
Towards A Low-Latency Future
Internet

WANG ZIXIAO
B.Comp., Fudan University

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2018

Supervisor:
Associate Professor Ben Leong Wing Lup

Examiners:
Associate Professor Chan Mun Choon

Dr. Richard Ma Tianbai

Associate Professor KyoungSoo Park, Korea Advanced
Institute of Science and Technology

Acknowledgement

First of all, I would like to express my sincere gratitude to my supervisor,
Prof. Ben Leong. He always teaches me to work hard and do the right things.
Without his guidance and encouragement, I could not have completed the
journey. I thank my parents. They always support and encourage me when I
make mistakes or feel stressed. I also thank my lab mates, Hong Hande, Raj
Joshi, Wai Kay Leong, Oana Barbu, Xu Yin, Wang Wei, Aditya Kulkarni,
Daryl Seah, Ayush Mishra, Meng Xiangyun, Jin Shuaizhao and Yu Guoqing.
I learnt a lot from them and they are always willing to help me. Lastly, I
thank my wife Chen Lu and daughter Wang Yiru. It is them that give me
the strength and confidence to finish my study. This thesis is for them.

i

Publications

• Shuaizhao Jin, Xiangyun Meng, Daniel Lin-Kit Wong, Zixiao Wang,
Ben Leong, Yabo Dong and Dongming Lu. “Improving Neighbor Dis-
covery by Operating at the Quantum Scale”. In Proceedings of the 15th
IEEE International Conference on Mobile Ad hoc and Sensor Systems
(IEEE MASS 2018). Oct. 2018.

• Wai Kay Leong, Zixiao Wang, and Ben Leong. “TCP Congestion Con-
trol Beyond Bandwidth-Delay Product for Mobile Cellular Networks”.
In Proceedings of the 13th International Conference on emerging Net-
working EXperiments and Technologies (CoNEXT 2017). Dec. 2017.

• Shuaizhao Jin, Zixiao Wang, Wai Kay Leong, Ben Leong, Yabo Dong,
and Dongming Lu. “Improving Neighbor Discovery with Slot Index
Synchronization”. In Proceedings of the 12th IEEE International Con-
ference on Mobile Ad hoc and Sensor Systems (IEEE MASS 2015).
Oct. 2015.

• Yin Xu, Zixiao Wang, Wai Kay Leong, and Ben Leong. “An End-
to-End Measurement Study of Modern Cellular Data Networks.” In
Proceedings of the 15th Passive and Active Measurement Conference
(PAM 2014). Mar. 2014.

• Wai Kay Leong, Yin Xu, Ben Leong and Zixiao Wang. “Mitigating
Egregious ACK Delays in Cellular Data Networks by Eliminating TCP
ACK Clocking.” In Proceedings of the 21st IEEE International Con-
ference on Network Protocols (ICNP 2013), Oct. 2013.

ii

Contents

1 Introduction 1
1.1 Low-Latency TCP In The Wild 3
1.2 Environment-Aware Congestion Control 4
1.3 Contributions . 6
1.4 Organization of Thesis . 7

2 Related Work 8
2.1 Loss-Based TCP . 14

2.1.1 Attempts to Improve TCP Tahoe 17
2.1.2 Improving Throughput for Large-BDP Networks 20

2.2 Reducing TCP Latency . 23
2.2.1 Delay-based TCP . 24
2.2.2 Improving Performance with Network Information . . . 27

2.3 Achieving Low Latency & High Throughput 29
2.3.1 Forecast-based TCP 30
2.3.2 Utility Functions . 31
2.3.3 Modeling the Network 33

2.4 Summary . 35

3 Low-Latency TCP in the Wild 38
3.1 Census of TCP Variants . 38
3.2 Performance of Low-Latency TCP 41

4 Loss-Free Congestion Control 50
4.1 Aggregate Network Model . 52
4.2 Inferring the Operating Environment 57
4.3 Adapting to the Environment 60
4.4 Implementation . 62

4.4.1 Receive Rate (ρ) Estimation 62
4.4.2 Propagation Delay (RTTmin) Estimation 63
4.4.3 Capacity (C) Estimation 64

iii

4.4.4 Regulating the Sending Rate 64
4.4.5 Regulating Btarget initial 64
4.4.6 Hostile Environment Detection 66
4.4.7 Handling Losses and Network Outage 66

5 Performance Evaluation 67
5.1 Baseline: Single Flow . 69
5.2 Playing Well with Others . 72
5.3 Plausible Explanation for Internet Observations 76

5.3.1 Codel-Enabled Buffer 80
5.4 Deep Buffers . 84

5.4.1 Tuning Aggressiveness 87
5.5 Mode Detection Accuracy . 89
5.6 Fairness to Own Kind . 93
5.7 Realistic Operating Scenarios 94
5.8 Computation Overhead . 101

6 Conclusion & Future Work 103
6.1 Future Work . 105

6.1.1 Distribution of TCP Variants 105
6.1.2 Understanding Benevolence and Fairness 106
6.1.3 Achieving Ultra-low Latencies 107
6.1.4 Reducing Estimation Errors 107
6.1.5 Handling Packet Losses 108

iv

Abstract

The Transmission Control Protocol (TCP) was originally developed to pro-
vide reliable and ordered data transfer between applications running on dif-
ferent hosts. Physical link speeds have increased significantly over the years
and the cost of memory has dropped. Internet service providers (ISPs) then
started deploying fast links together with deep buffers to mitigate network
variations and increase link bandwidth utilization. Although the result-
ing throughput improved significantly, it led to a new Bufferbloat problem.
Bufferbloat occurs when deep buffers are deployed in the Internet, and loss-
based TCP variants aggressively fill the deep buffers until they overflow and
packets are dropped, causing retransmissions and long end-to-end latencies.

