This
space can be constrained by both natural (left) and arbitrary (right)
constraints - such a rate-limit (R) applied by the network operator.

In summary, Santa allows different CCAs to make their
respective trade-offs independently, without being unfairly
influenced by competing flows. By providing each CCA with
the flexibility to maintain its desired operating point—whether
it be maximizing throughput, minimizing latency, or avoiding
buffer overflows—Santa aims to enable CCAs to coexist in
a more harmonious and efficient manner. In particular, we
believe that by decoupling the performance of different CCAs
from their inter-dependencies, Santa could mitigate issues
of unfairness, promote stability, and better accommodate the
growing diversity of CCAs deployed on the Internet.

2 Background and Motivation
While traditional congestion control algorithms (CCAs) were
designed with the simple goal of utilizing the bottleneck
bandwidth and preventing a congestion collapse [16, 28],
most CCAs that run on the Internet today are more nuanced.
The congestion control space is populated with numerous
variants designed to achieve different trade-offs in the net-
work [7, 9, 13, 22, 24, 45]. In this section, we will present an
abstract view of the network as a trade-off space and illustrate
how different CCAs explore this trade-off space differently.

If viewed as a black box, a bottleneck link in a network can
impact the packets sent on it under the following constraints:
1. Bandwidth [0,C]: It can control how quickly packets are

forwarded, bounded by the bottleneck link capacity C.
2. Delay [RT Tmin,RT Tmax]: On top of the per-packet service

time( 1
bw ), it can also impose additional delay on these pack-

ets before forwarding them. Typically, this delay cannot be
less than the propagation delay RT Tmin of the network and
larger than the maximum queuing delay determined by the
size of the buffers on the path (RT Tmax = RT Tmin +

B
C ).

3. Drops [0,1]: Finally, the network can also decide not to
forward a packet and drop it. We can model drops with a
probability between 0 and 1, because the queuing disci-
pline could be non-deterministic like RED [20].
These 3 constraints form a three-dimensional trade-off

space, as illustrated in Figure 1. Each of these constraints
can emerge naturally, or be applied explicitly by the network.
For example, packet drops can happen both as a result of nat-
ural buffer overflows or explicit drops by the AQM [21, 43].
A network operator might also choose to limit flows to a rate
R that is lower than the link capacity C (see Figure 1).
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Figure 2: The difference between the operating points of a delay-
sensitive (A) and throughput-hungry (B) flow for a hypothetical
network.

2.1 What does a CCA do?

If we take this abstract view of the bottleneck link, the role of
a CCA is to operate at a point in this constrained space closest
to its desired (“natural”) operating point. We can imagine
there being a difference between how a throughput-hungry
and a delay-sensitive flow operates in the same network.

Consider a hypothetical network that constrains the
throughput and delay as illustrated in Figure 2. For the sake
of simplicity, we will focus on the throughput vs delay plane,
where the network allows a flow to have high throughput,
but not without a delay cost. In such a bottleneck link (with-
out other competing flows), a delay-sensitive flow might be
willing to give up some bandwidth and operate at point A to
reduce the end-to-end delay. On the other hand, a throughput-
hungry flow that can tolerate high delays would prefer to
operate at point B.

To illustrate how this works, we took 6 different CCAs
available in the Linux kernel and ran them individually
through a 50 Mbps bottleneck link with a 10 BDP buffer
and plotted their average throughput and delay to understand
their desired (“natural”) operating points (in the absence of
competing flows). As we can see from Figure 3a, these op-
erating points will vary depending on the CCA. CCAs like
CUBIC [24] and Reno [27] will attempt to fill the bottleneck
buffer to maximize throughput. Delay-sensitive CCAs like
Vegas [9] typically like to maintain low delay, even at the cost
of under-utilization. BBR [13] is somewhere in between, and
aims to operate at the Kleinrock point [31].

However, these varying operating points can often make
these CCAs incompatible with each other when they share a
bottleneck link. To illustrate this, we ran the same 6 CCAs,
but this time we allowed them to compete in a 300 Mbps link
(fairshare 50 Mbps) with a 10-BDP bottleneck buffer (see
Figure 3b). Under this new setting, the delay-sensitive flows
are starved and experience the largest displacement from their
desired operating point. The buffer-fillers fill the bottleneck
buffer and seize a larger than fair share of the bottleneck
bandwidth. None of this is surprising. Because of how BBR
becomes aggressive in the presence of buffer-fillers [41, 55],
it obtains the largest share of the bottleneck bandwidth-but
not without suffering from higher delays itself.
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Figure 3: The throughput-delay trade-off space explored by differ-
ent CCAs in the Linux kernel.
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Figure 4: Since the bottleneck link capacity is limited, competing
flows can add a moving constraint to each other’s performance.

2.2 How different CCAs compete
A flow’s desired operating point in the throughput-delay plane
can directly impact how it competes with another flow. We
illustrate this relation in Figure 4, where we consider two
flows competing in a bottleneck link with bandwidth C. We
mirror the throughput vs delay plane of the second flow and
place it below the first flow. If both these flows desire the same
throughput-delay tradeoffs, we can expect them to share the
link equally (by symmetry) and collaboratively achieve their
desired throughput-delay trade-offs (Figure 4, left). However,
if the desired operating points of the two competing flows are
dissimilar, we can expect the more throughput-hungry flow to
pull the equilibrium away from the flows’ natural operating
points and create unfairness (Figure 4, right).

This unfairness between real-world CCAs has been doc-
umented by numerous measurement studies [41, 55, 58]. It
is well known that while most CCAs tend to be fair to other
flows that are also running the same CCA, they tend to not
play very well with other CCAs. We replicate some of these
well-known trends in the throughput-delay space in Figure 5.