We have seen in recent times the emergence of a large number of low-
latency TCP variants to address the poor latency performance of tradi-
tional loss-based TCP variants like CUBIC. While we would expect these
low-latency TCP variants to compete poorly against aggressive TCP vari-
ants like CUBIC in the wild, we found that these recent low-latency TCP
variants match the performance of CUBIC and even sometimes outperform
CUBIC in our experiments on Amazon Web Service (AWS). After analyz-
ing the trace data, we found that these variants were throttling CUBIC by
inflicting significant losses on the network. Because most low-latency TCP
variants are insensitive to packet loss, they are not affected by packet losses
at the bottleneck buffers, while traditional loss-based TCP variants like CU-
BIC will back off by reducing cwnd. This allows them to take up additional
available bandwidth once the loss-based TCP variants back off and obtain
a larger share of the available bandwidth. We also found that the default
receive window for TCP CUBIC also limits its aggressiveness and so allows
low-latency variants to compete more favorably on the Internet.

Given the good performance of these low-latency variants in the wild,
we expect them to eventually become more common. However, our exper-
iments also suggest that as such variants become more common, they will
cause performance degradation to competing CUBIC flows. We argue that
to transition smoothly to a future Internet without causing significant degra-

v

dation to existing flows, new low-latency variants need to do more to avoid
inflicting unnecessary packet losses to existing CUBIC flows. To address this
issue, a sender can make better choices for congestion control if it is aware of
the existence and behavior of other flows sharing the same bottleneck link.

We proposed EvaRate, a new rate-based congestion control algorithm that
incorporates a new buffer estimation technique which allows an EvaRate flow
to infer its own buffer occupancy as well as that of the competing flows shar-
ing the same bottleneck buffer. With this mechanism, an EvaRate flow is
able to determine its operating environment and, when in a low-latency (or
benevolent) environment, collaboratively regulate the bottleneck buffer oc-
cupancy with other EvaRate flows. By doing so, EvaRate avoids inflicting
loss on the underlying network. We implemented EvaRate in the Linux ker-
nel and performed both trace-driven and Internet experiments to verify its
throughput and latency performance, as well as the effectiveness of its envi-
ronment detection. Our results suggest that EvaRate represents a promising
new approach for congestion control – by implementing a control loop that
infers the conditions of the network environment and reacts quickly.

Finally, our approach advances the state-of-the-art in TCP congestion
control by directly modeling the bottleneck link buffer and allowing flows to
collaboratively regulate this buffer so as to achieve low latency while still fully
utilizing the available bandwidth. We believe that our work is one potential
approach to allow the Internet to transition smoothly to a low-latency future
without disrupting its current operation, as the proportion of low-latency
TCP variant flows continues to increase.

vi

List of Figures

2.1 Summary of TCP design space. 13

3.1 RTT vs. cwnd for TCP Reno. 41
3.2 RTT vs. cwnd for TCP CUBIC. 42
3.3 RTT vs. cwnd for BBR. 42
3.4 TCP throughput for inter-continental Internet traffic. 44
3.5 Loss rate of TCP variants for inter-continental traffic. 45
3.6 TCP throughput of CUBIC and reference flows for inter-continental

Internet traffic. 45
3.7 TCP loss rate of CUBIC and reference flows for inter-continental

Internet traffic. 46
3.8 Throughput of CUBIC flows vs. reference flows for inter-

continental traffic. 47
3.9 Impact of loss on CUBIC throughput. 48

4.1 Simplified model of network bottleneck. 53
4.2 Relationship between the sending rate and buffer occupancy. . 54
4.3 The negative-feedback loop to manage the bottleneck link buffer. 55
4.4 Time evolution of Btarget(t) [schematic]. 57
4.5 Augmented model of network bottleneck. 58

5.1 Testbed setup using Cellsim [43]. 68
5.2 Network metrics for constant-rate (16Mbps) trace. 70
5.3 Impact of Lmax on throughput and latency. 71
5.4 Interaction between two EvaRate flows for constant-rate (16Mbps)

trace. 73
5.5 Interaction between CUBIC and EvaRate for constant-rate

(16Mbps) trace. 74
5.6 Interaction between BBR and EvaRate for constant-rate (16Mbps)

trace. 75
5.7 Impact of different proportions of BBR for shallow buffers. . 77
5.8 Impact of different proportions of Vivace for shallow buffers. . 78

vii

5.9 Impact of different proportions of Copa for shallow buffers. . 79
5.10 Impact of different proportions of EvaRate for shallow buffers. 79
5.11 Impact of different proportions of BBR for Codel-enabled buffers.

81
5.12 Impact of different proportions of Vivace for Codel-enabled

buffers. 82
5.14 Impact of different proportions of EvaRate for Codel-enabled

buffers. 82
5.13 Impact of different proportions of Copa for Codel-enabled buffers.

83
5.15 Impact of different proportions of BBR for deep buffers. . . . 84
5.17 Impact of different proportions of Copa for deep buffers. . . . 85
5.16 Impact of different proportions of Vivace for deep buffers. . . 85
5.18 Impact of different proportions of EvaRate for deep buffers. . 86
5.19 Impact of different proportions of EvaRate++ (α = 1.5) for

deep buffers. 88
5.20 Impact of different proportions of EvaRate++ (α = 1.5) for

shallow buffers. 88
5.21 Two scenarios of mode detection for Copa and EvaRate. . . . 89
5.22 Cumulative distribution of mode detection delay. 90
5.23 False positive rates for Copa and EvaRate. 91
5.24 False negative rates for Copa and EvaRate. 92
5.25 CDF of Jain’s index for various TCP variants. 93
5.26 Comparison of throughput for single-flow AWS experiment. . . 95
5.27 Comparison of loss rate for single-flow AWS experiment. . . . 96
5.28 TCP throughput of background CUBIC flows and reference

flows for double-flow AWS experiment. 96
5.29 TCP loss rate of background CUBIC flows and reference flows

for double-flow AWS experiment. 97
5.30 TCP throughput of background CUBIC flows and reference

flows with a larger receive window. 97
5.31 TCP loss rate of background CUBIC flows and reference flows

with a larger receive window. 98
5.32 Mobile cellular network trace: M1. 99
5.33 Mobile cellular network trace: Starhub. 100
5.34 Mobile cellular network trace: Singtel. 100
5.35 Satellite network trace. 101
5.36 CPU utilization of state-of-the-art congestion control algorithms.102

viii

List of Tables

2.1 Previously Proposed TCP variants. 37

3.1 Information of the AWS servers. 43
3.2 RTT for inter-continental traffic. 43

ix

Chapter 1

Introduction

The Transmission Control Protocol (TCP) was originally proposed to provide

reliable and ordered data transfer between applications running on different

hosts. File and data transfers were the major applications running on the

early networks which had relatively low bandwidth, so throughput, reliability

and high utilization were the main focus of TCP design. As memory became

cheaper and link bandwidth increased significantly, Internet service providers

(ISPs) started to deploy deep buffers to mitigate network variations while

achieving link utilization. This led to a serious latency problem for traditional

loss-based TCP variants, called Bufferbloat [19]. The Bufferbloat problem is

essentially caused by the loss-based congestion signaling mechanism and the

use of the congestion window cwnd to regulate the sending rate indirectly. In

particular, loss-based TCP variants probe the available network bandwidth

by filling the bottleneck link buffer and causing packet loss by buffer overflow.

Therefore, when deep buffers are deployed in the Internet, the filling of these

buffers will inflict large latencies to all the flows sharing the same bottleneck

1

link buffer.

We have seen in recent times the emergence of a large number of low-

latency TCP variants [5, 27, 2, 9] to address the issue. The idea is to use

various types of metrics like delay, RTT, loss rate and throughput as signals

for network congestion, instead of using packet loss. In theory, these vari-

ants are expect to be more sensitive to network variations than traditional

loss-based TCP variants, and thus be able to detect and react to network

congestion earlier.

However, being more sensitive to network variations or congestion sug-

gests that these low-latency TCP variants will be less aggressive than the

TCP CUBIC flows sharing the same bottleneck. TCP CUBIC is currently

the default TCP for Linux operating system, and is known for its aggressive-

ness and poor latency performance [15]. While the bottleneck link buffer is

gradually filling and before a packet loss occurs due to overflow, CUBIC is

unable to detect and react early due to its loss-based congestion signal. On

the other hand, the low-latency TCP variants would detect network conges-

tion from the increased latency and reduce their aggressiveness to ease the

network congestion. The result is that these low-latency TCP variants have

a reduced share of the bottleneck link bandwidth.

While state-of-the-art TCP variants claim to achieve high throughput

and low latency, the sensitivity to latency should theoretically lead to poor

throughput performance when they compete with loss-based CUBIC. Given

that we expect low-latency TCP variants to be more commonly deployed

on the Internet, we are thus keen to investigate if our expectation of how

they will interact with TCP CUBIC is correct, and if so, how serious the

2

degradation of throughput will be in practice.

1.1 Low-Latency TCP In The Wild

To this end, We first investigated how recent low-latency TCP variants per-

formed in the wild by conducting a measurement study using the servers from

Amazon Web Service (AWS). We designed 2 sets of experiments to compare

TCP CUBIC with state-of-the-art PropRate [27], BBR [5] , Vivace [9] and

Copa [2]. The AWS servers used in the experiment were located at Australia,

Asia, North America and Europe. Surprisingly, while one would expect low-

latency TCP variants to contend poorly against buffer-filling TCP variants

like CUBIC, we found in the single-flow experiments in the current Internet

that modern low-latency TCP variants can match the performance of CU-

BIC and even outperform CUBIC in some experiments. This suggests that

low-latency TCP variants would likely become increasingly popular over time

and we foresee a future Internet where CUBIC is replaced by these variants.