Two flows of the same CCAs are able to compete fairly
between themselves and collaboratively achieve their desired
operating point, as shown in Figures 5a and 5b. However,
when CUBIC competes with Vegas, CUBIC, being the more
throughput-hungry flow, fills the buffer and starves the com-
peting Vegas flow as shown in Figure 5c.

In some instances, when flows with different desired op-
erating points compete, they can even mutually harm each

other. For example, as shown in Figure 5d, when CUBIC
and BBR share a bottleneck link, the throughput-hungry CU-
BIC flow has its throughput reduced while the delay-sensitive
BBR flow suffers higher delay. Overall, we can make two key
observations from observing how CCAs compete:
1. CCAs with similar desired operating points can collabo-

ratively achieve their desired throughput-delay trade-offs
and coexist amicably (Figures 5a and 5b).

2. CCAs with different operating points can often be incom-
patible, and even mutually harmful (Figures 5c and 5d).

2.3 Case for Performance Isolation
Given our observations in §2.2, we need a way for CCAs with
different desired throughput-delay trade-offs to be treated
differently and independently of the other competing CCAs.
Unfortunately, classical AQMs are unable to do so, even if
they can sometimes help mitigate the effects of a heteroge-
neous mix of CCAs competing. For example, Codel [43] can
reduce the queuing delay a competing CUBIC flow inflicts
on delay-sensitive Vegas flows. However, it still does not pre-
vent Vegas from being starved. Also, since Codel behaves
like a shallow buffer, it can result in under-utilization of the
bottleneck bandwidth. In other settings, AQMs can even exac-
erbate existing performance issues. For example, if we apply
RED [21] to the setting described in Figure 5d, BBR gains an
even higher share of the bottleneck bandwidth, while still in-
flicting high queuing delays on itself because unlike CUBIC,
it does not treat packet drops as a congestion signal.

What we desire is that each flow is able to achieve its
desired throughput-delay tradeoffs regardless of who it is
competing with. We call this performance isolation. A naïve
way to achieve performance isolation could be to deploy Fair
Queuing (FQ), where each flow is isolated in its own queue.
Unfortunately, this is not practical given the large number of
flows in real-world networks [33].

While there have been proposals for several approximate
fair queuing solutions [14, 33, 46, 62], they fall short of the
goals of performance isolation because they approximate
the wrong feature of FQ. State-of-the-art approximate fair
queuing solutions like AFQ [46], AHAB [33], SFQ [14], and
HCSFQ [62] are designed to ensure each flow receives its fair
share of the bottleneck bandwidth, with AHAB and HCFQ
also being capable of providing predetermined flow groups
a fixed bandwidth share. However, this is not the same as
performance isolation, which is what we need: we want flows
to achieve their desired throughput-delay trade-offs regardless
of which CCAs they are competing with at the bottleneck.
Under approximate FQ, it is still possible for flows to inflict
delays, suffer from excessive packet loss, and therefore impact
each other despite receiving their fairshare bandwidth.

Fortunately, we show that we do not need FQ or perfect
performance isolation to allow different CCAs to coexist.
Instead, we argue that all we need is a scalable way to achieve
approximate performance isolation between flows.
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Figure 5: Real world example of unfairness arising when ▲CUBIC, ■BBR, and •Vegas compete in a FIFO queue.

3 Approximate Performance Isolation

Fair Queuing (FQ) achieves performance isolation by as-
signing each flow its own queue, which allows each flow
to maintain whatever buffer-occupancy it desires. Approxi-
mate performance isolation attempts to achieve performance
similar to FQ with a much smaller number of queues than the
number of flows. We note that performance isolation goes be-
yond the idea of Congestion Control Algorithm Independence
(CCAI) [10]. While CCAI aims to guarantee that flows get a
fixed throughput share regardless of who they compete with,
the goals of performance isolation goes beyond just through-
put guarantees. Under perfect performance isolation, not only
would a flow get a fixed share of the bandwidth, it would also
be able to do so while operating at the same point on the
delay-throughput frontier regardless of who it competes with.
While in theory performance isolation requires each flow to
have its own queue, approximate performance isolation aims
to meet these guarantees with a handful of queues.

To better understand approximate performance isolation,
consider the example illustrated in Figure 6, where there are 5
flows, F1−5, passing through a bottleneck, each with a differ-
ent desired operating point in the throughput-delay trade-off
space. For most efficient CCAs, we can expect these operating
points to lie on a Pareto throughput-delay frontier [56].

In other words, flows with different preferences can natu-
rally be ordered according to their preference for throughput
or delay. A FQ scheme would provide each flow with a differ-
ent queue, thereby ensuring performance isolation. However,
we can reduce the number of queues by placing flows that
want similar throughput-delay trade-offs together, as shown in
Figure 6. Here, flows F1 and F2, and flows F4 and F5 are close
to each other on the throughput-delay plane. Following our
observations from §2.2, we can expect them to collaboratively
operate at operating points close to their desired operating
point. Since the displacement from the natural operating point
is small, we achieve approximate performance isolation.

To see how well this works with real CCAs, we re-ran the
experiment in Figure 3b with 6 flows with FQ (6 queues)
comprising the following 6 CCAs: CUBIC, HTCP, Reno,
BBR, Vegas, and Veno. From Figure 7a, we note that CUBIC,
HTCP, Reno, BBR, Vegas, and Veno (in that order) provide a
good spread across the Pareto frontier.
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Figure 6: Different CCAs occupy different points on the
throughput-delay frontier. We can use their preferences to group
them in individual queues to approximate performance isolation.
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Figure 7: Comparison between perfect and approximate Perfor-
mance Isolation.

Next, we repeated this experiment, but with only 3 FIFO
queues. The three buffer fillers (CUBIC, HTCP, and Reno)
shared one queue while the two delay-sensitive flows (Vegas
and Veno) shared a separate queue. BBR was placed in the
third queue on its own. We can see from Figure 7b that we
can achieve approximate performance isolation with just three
queues. In other words, the key insight is that we can achieve
approximate performance isolation by grouping flows that
are close together on the Pareto frontier into the same queue.

3.1 Inferring the desired operating point
To group flows based on their desired throughput-delay trade-
offs, we need a way to determine where they lie on the
throughput-delay frontier. While it is not possible to directly
determine the desired throughput-delay trade-offs for a flow,
we can infer the preference of a flow relative to other flows



sharing the same queue. This insight follows from the simple
observation that when multiple flows compete, the flow that
is the highest on the throughput-delay frontier is likely to also
be the most aggressive, and therefore will naturally obtain the
highest throughput share.

Defining Aggression. In order to sort flows by their oper-
ating points, we need to be able to measure aggression. A
principled definition of aggression should capture the steady-
state (packets in flight in relation to the BDP, sending rate
compared to the fairshare) and transient (how readily a flow
utilizes spare link capacity) behavior of a flow. Santa adopts
a simpler, narrower definition. We measure the number of
packets competing flows push into the buffer as a measure
of their relative aggression. When two flows compete in the
same queue, the flow that maintains a higher buffer occupancy
is considered more aggressive than the other. We use this def-
inition since it captures the flow’s delay-tolerence in favor of
higher throughput. We note that this definition of aggression
is relative (depends on which other CCAs a flow competes
with) and not absolute. Santa assumes that this relative aggres-
sion is transitive between flows. We discuss the consequences
of making this assumption in §3.2.

Ignoring Mice Flows. Our analysis of CAIDA traces [12]
(§6.4) revealed that 90% of the flows on the Internet are short-
lived (“mice”) flows. These flows will end before we can take
any action on them. Hence, we will only provide performance
isolation for flows that are not “mice” flows (or flows that last
more than a single flight of packets). In any case, “mice” flows
will likely care more about flow completion times (FCT),
instead of the throughput-delay trade-offs.

To filter out the “mice” flows, when a new flow is observed,
we route the first 10 packets to a high-priority mice queue.
We set the threshold to 10 packets because it is the default
TCP starting window size. After that, starting from a flow’s
second flight of packets, it gets assigned a queue.

Shuffling Flows Between Queues. In the same way that
the flows can be ordered along the throughput-delay frontier,
the set of queues that we use to group the flows is ordered.
When a new non-mice flow is added, we assign it to one of
these queues. Our key insight is a simple shuffling algorithm
that considers the bandwidth share of a flow in its assigned
queue, which we describe in Figure 8, is sufficient to group
similar flows together. In particular, we can track the bytes
transferred by each flow in each queue at the end of fixed and
regular intervals, which we call a round. If we find that a flow
in Qi has a significantly larger bandwidth share than the other
flows in the same queue, it will get “promoted” to a higher
queue Qi+1. On the contrary, if we notices that a flow is being
starved for bandwidth in its current queue, it will be moved
to a lower queue number Qi−1. After a number of rounds,
the flows will be naturally be grouped into different queues
according to their level of aggression.

3.2 Implicit assumptions
While the shuffling mechanism in §3.1 seems straightforward,
it does make some implicit assumptions about how we expect
different flows and CCAs to interact as a function of their
desired throughput-delay trade-offs. We discuss some of these
assumptions in this section.

Conflating fairness with desired operating points. By
attempting to infer a flow’s desired operating point from
its buffer occupancy relative to the other flows in the same
queue, we risk conflating fairness with similarity in desired
throughput-delay trade-offs. For most CCAs, this is not a
huge issue because flows that attempt to operate at similar
operating points will tend to be fair to each other.

However, this assumption may break when CUBIC and
BBR flows compete in shallow buffers. Previous work has
shown that in networks with BDP-sized buffers, CUBIC and
BBR flows can be fair to each other [41]. In such a setting,
our shuffling algorithm would place CUBIC and BBR in
the same queue, because they will compete fairly with each
other. However, this would be sub-optimal, since CUBIC
and BBR have different desired operating points – and BBR
flows would do strictly better if they were isolated in their
own queues. This is a risk that cannot be fully avoided by
our current shuffling algorithm. However, we can mitigate its
impact by sizing the buffer either smaller or larger than the
BDP. It is also possible for flows that want the exact same
throughput delay trade-offs to be unfair to each other because
they do not interact well. CCAs that have RTT unfairness can
suffer from this. Our shuffling algorithm can however address
this scenario by placing these flows in different queues.

Implied Transitivity of Aggression . Our shuffling strategy
also has the implied assumption that the aggressiveness of
a flow relative to other flows is transitive. That is, if flow
A is more aggressive than flow B when they compete, and
flow B is more aggressive than flow C when they compete,
then flow A must be more aggressive than flow C when they
compete. This would be true if a group of flows’ ordering on
the throughput-delay frontier (Figure 6) is the same if those
flows were ordered based on how aggressive they were when
they competed with each other.