In our investigations, we believe that the likely reason why the new low-

latency TCP variants are contending well with CUBIC on the Internet is that

the bottleneck buffers are relatively shallow, or active queue management

(AQM) like Codel [33] is deployed, making the bottleneck buffers effectively

shallow. Low-latency TCP variants are designed to be insensitive to packet

loss and more sensitive to latency. Effectively shallow bottleneck buffers will

potentially cause packet losses, while still keeping latency low. This will make

CUBIC flow back off and give up bottleneck link bandwidth to low-latency

TCP variants. It was also shown earlier that BBR could throttle CUBIC

3

by inflicting massive losses [17]. We have since observed similar issues with

Copa [2] and Vivace [9].

Further investigations (see Chapter 5) showed that this anomaly is also

partly because of the default receive window at the receiver being too small,

which prevents CUBIC from obtaining a larger share of the bandwidth but

has no impact to rate-based low-latency TCP variants. However, even with

a larger receive window, we can still observe that CUBIC achieves lower

throughput than low-latency TCP variants, with a non-trivial loss rate.

1.2 Environment-Aware Congestion Control

The results of the measurement study suggest that new low-latency TCP

variants need to avoid causing throughput degradation to existing CUBIC

flows if the Internet is to transition smoothly to a benevolent future, as

the proportion of low-latency TCP flows increases. It is thus obvious that

detecting whether traditional aggressive loss-based flows like CUBIC exist

and reacting properly to avoid harming these flows are important to achieve

this goal. We refer to the current Internet operating environment where

a flow will almost always encounter a competing buffer-filling flow at the

bottleneck link as a hostile environment. We envision a future where delay-

based low-latency TCP variants can co-exist without buffer overflows, and

refer to it as a benevolent environment.

We show that this can be done by directly estimating not only the buffer

occupancy for our flow, but also that of competing flows sharing the same bot-

tleneck buffer (§4.2). By implementing a negative-feedback control loop that

4

keeps the buffer occupancy low, EvaRate, an EnVironment-Aware Rate-

based congestion control algorithm, keeps latency low and avoids overflowing

the buffer and inflicting loss on competing flows. By estimating the total

occupancy of the shared bottleneck link buffer, an EvaRate flow can de-

termine whether it is operating in a hostile or benevolent environment and

work together with other EvaRate flows to keep the total occupancy low

(§4.3). In the process, we are able to decouple EvaRate’s behavior in the

two operating environments. With decoupling, we can independently tune

EvaRate’s behavior for each operating environment, without impacting its

behavior in the other. This means that we can now have a protocol that con-

tends well against other flows in the current Internet, while simultaneously

achieving lower latencies than existing algorithms in the future benevolent

environment.

We show in our experiments that EvaRate is able to keep buffer occupancy

low and achieve low latencies when contending with other flows. We also

demonstrate that EvaRate is able to achieve throughput comparable to the

state-of-the-art TCP variants in the current Internet, for mobile networks and

even for satellite networks (§5.7). EvaRate operates at an efficient point along

the throughput-latency frontier. Last but not least, EvaRate is more efficient

than state-of-the-art TCP variants and consumes similar CPU resources with

TCP CUBIC.

EvaRate has been implemented in the Linux kernel and requires no mod-

ifications in the Internet core or to the TCP receiver. It is thus amenable to

immediate deployment.

5

1.3 Contributions

We make 2 major contributions in this thesis. i) we show that state-of-the-art

low-latency TCP variants can cause significant losses on certain conditions,

due to them being insensitive to losses. This will cause unfairness to the

loss-based TCP variants that share the same bottleneck link; ii) we design

a new rate-based congestion control algorithm that models the bottleneck

link buffer, directly manages the bottleneck buffer, detects the environment,

and allows competing EvaRate flows to collaboratively regulate their sending

rates to keep the overall buffer occupancy much lower.

First, our measurement study demonstrates that the new low-latency

TCP variants will inflict packet losses and throttle loss-based CUBIC flows,

causing unfairness to these flows. The reason that causes such aggressiveness

is shallow buffer and the insensitivity to packet losses. Since the new low-

latency TCP variants often perform congestion control based on a number

of metrics like one-way delay, RTT and bottleneck link bandwidth, they

assume that there should not be any congestion if low latency is achieved.

It implies that packet losses are random losses irrelevant network congestion

when packet delay is low. However, in the case of shallow buffers, the latency

might never be large because queuing delay is significantly lower compared

to that for a deep buffer, even if the buffer is full and buffer overflow occurs,

causing packets to be dropped. As a result, the insensitivity to packet losses

will inflict a lot of packet losses to other loss-based TCP variant that share the

same bottleneck link buffer and force them to back off, leading to significant

unfairness.

6

We propose EvaRate and shows that it is a viable alternative to perform

congestion control by modeling and directly regulating the bottleneck link

buffer, detecting the environment and information of other flows, reacting

quickly and collaboratively keeping the buffer occupancy low. In the pro-

cess, we are able to minimize packet losses. In addition, we show that it

is necessary to distinguish benevolent and hostile environment and achieve

accurate detection. We believe that there is still much room for low-latency

congestion control following our work, and a smooth transition to a low-

latency Internet is possible.