However, for real-world CCAs, this is not always true. One
example is when CUBIC and BBR compete. Even though
BBR lies to the left of CUBIC on the throughput-delay fron-
tier, it can still be more aggressive than CUBIC when the
buffer is shallow. However, we argue that this does not matter,
because as long as flows get shuffled based on their relative
aggression to each other, flows with similar aggression will
still be eventually grouped into the same queue, and we will
achieve approximate performance isolation. In other words,
while it is possible for flows not to be sorted by their relative
order on the throughput-delay frontier across queues, they
will still be grouped with other flows with similar desired
operating points.



4 Santa’s Design
In this section, we describe Santa, our new AQM that achieves
approximate performance isolation. With approximate perfor-
mance isolation, we expect all the flows to operate at operating
points that are close to their desired operating point.

In Santa, we maintain one high-priority mice queue and K
Santa queues. Non-mice flows are randomly assigned to one
of K Santa queues of equal priority, that are ordered from Q1
to Qk. The most aggressive flows are grouped into the highest
queue (Qk) and the least aggressive and most delay-sensitive
flows in the lowest queue (Q1).

At regular intervals, the AQM reviews its assignment policy
by assessing each flow’s average buffer occupancy compared
to the other flows in the same queue. If a flow’s average buffer
occupancy exceeds the average per-flow buffer occupancy in
that queue by some threshold, we take this as a hint that that
flow belongs in a higher queue with other more throughput-
hungry flows. Such flows are moved from Qi to Qi+1.

A similar rule applies for flows with buffer occupancy less
than some threshold of the average per-flow buffer occupancy
in the queue. In such instances, we infer that the flow is less
aggressive and move it to a lower queue (Qi−1) that would
have a lower queuing delay by virtue of containing the less
aggressive flows.

The implementation Santa involves 3 key design choices:
(i) to which queue do we assign a new flow; (ii) how do we
decide which flows should be shuffled; and (iii) how do we
determine the bandwidth share to be allocated to each of the K
queues. An overview of Santa is shown in Figure 8. We shall
discuss these design choices in the following subsections.

4.1 Initial Queue Assignment
When we get a new flow, we must determine its initial queue
assignment. We perform this assignment in two stages.

Our analysis of CAIDA traces [12] (see Figure 9) reveals
that a surprisingly large proportion (≈90%) of flows on the
Internet are mice flows. Since it is not possible to know if a
new flow is a mice flow or an elephant flow from the onset,
Santa treats the first 10 packets of each flow as a mice flow
and routes them through a special mice flow queue.

The mice flow queue has strict priority over all the other
Santa queues to minimize the FCT of the mice flows. Based
on our analysis of publicly available CAIDA traces [12], the
first 10 packets of all flows make up less than 10% of the
traffic volume. Therefore, we do not expect the strict priority
mice flow queue to cause stalls under realistic scenarios.

Flows longer than 10 packets will be assigned to a Santa
queue. If an empty queue is available, a new flow will be
assigned to one; if all K queues contain live flows, a new non-
mice flow will be assigned to one of the K Santa queues at
random based on a weighted probability. In particular, likeli-
hood of a flow being assigned to a Santa queue is proportional
to the number of flows already assigned to that queue. We
argue that this assignment strategy has two main benefits.

Maximizing the likelihood of the correct initial assignment.
Ideally we want to assign a new flow to a queue that corre-
sponds to its level of aggression. Unfortunately, we cannot
determine the level of aggression until we assign a flow into a
queue with other flows. However, if we assume that the distri-
bution of CCAs is generally stable, then assigning a new flow
to a queue (group of flows) with a probability proportional
to the size of the group naturally maximizes the likelihood
of assigning a new flow to the right group. For example, if
90% of flows are in Queue 1 and 10% of flows are in Queue 2,
with no additional information our best guess is mapping a
new flow to Queue 1 with probability 0.9 and to Queue 2 with
probability 0.1.

Improving Stability. When a new flow is assigned to a
queue with pre-existing flows, the new flow can disrupt the
pre-existing flows, especially if the new flow is very aggres-
sive. Hence, assigning a new flow to a queue with a large
number of pre-existing flow has a beneficial side effect that
it will likely have less impact that having it be assigned to
another queue with fewer flow. In Santa, we also allocate
more bandwidth to queues with more flows (§4.3). In other
words, doing so will also mitigate the risk of overburdening a
queue with limited bandwidth assigned to it.

4.2 Flow Shuffling
Recall that our goal is to group different flows with other
flows that are nearby on the throughput-delay pareto frontier,
by observing how aggressively a flow behaves compared to
other flows in the same queue. Hence, once a flow is assigned
to a Santa queue, we monitor its average queue occupancy
in comparison to the other flows in the same queue. In our
prototype, we determine average queue occupancy every 10
seconds, but the duration is a configurable parameter.

After we determine the average buffer occupancy of a flow
over the last round, Bi, we compare this value to the average
per-flow buffer occupancy of all the flows in that queue B̄.
If a flow is too aggressive (Bi > rB̄), we move it to a higher
queue (from Qi to Qi+1). On ther other hand if it is not able to
compete with the other flows in its queue (Bi <

B̄
r ), we move

to a lower queue with less aggressive flows (Qi to Qi−1).

Impact of shuffling thresholds. Effectively, Santa will tol-
erate throughput unfairness in a queue by up to a factor of r2.
If we allocate the bandwidth proportional to the number of
flows in each queue, each queue will maintain these bounds
relative to the fairshare bandwidth. Therefore, even across
queues, the worst case unfairness would be no larger than
a factor of r2. If we set r to something very small, it would
cause frequent and unstable shuffles between queues; if we set
r to something larger, we would have more infrequent shuf-
fles, but we would need to accept more unfairness among the
flows. Santa sets r = 2, but r is clearly a tuneable parameter
depending how much unfairness we are willing to accept.
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4.3 Bandwidth Allocation
In our prototype, each Santa queue is allocated bandwidth
proportional to the number of flows assigned to it. This band-
width assignment happens at the end of each round and re-
mains fixed for the duration of the round.

However, this bandwidth allocation policy be easily be
tweaked to provide the throughput-hungry flows with a larger
share of the throughput than delay-sensitive flows, if so de-
sired. In our implementation, our goal is to distribute band-
width relatively fairly (within the bounds stated in §4.2) be-
tween the competing flows.

5 Prototype Implementation
We envision deploying Santa at any point on the Internet
where the number of flows make it impractical to achieve
performance isolation via Fair Queuing. To this end, and to
investigate the practical constraints on implementing Santa on
hardware switches, we prototype it on an Intel Tofino switch
(bf-sde 9.11.2) with 950 lines of P4 code for the data plane
(DP) and 1.2k lines of C++ code for the control plane (CP).

Figure 10 summarizes Santa’s prototype, which operates
in three stages: (i) during each round, the DP uses the Queue
Delay structure to record per-queue flow behavior; (ii) at the
end of each round, the CP makes shuffling decisions (§4.2)
and computes new queue bandwidth allocations (§4.3); (iii)
the CP then updates the Q-Assign Table with new queue as-
signments and configures the switch’s scheduler with the new
bandwidth allocations. Additionally, the DP filters mice flows
using a Count-Min sketch and assigns new, non-mice flows
to queues via initial weighted random assignment (§4.1).

5.1 Queue Assignment at the Ingress
During each round, the DP processes packets from both new
flows and those previously observed. The Q-Assign Table
manages the latter with exact-match entries that map the 32-
bit hash of each flow’s 5-tuple to a specific queue. After every
round, the control plane updates these entries according to
the latest shuffling decisions.

New flows that incur a miss in the Q-Assign Table are pro-
cessed by a Count-Min sketch (details in §6.4) to track their
per-round packet count. All packets from a flow are directed
to the mice queue until the flow exceeds 10 packets. Once
this threshold is crossed, the flow is assigned to a Santa queue
via weighted-random selection, with weights proportional to
each queue’s occupancy in the previous round (§5.3). We im-
plement this selection using a range-match table, with ranges
set according to the weights. The assignment for each new
large flow is stored in a register (hashed by the five-tuple) to
keep it consistent throughout the round, and at the end of the
round, it is added to the Q-Assign Table.

5.2 Recording queue behavior at the Egress
We quantify each flow’s queue behavior per round by its cu-
mulative queue delay—the total sojourn time of all packets
during that round—as a proxy for average queue occupancy.
The Queue Delay data structure at the egress maintains this in-
formation using two levels of 64k-entry, 64-bit registers. Each
entry stores a 32-bit flow fingerprint (for collision detection)
and a 32-bit cumulative queue delay. With 256 ns granularity,
the delay field can represent over 1k seconds per flow per
round. In case of collisions, the corresponding entry in the
second-level register is used instead. Both registers are parti-
tioned into segments according to the number of configured
queues (e.g., four 16k-entry segments for four queues), with
each segment dedicated to flows in its respective queue. To
allow the CP to read the Queue Delay data structure while the
DP continues processing traffic, two copies of the structure
are maintained, one for reading and one for writing, which
are swapped atomically at every round boundary.
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Figure 10: Overview of Santa prototype implementation.

5.3 Shuffling and bandwidth allocation
The CP uses information from the Queue Delay structure to
make shuffling decisions and compute per-queue bandwidth
allocations. It then uses Tofino driver APIs to update entries
in the Q-Assign Table and the range-match table for initial
weighted random queue assignment. Per-queue bandwidths
are configured by programming the switch traffic scheduler’s
dynamic weighted round-robin mechanism.

6 Evaluation
In this section, we evaluate how well Santa can achieve ap-
proximate performance isolation and compare it to other
common AQMs. Since Santa aims to approximate the
performance isolation achieved by Fair queuing (FQ), we
also compare it to state-of-the-art approximate FQ schemes
AHAB [33], SFQ [14], and Cebinae [59].

We note that as performance isolation is not something that
other AQMs have explicitly been designed for, the compari-
son with Santa would not be entirely fair. Nevertheless, the
current version of Santa is also not fully optimized. Our im-
plementation is a proof-of-concept prototype, and the goal is
to observe how our approach compares with existing approxi-
mate FQ algorithms when it comes to performance isolation.

We also investigate how Santa’s performance is affected
by the number of available queues, and how well Santa can
straddle the trade-off space between a single FIFO queue and
perfect FQ. Finally, we discuss the scalability of our current
implementation of Santa in P4 on an Intel Tofino switch.

6.1 How well can Santa provide approximate
performance isolation?

To evaluate how closely Santa can achieve performance iso-
lation compared to other AQMs, we measure the throughput
delay trade-offs for flows under Santa, and compare the ob-
served throughput-delay trade-offs, with that for other AQMs
(FIFO, Codel [43], Cebinae [59], AHAB [33], SFQ [14], FQ).

To do so, we launch 9 flows (3 each of CUBIC, BBR, and
Vegas) through a fixed capacity 450 Mbps bottleneck link,
with a 10 BDP buffer. All 9 flows are launched at the same
time and have a minimum RTT of 20 ms. The flows are run

concurrently for 1 minute. For FQ, each flow gets its own
queue with the fairshare (50 Mbps) bottleneck bandwidth. We
configure Santa to run with 4 queues: 3 shuffling queues and
a mice queue. We plot the results in Figure 11.