1.4 Organization of Thesis

The rest of this thesis is organized as follows: In Chapter 2, we discuss the

related works. In Chapter 3, we present our measurement study on the dis-

tribution of different TCP variants and the performance of low-latency TCP

variants on the Internet. We then describe the design and implementation of

EvaRate, our rate-based TCP congestion control, in Chapter 4. Thereafter,

in Chapter 5, we compare EvaRate with other state-of-the-art TCP variants

in terms of throughput, latency, fairness and environment detection. Finally,

we conclude and discuss possible directions for future research in Chapter 6.

7

Chapter 2

Related Work

In 1974, Vint Cerf and Bob Kahn proposed a protocol for packet network

intercommunication to support the sharing of the resources that exist in dif-

ferent packet switching networks [6]. It was the prototype of the modern

transmission control protocol (TCP), which defined the goal, mechanism,

and components of a congestion control algorithm, and provided a basic so-

lution based on a mechanism called the congestion window cwnd, which is

the maximum allowed number of packets in flight. Based on this design, TCP

can generally be described in terms of 3 key components: Packet Regulation,

Congestion Signal and Congestion Avoidance and Recovery. All TCP vari-

ants, including the state-of-the-art proposals, can more or less be decoupled

into these 3 components.

Packet Regulation. Packet regulation determines how a TCP sender

regulates the dispatching of packets at the sender. Basically, the goal of

congestion control is to probe the available link capacity, match the packet

dispatching with it to fully utilize the link, and adjust the packet dispatch-

8

ing when congestion occurs and eases. There are mainly two approaches to

measure the link capacity and regulate packet dispatching: cwnd-based and

rate-based. A cwnd-based mechanism limits the maximum allowed number

of packets in flight with the congestion window cwnd, and performs con-

gestion control by adjusting the maximum cwnd in response to detected

congestion. On the other hand, a rate-based mechanism dispatches packets

directly at a desired sending rate, and performs congestion control by reg-

ulating the sending rate in a manner that avoids causing congestion. The

cwnd-based mechanism has been the most popular approach for packet reg-

ulation since the invention of TCP, and is still dominant today. Its main

advantage is in its simplicity and stability, making it easy to implement

and predictable in performance. However, cwnd only indirectly controls the

sending rate, and therefore, we claim is unable to react to network varia-

tions quickly enough. Also, it suffers from downlink throughput degradation

problem when uplink and downlink are asymmetric and uplink is congested,

due to its ACK-clocking feature [27]. A rate-based mechanism addresses

this problem because the sender directly manages the sending rate and the

packet dispatching is not limited by ACK packets. But a rate-based mech-

anism comes with 2 major challenges: (i) packet pacing and (ii) network

outage. It is not easy to implement a rate-based mechanism in the kernel,

because it involves packet pacing and requires clock-based interrupts. Also,

a rate-based mechanism would saturate a network in the event of a network

outage, since the sender is no longer ACK-clocked and will not stop sending

packets when ACK packets are not received. With the availability of better

hardware, these challenges have become much less serious. Most CPUs are

9

fast enough to handle clock interrupts without significant loss in efficiency

and most network links are almost lossless. Therefore, it is now practical to

implement rate-based packet dispatching efficiently.

Congestion Signal. A TCP sender detects network congestion using

a congestion signal. There are generally 5 metrics that can be used either

independently, or in some combination, as congestion signals: packet loss,

network delay, network information, utility function and buffer occupancy.

Packet loss was initially used as the default congestion signal for TCP. The

problem with a loss-based congestion signal is that when deep buffers are

deployed in the Internet, loss-based TCP variants will fill the bottleneck link

buffer to full, causing serious latency problems [33]. The problem is typi-

cally referred to as Bufferbloat [33]. Network delay is a natural alternative,

and most delay-based TCP variants use both loss and delay as congestion

signals, which means that they react not only to packet losses, but also to

increased delay. Unfortunately, such TCP variants also tend to react more

conservatively than both loss-based TCP variants, which makes them com-

pete poorly with the prevailing TCP variants in the Internet. As a result,

delay-based TCP variants did not find widespread adoption. A few TCP

variants use only delay as a congestion signal, such as PropRate [27]. They

require buffer delay be measured accurately, which is not easy in practice.

There are also TCP variants that exploit network information provided by

routers and switches to help detect network congestion, like DCTCP [1]. We

believe that with the availability of SDN-enabled switches and programmable

switches, it would be much easier to deploy such algorithms in the future.

Some recent proposals use utility functions as indirect congestion signals.

10

Utility functions are defined functions of network metrics like throughput,

delay and loss rate. A utility function defines the goodness of network sta-

tus, and thus the value of a utility function indicates the level of network

congestion. The drawback of such method is obvious: they are not easily

explainable and is difficult to understand and predict the performance of the

resulting congestion detection. In this thesis, we propose a new algorithm

EvaRate, that uses the estimated bottleneck link buffer occupancy as a con-

gestion signal, which allows EvaRate flows to collaboratively regulate the

bottleneck link buffer. To the best of our knowledge, we are first to propose

the use of estimated bottleneck link buffer occupancy as a congestion signal.