Since we want to achieve performance isolation, we ef-
fectively want to minimize the displacement between the
achieved operating point for a CCA from its desired operating
point when competing with the other flows. Like before, FIFO
(Figure 11a) does not perform well. Vegas flows are starved
for bandwidth, and BBR flows suffer from high delays. Codel
(Figure 11b) does not fare much better as well. While all flows
maintain low delays, loss-sensitive CUBIC and Vegas flows
have low throughputs, since Codel effectively behaves like a
shallow buffer. BBR, which is mostly loss-agnostic, gains a
disproportionately large share of the bottleneck bandwidth.

Existing state-of-the-art approximate FQ AQMs do not fare
much better. Cebinae [59] aims for max-min fairness and ap-
proximates FQ by taxing bottlenecked flows based on their
past bandwidth shares. While this works well for maintain-
ing fairness between CUBIC and BBR flows, Cebinae often
wrongly infers Vegas flows as non-bottlenecked flows, result-
ing in them receiving less than their fair share (see Figure 11c).
Since Cebinae is only concerned about bandwidth fairness
and does not try to isolate different flows, both BBR and Ve-
gas suffer from large queuing delays. Other approximate fair
queuing schemes like AHAB [33] (Figure 11d) and SFQ [14]
(Figure 11e) suffer similarly. We can see from Figure 11f
that Santa is able to achieve almost the same performance
isolation as FQ (Figure 11g).

Packet Reordering. Since Santa shuffles flows across
queues, it can be susceptible to packet reordering. These can
manifest as significant performance hits if loss-based CCAs
perceive this reordering as packet losses and slow down in
response to them. In our experiments, we do observe occa-
sional packet reordering between rounds in Santa. However,
thanks to the standardization of RACK-TLP [15], the TCP
stack is pretty robust to these packet reordering and seldom
considers them to be legitimate packet losses. Moreover, these
reordering events become more infrequent as the flows’ queue
assignments converge and they stop shuffling.
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Figure 11: 9 long-running flows (3 each of ▲CUBIC, ■BBR, and •Vegas) competing in a FIFO, Codel [43], Cebinae [59], AHAB [33],
SFQ [14], Santa, and FQ bottleneck.

Convergence time for queue assignments. In practice, we
observed that the convergence time increases with the number
of queues. In the worst case, a flow can take up to K rounds to
converge to a queue assignment, where K is the total number
of Santa queues. In the experiment described in Figure 11f,
the flows converge to an assignment within 2 to 3 rounds
across multiple trials. For higher flow churn networks, this
convergence time can be drastically reduced by setting shorter
round intervals.

Scaling to larger number of flows. To understand the im-
pact of a larger number of flows on performance isolation,
we launched 90 flows, with 30 flows each of CUBIC, BBR,
and Vegas for Santa with 3 queues. The total bottleneck band-
width was set to 1.8 Gbps, which works out to be a fair share
rate of 20 Mbps. The flows have a minimum RTT of 20 ms
and were run for 1 minute. We plot the results in Figure 12a.

While all flows approximately receive their fair share of
bandwidth and Vegas flows saw the lowest delays. BBR flows
did not operate at their ideal Kleinrock point, but saw higher
than expected delays. On investigation, we found that this
was because the BBR flows were taking longer than expected
to converge into their own separate queues, and spent most of
the time competing with other CUBIC flows. However, over
a longer time horizon, the average delay for the BBR flows
would reduce as they spent more time in their own queues.
This behavior is consistent even when we run Santa with more
queues (Figure 12b).

We note here that we did not see this behavior earlier in
Figure 11f. This is because we weren’t able to set 10 BDP
buffers for the 90-flow experiment, like we did for the experi-
ment in Figure 11, due to buffer capacity constraints for a port
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Figure 12: Santa’s performance with larger number of flows (90
flows, 30 each of ▲CUBIC, ■BBR, and •Vegas).

on the switch. For the 90-flow experiment, the buffer size was
about 2 BDP. CUBIC and BBR are known to be a lot fairer
to each other at these smaller buffer sizes [41]. This suggests
that buffer sizing is crucial for making Santa work optimally.

6.2 Impact of Number of Santa Queues
Given how Santa aims to approximate performance isolation,
we can think of Santa occupying a trade-off space between
FIFO and FQ in the throughput-delay plane. To demonstrate
this, we ran 6 flows (2 each of CUBIC, BBR, and Vegas) for
Santa with different number of queues. As we can see from
Figure 13, Santa with a different number of Santa queues
straddles the continuum between FIFO and FQ, when it comes
to performance isolation. Santa-1 functions equivalent to a
FIFO queue, and Santa-6 is approximately equivalent to FQ.
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Figure 13: The Santa continuum. 6 flows (2 each of ▲CUBIC, ■BBR, and •Vegas) competing in FIFO, FQ, and different instances of Santa.
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Figure 14: 9 Long-running flows (equal shares of ▲CUBIC,
■BBR, and•Vegas) competing in a Santa bottleneck with a
shallow 1 BDP buffer.

6.3 Buffer Sizing
While the experiments so far have been conducted in deep 10
BDP buffers, Santa works well in shallower 1 BDP buffers as
well. To demonstrate this, we re-ran the experiments described
in §6.1 but in shallower 1 BDP buffers. We plot the results of
these experiments in Figure 14. Santa continues to provide
good performance isolation between the competing classes
of flows in both 3-queue and 5-queue configurations.