Congestion Avoidance and Recovery. Congestion avoidance and re-

covery involves regulating the send rate of the packets at the sender to achieve

high network utilization while avoiding network congestion. It is the most

important component in congestion control. Most cwnd-based TCP variants

use the additive-increase and multiplicative-decrease (AIMD) mechanism or

the multiplicative-increase and multiplicative-decrease (MIMD) mechanism

to adjust cwnd and perform congestion control [7]. AIMD means that cwnd

is incremented by 1 or a constant value x for each RTT and reduced by half

on a congestion event. This worked well in the past when network band-

width was relatively low and random losses were common. However, with

the development of modern networks, link bandwidth has improved signif-

icantly and random losses are rare. It was found that the original AIMD

cwnd-based mechanism was not able to fully utilize bottleneck link band-

width because it was too conservative in increasing cwnd when no network

congestion happens, and too aggressive in decreasing cwnd when there was

11

network congestion. With the introduction of high bandwidth-delay product

(BDP) networks, AIMD was gradually replaced with MIMD (TCP CUBIC)

so that the changes to the cwnd were more responsive. A more recent ap-

proach to congestion control was to define and maximize certain network

utility functions [8, 9, 40, 42, 48]. They determine the send rate by maximiz-

ing these network utility functions either offline or online. Offline methods

such as Remy [42] train the model off-line with a large amount of data and

apply the trained model at the sender. Online methods such as Vivace [9]

train and improve the model dynamically on-the-run. The selection of utility

functions is tricky and it is not clear if such utility function would work well

in general. A final class of TCP variants attempt to perform congestion con-

trol in a more conventional way: regulating the bottleneck link buffer [5, 27]

. They share a common belief that managing the bottleneck link buffer is a

direct way of managing network congestion. Thus, they focus on filling and

draining the bottleneck link buffer by adjusting the sending rate to match

the bottleneck link bandwidth.

The literature in TCP congestion control is vast. In essence, network

congestion control is about determining how we can send data packets so

as to fully utilize the available network resources, while avoiding network

congestion. This translates to 3 tasks: i) regulate the sending of data pack-

ets (Packet Regulation); ii) detect network congestion (Congestion Signal);

iii) adjust the sending of data packets to and avoid and ease the congestion

(Congestion Avoidance and Recovery). Hence, to understand the relation be-

tween our work and previous work, we can organize the previous algorithms

according to their differences with respect to how they handle Packet Regu-

12

Packet

Regulation

Congestion

Signal

Congestion

Avoidance &

Recovery

cwnd-based Rate-based

Loss DelayUtility

AIMD MIMD BW

Occupancy

Network
Congestion

Signal (2nd)Delay

ForecastO�ine Online Method

AIMDAIMDMIMD
[1,13,

14,22,

33,36]

[3,4,

38]
[12,18,

30]

[8,9,

48]

[10,15,

24,44]

[40,42] [43,45]

[17,20,

26,41]

Loss

FUNC

[2,11,

32,39]

NUM

Estimate

[5,27]

Estimate
[EvaRate]

BW +

Link Capacity

Figure 2.1: Summary of TCP design space.

lation, Congestion Signal and Congestion Avoidance and Recovery. This is

summarized in Figure 2.1,

In this chapter, we first review TCP Tahoe, a cwnd-based and loss-based

TCP variant that is the foundation of modern TCP congestion control [18].

We describe the Slow Start, Congestion Avoidance and Congestion Recovery

states. Next, we discuss traditional cwnd-based TCP variants that use not

only packet loss, but also network delay and network information to regulate

latency. The problem of such TCP variants is: 1) they achieve low latency at

13

a cost of lower throughput; 2) they are cwnd-based, which has only indirect

control over the sending rate, and thus reacts to network variations slower.

Finally, we describe and discuss state-of-the-art solutions that either use new

congestion signals (utility function, bottleneck bandwidth and bottleneck

buffer occupancy) or apply innovative congestion avoidance and recovery

methods (network utilization maximization, function, and network model).

2.1 Loss-Based TCP

Van Jacobson was the first to report a series of congestion collapses and sug-

gested that they were caused by the improper congestion control mechanism

in the original 4.3BSD (Berkeley UNIX) TCP implementation. TCP Tahoe

was proposed to enhance the original TCP protocol, completing the basic

mechanism and functionality of congestion control and forming the founda-

tion of modern TCP [18]. TCP Tahoe paces the sending of data packets by

adjusting the congestion window cwnd after an ACK packet is received or a

data packet was lost. This is also known as ACK-clocking. It used packet

loss as a signal of network congestion, and reduces cwnd to ease the con-

gestion when packet loss occurs. The original 4.3BSD TCP implementation

assumed that packet losses are only caused by congestion in the network,

which was not true because there were random losses in the physical layer

of the networks. TCP Tahoe mainly focused to solving two problems. First,

the Go-Back-N automatic repeat request mechanism in the original TCP was

inefficient because a packet loss in the network could cause multiple retrans-

missions of subsequent packets. Secondly, letting receiver control the send

14

window was likely to cause severe network congestion due to the receiver re-

siding in distinct networks from the sender. In order to address these issues,

3 traffic management techniques or states were introduced to the original

TCP protocol: Slow Start, Congestion Avoidance and Fast Retransmit. In

this section, we describe the 3 basic states introduced by TCP Tahoe that

all modern TCP implementations have in common.

Slow Start. As defined in the original TCP protocol, each TCP connec-

tion starts with the sender injecting a batch of packets until the number

of in-flight packets reaches the window size allowed and set by the receiver.

This mechanism works well when the sender and receiver are located in the

same local area network (LAN), which means that the links in the route share

similar characteristics, including delay, throughput and packet loss rate. Nev-

ertheless, problems can arise when there is a mixture of both fast and slow

links along the route. Under such condition, an initial burst of packets might

overwhelm the network link and breakdown the whole network. Therefore,

in the Slow Start state, a congestion window, cwnd, is introduced to the per-

connection state [18]. When starting a new connection or restarting from a

packet loss event, the system enters the Slow Start state, and the cwnd is set

to 1, and is increased by 1 for each ACK packet received from the receiver.

The sender sends the minimum of the receiver’s advertised receive window

and cwnd. The Slow Start state continues until cwnd reaches the Slow Start

threshold, ssthresh, after which the sender enters the congestion avoidance

state.

Congestion Avoidance. The congestion avoidance state regulates the

sending of packets and adapts to network variations and congestion. TCP

15

Tahoe initially introduced additive increase multiplicative decrease (AIMD)

policy to adjust the congestion window cwnd accordingly. When encoun-

tering a packet loss, which is a signal of network congestion, the slow start

threshold ssthresh is set to half of the current congestion window cwnd,

then cwnd is reset to one and the sender switches back to the slow start

state. With these operations, the sender slows down the sending rate to

mitigate the network congestion.

Fast Retransmit. A major problem with the timeout triggering retrans-

mission mechanism in the original TCP protocol was that a timeout can be

relatively long, which means that the sender will have to wait for a long

time to resend the lost packet, thus causing degradation in network perfor-

mance. TCP Tahoe uses the fast retransmit mechanism to resend any likely

lost packets before the timeout event occurs. The motivation behind is that

if duplicate ACKs for an in-flight packet are received, most probably this

packet has been lost en route. Specifically, TCP Tahoe assumes that three

duplicate ACK packets would indicate the loss of a packet, triggering the

Fast Retransmit state. The sender performs the retransmission of the lost

packet without waiting for the timeout timer to expire. Subsequently, the

slow start threshold ssthresh is adjusted to half of the current congestion

window cwnd, cwnd is reset to the initial value one, and finally it returns to

the Slow Start state.

16

2.1.1 Attempts to Improve TCP Tahoe

Although TCP Tahoe defined the fundamental components of TCP imple-

mentation, several performance problems were found and inspired new TCP

variants. Like TCP Tahoe, these new algorithms also used cwnd-based packet

regulation, loss-based congestion signal, and AIMD mechanism to adjust

cwnd.

It was observed that random packet losses were common in the network.

In such a scenario, it was obviously not wise to empty the link and restart the

connection, which was the case in TCP Tahoe. Furthermore, even though

a packet has a high probability of being lost if three duplicate ACKs were

received, it does not necessarily imply that the network congestion is serious

because the subsequent three segments have been successfully received by the

receiver. In this light, TCP Reno was proposed to overcome TCP Tahoe’s

drawback of reducing the sending rate too aggressively after duplicate ACKs

are received.

TCP Reno inherited all the techniques from TCP Tahoe including Slow

Start, Congestion Avoidance and Fast Retransmit, but the Fast Retransmit

state was replaced with a Fast Recovery state. Upon receiving three duplicate

ACKs, TCP Reno will halve the current congestion window cwnd instead of

resetting it to the initial value one, set the slow start threshold ssthresh to

the new cwnd, and enters the Fast Recovery state. In this state, TCP Reno

retransmits the possibly lost packet that is indicated by the three duplicate

ACKs. Then, for each duplicate ACK, cwnd is increased by one. This state

continues until a new ACK arrives, which implies that the retransmitted

17

packet has been received, and TCP Reno switches back to the Congestion

Avoidance state, setting cwnd to ssthresh.

The principal limitation of TCP Reno is that it only retransmits the first

lost packet in the current window, which fails to detect other possible losses

within the window and thus could lead to the timeout of other lost packets.

As a result, TCP Reno will only perform well when there was single packet

loss within a window of data. Intuitively, TCP Reno would perform poorly

if deployed in high packet-loss networks such as WiFi, and at worst it works

just like TCP Tahoe.

To enhance the performance in the event of multiple packet losses, TCP

NewReno was proposed in RFC 2582 [12]. TCP NewReno differs from TCP

Reno only in the Fast Recovery state. In TCP Reno, once a fresh ACK is re-

ceived, it leaves the Fast Recovery state and enters the Congestion Avoidance

state. Instead, TCP NewReno takes note of each outstanding packet when it

enters the Fast Recovery state, and does not exit until all those outstanding

packets are acknowledged. Therefore, when a fresh ACK is received, there

are two cases: (i) if it acknowledges all outstanding packets logged upon en-

tering the Fast Recovery state, then TCP NewReno exits, sets the congestion

window cwnd to ssthresh, and goes to the Congestion Avoidance state like

TCP Reno. (ii) If it is a partial ACK, then TCP NewReno retransmits the

next lost packet, and stays in the current state. Eventually all outstanding

packets will be acknowledged.