We note here that while all the experiments presented in
this paper equally divide the available buffer between all the
queues, this is a configurable parameter in Santa. One can
imagine provisioning more buffer for queues that are expected
to contain more aggressive flows to minimize packet loss -
however we leave this as future work.

6.4 Scalability
We prototype Santa with scalability in mind. While maintain-
ing per-flow state at Internet-scale is typically infeasible [33],

Table 1: Hardware resource consumption on the Intel Tofino for
different CMS configs

Resource santa_1col santa_2col santa_3col santa_4col
SRAM 22.1% 25.5% 29% 32.4%
Hash Bits 6.3% 7.4% 7.7% 8.1%
Hash Dist. Unit 19.4% 23.6% 25% 26.4%
VLIW Ins. 4.9% 5.2% 5.7% 6.3%

we achieve this by leveraging probabilistic data structures
(Count-Min Sketch [17]) for flow packet counts, frequent en-
try flushing, and decaying queue assignments. We evaluate the
expected performance of these mechanisms on Internet-scale
CAIDA traces [12] via simulations.

Count-Min Sketch. The Count-Min Sketch (CMS) enables
Santa’s scalability by filtering out roughly 90% of Internet
flows which are mice flows (§4.1), so Santa’s mechanisms
are applied only to non-mice flows. We implement a 4-row,
256-column CMS using four 8-bit dataplane registers of 256
entries each. Simulations on CAIDA traces (about 600k flows)
show that this setup results in negligible hash collisions, even
without flushing for up to 10 seconds. Table 1 shows the total
dataplane resource footprint when using up to four CMS rows.

Queue Delay Structure. By filtering out ∼90% of flows,
the CMS enables the Queue Delay structure to scale to
Internet-sized workloads. Since we use 32 bits to store delays,
the Queue Delay structure is flushed and refreshed every sec-
ond to prevent overflow, especially with deep buffers. Given
the CMS flushes at the end of a round, the number of colli-
sions for the Queue Delay structure scale with round duration
(see Figure 15). To enable this, we maintain two copies (read
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and write) of the two-level registers, alternating them each
round—writing to one while the CP reads and flushes the
other. This periodic swapping decouples round size from col-
lision rates in the Queue Delay structure.

Q-Assign Table. Without active removal, stale entries in the
Q-Assign table can cause collisions and incorrect assignments
at scale. To address this, we use an idle timeout of 10 seconds,
automatically deleting any entry not accessed within that
period. Simulations on CAIDA traces with a 90k-entry table
and the same hash function as our P4 implementation show
that this pruning significantly reduces collisions for longer
Santa rounds (see Figure 16).

6.5 Santa’s Limitations
While we are confident that approximate performance iso-
lation is a valuable goal for modern Internet AQMs, Santa
represents just one way to achieve it. Santa does have its
limitations.

More dynamic workloads. We have primarily analyzed
long flows in this paper, but Santa might find it challenging
to handle significant flow churn, even with short round dura-
tions. In our experience, tuning Santa’s shuffling threshold r
becomes critical in ensuring flows are not shuffled too often,
hurting their performance isolation. Tracking flow liveliness
also remains an open challenge, since persistent connections
that send intermittently (like video traffic) might not require
the same bandwidth as a long-running download. In such
cases, there might be ways to capture a flow’s throughput
demand better and shuffle it accordingly. We do not explore
this aspect in this paper.

Naive buffer allocation. As discussed in §6.3, we employ
a simple fair buffer allocation strategy between the Santa
queues. This might not necessarily be optimal, depending on
the classes of flows an operator supports. We expect Santa to
be complimented by approaches like ABM [2] and L4S [26],
that are centered around buffer management, and explicit noti-
fication from the end-hosts on their desired throughput-delay
preferences.

Deployment Context. While Santa is scalable enough to
handle a large number of flows with a handful of queues, we
do not expect a single configuration of Santa to be equally
effective in all deployment contexts. For example, the config-
uration of Santa evaluated in this paper (10 s round duration,
shuffling threshold r = 2) is likely to not be very effective in
networks where most flows last less than 10 seconds. While
this could be mitigated in theory by setting shorter round
intervals, we do not expect Santa to be very effective in en-
vironments that have have high flow churn and a lot of short
flows (like datacenter networks).

7 Related Work
The growing CCA heterogeneity on the Internet and its impact
on flow-level performance has been the focus of numerous
recent studies, particularly those exploring its implications
for fairness [51, 57] and buffer sizing [30, 34]. A major con-
cern is that newer CCAs, like BBR, may lead to unfairness
when competing with legacy CUBIC flows [35,54]. The in-
crease in CCA diversity and emerging variations [38], and its
apparent inevitability [41], has also spurred discussions on
the co-existence of flows on the Internet [53] and CCA stan-
dardization [25]. Others also highlight the challenges faced
by delay-based CCAs in highly competitive and heteroge-
neous network environments [6, 23]. To address those issues,
optimizations specifically designed for senders have been pro-
posed to improve fairness in bandwidth sharing [7, 36, 42, 45].

While end-host CCA optimizations can improve fairness to
some extent, they are fundamentally limited in scope. When
a flow experiences unfair bandwidth allocation, its only avail-
able strategy at the transport layer is to increase its sending
rate aggressively. However, this can lead to severe congestion
in the network rather than achieving true fairness. To ad-
dress this, network-assisted approaches have been explored to
regulate overly aggressive flows. DCTCP [5], DCQCN [64],
and L4S [26] use ECN signals, while HPCC [32] and Pow-
erTCP [3] use in-network telemetry (INT) as in-network sig-
nals. DiffServ [8] assigns different priority levels to flows but
depends on the marks given by the endpoints. The network
signaling methods are hampered by the fact that internet users
may not always comply with the recommended actions.

Active Queue Management. A more direct approach to
fairness involves flow isolation, where each flow or user is
allocated a separate queue to minimize interference. Fair queu-



ing (FQ [18]) ensures flow-level isolation, but switches today
have a limited number of queues available. Thus there is a
body of work that attempts to approximate fair queuing using
a few queues: priority-based approximations (PIFO [49], SP-
PIFO [4]) assign ranks to packets for scheduling and are less
flexible; AIFO [61] uses a single queue and admission control;
PIEO [48] uses programmable NICs to offload the scheduling;
AFQ [46], PCQ [47], and HCSFQ [62] use multiple queues
and specialized data structures to emulate FQ.

The emergence of programmable data planes has enabled
practical implementation for AQMs at scale. Traditional
AQMs mainly target only the loss-based CCAs by either per-
forming early congestion signaling (RED [20], ARED [19])
or preventing the bufferbloat problem (CoDel [43], PIE [44]).
Nimble [50] supports rate-limiting for fixed rates set by the
control plane. Flowtamer [37] aims to alter TCP receive win-
dow to tame the aggression of the flows, but has scalability
concerns and doesn’t work with QUIC traffic. Cebinae [60]
proposes a low-cost alternative on commodity programmable
switches that approximates fair queuing on a large scale by
taxing the heavy flows. P4air [51] attempts to provide isola-
tion to different CCAs, but it requires maintaining extensive
per-flow data, including queue length and timestamps. P4air
proactively drops packets for each flow to gauge its response
to packet loss, irrespective of congestion. Moreover, when
the flow’s group changes, P4air recirculates all packets of the
flow, potentially impacting actual bandwidth.

Fair Queuing. To achieve fairness between flows, fair queu-
ing (FQ [18]) isolates each flow by queuing it individually,
thus reducing interference between them. In theory, this
works perfectly for isolating flows, but switches today have
a limited number of queues available. Thus there is a body
of work that attempts to approximate fair queuing using a
few queues: priority-based approximations (PIFO [49], SP-
PIFO [4]) assign ranks to packets for scheduling and are less
flexible; AIFO [61] uses a single queue and admission control;
PIEO [48] uses programmable NICs to offload the scheduling;
AFQ [46], PCQ [47], and HCSFQ [62] use multiple queues
and specialized data structures to emulate fair queuing. How-
ever, these algorithms employ a uniform handling approach
and do not differentiate between the different types of CCAs
and their goals. The fundamental issue with these approaches
is that they intend to approximate the incorrect aspect of fair
queuing; they aim to achieve better bandwidth fairness instead
of isolation.

Beyond bandwidth fairness. Almost all of the methods
mentioned above focus on bandwidth equalization for fair-
ness, but a more nuanced understanding of fairness is required
beyond simply dividing bandwidth equally. Brown et al. chal-
lenge the effectiveness of TCP-friendliness in improving the
CCA ecosystem [11]. They propose an alternative bandwidth
allocation approach aligned with commercial agreements [10].

Zapletal et al. argued that users primarily care about flow
completion time (FCT) rather than strict bandwidth fairness,
suggesting that an imbalanced bandwidth allocation does not
necessarily degrade user experiences [63]. In the past, argu-
ments have also been made to view the congestion control
design space in the Network Utility Maximization (NUM)
paradigm [29]. However, a fundamental challenge in apply-
ing NUM to real-world networks is that the utility functions
of CCAs (often depending on parameters such as delay and
throughput) are typically unknown.

8 Discussion
In this paper, Santa presents a new approximate performance
isolation-driven paradigm for AQMs. This presents several
avenues for further discussion.

Handling bad actors. Protocols like TCP Brutal [1], which
aggressively seize bandwidth with little regard for fairness,
can significantly harm well-behaved flows. Santa can be ex-
tended to isolate such bad actors in a “hell queue,” thereby
limiting their impact on others. This is a concrete direction for
network-layer mitigation [52] of selfish behavior by imposing
certain penalties.

Santa’s impact on CCA design. Currently, CCA innova-
tion is often hampered by the need to remain competitive.
Many CCAs switch to a CUBIC-like mode once they detect
buffer fillers [7, 23]. Since Santa will allow CCAs with dif-
ferent throughput-delay preferences to co-exist, CCAs do not
need to ensure that they are competitive with CUBIC. Instead,
Santa allows a new CCA to optimize for its own desired
throughput-delay target. The opens up the possiblity of new
algorithms. For example, a new version of BBR that achieves
even lower delay could potentially become practically deploy-
able on the Internet.

Rethinking fairness. Traditional notions of fairness, most
notably TCP-friendliness, have long been used to evaluate
CCAs. However, in today’s increasingly heterogeneous Inter-
net, these definitions fall short of capturing the complexity
of modern traffic dynamics. The recent proposals [10, 53]
have been arguing for a shift from strict rate-based fairness
toward cost-aware or behavior-aware definitions, which may
better reflect the realities of diverse protocol behaviors and
application requirements. Approximate performance isolation
is arguably also a new notion of fairness.

9 Conclusion
Our current implementation of Santa is a proof-of-
concept that shows it is possible to achieve approxi-
mate performance isolation using a handful of queues
and a simple shuffling strategy. Santa explores a
new design space for AQMs that can allow different
CCAs to co-exist and achieve good performance trade-
offs. Santa is open-source and available on GitHub at
https://github.com/NUS-SNL/santa-nsdi-ae.
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