A major limitation of TCP NewReno is that it takes one round-trip time

(RTT) to detect each packet loss. It would be much more efficient to detect

and retransmit all the lost packets in one go. To this end, a new TCP

18

option called TCP Selective Acknowledgment (TCP SACK) was proposed

in RFC 2018 as an extension of TCP Reno and TCP NewReno [31]. When

enabled, TCP SACK requires packets are acknowledged selectively instead

of cumulatively. Hence, each time an ACK is received, an extra piece of

data is integrated into the segment header, that describes which blocks of

out of order packets have arrived at the receiver. Similarly, TCP SACK

enters the Fast Retransmit state when the sender receives 3 duplicate ACKs,

and exits only when all outstanding packets upon entering the state are

acknowledged, with the congestion window cwnd set to ssthresh. However,

instead of transmitting all unacknowledged packets in the current window,

TCP SACK retransmits all the packets that are missing.

TCP Westwood is a TCP variant that attempts to improve the TCP

performance for heterogeneous networks (wired and wireless) where segment

losses are often due to lower layer link errors instead of network conges-

tion [30]. Under such condition, standard TCP such as TCP Reno will per-

form poorly because all segment losses are treated as a signal of network

congestion, and the congestion window is reduced drastically to half of its

current value, leaving much available link capacity wasted. The key idea is to

select cwnd and ssthresh according to the current available link bandwidth

when the congestion occurs rather than simply halving the current cwnd,

which is too aggressive particularly when the loss is caused by a link error.

Westwood uses an end-to-end method to measure the receive rate by exploit-

ing the information in ACKs. By counting how many segments (or bytes)

have been received during the last ACK and the current ACK, it’s able to

compute a new measurement of throughput. Westwood employs a low-pass

19

filter to average sampled throughput and get rid of outlier noise. Having

the filtered measurement of throughput est bw, Westwood sets ssthresh and

cwnd to be est bw ∗ RTTmin/seg size after three duplicate ACKs or coarse

timeout expiration. This process guarantees the restart level after a loss is

consistent with the available bandwidth.

2.1.2 Improving Throughput for Large-BDP Networks

With the development of faster physical links, it was found that the tradi-

tional way of increasing cwnd is too slow for large bandwidth-delay-product

(BDP) networks. The reason is that AIMD increases its cwnd slowly after

packet loss events, and thus it takes a long time to recover to the state before

a random packet loss, causing under-utilization of the network bandwidth.

This issue is especially serious in large bandwidth-delay product networks

because they require an extremely high cwnd to fully utilize the bottleneck

network bandwidth. Therefore, a number of TCP variants were proposed to

address this issue by increasing cwnd more aggressively with multiplicative

increase on an ACK packet and decreasing cwnd less aggressively on a packet

loss event. These variants are mainly cwnd-base, loss-based, and use MIMD

to adjust cwnd.

Scalable TCP (STCP) [24], HighSpeed TCP (HSTCP) [10] and H-TCP [26]

were the attempts to mitigate the impact of random packet losses on the

throughput performance by using MIMD mechanism. The basic idea is to

make the increment and decrement of cwnd on each ACK and packet loss a

function. For each acknowledgment in a RTT when no congestion has been

20

detected,

cwnd← cwnd+ i()

and for the detection of segment losses in a RTT

cwnd← cwnd− d()

For STCP, i() = 0.01 and d() = 0.125∗cwnd. This approach adapts cwnd

independent of its size, thus making it scalable to various types of network

links, such as bulk transfer in high-speed wide-area networks (WAN) where

cwnd is usually large due to the high bandwidth-delay product (BDP). For

HSTCP, i() and d() are two complicated functions of a threshold of cwnd,

loss rate and the current cwnd. It achieves a significantly larger steady-state

congestion window size compared with the standard TCP, which translates

to higher average throughput and better ability of recovering from transient

losses in network links.

Unlike STCP and HSTCP, the key idea of H-TCP is to make i() a function

of δ, the time elapsed since the last packet loss event. That says, the longer

it is since the last congestion event, the faster H-TCP should increase cwnd

to utilize available bandwidth. For the sake of backward compatibility, a

threshold δL is introduced to separate low and high speed modes. When

δ ≤ δL, α is set to one, which is the default increase rate in the congestion

avoidance state regulated in standard TCP; when δ ≥ δL, α is set as a

function of δ. The basic assumption here is that the time interval between

segment losses in highspeed networks is long. Hence H-TCP is theoretically

unable to handle network types with a high loss rate such as WiFi.

21

Xu et al. found the issue called RTT unfairness in other existing TCP

protocols, which stems from the preference of low RTT flows over large RTT

flows, because cwnd increase faster for a flow with lower RTT. Binary increase

congestion control (BIC-TCP) was proposed as a solution to ensure linear

RTT fairness under large congestion windows [44]. They proposed a new

cwnd adjustment technique binary search increase, combined with a new

additive increase mechanism, to address the issue of RTT unfairness. The

basic idea is that the target window size target win should be midpoint of

max win and min win, where max win is set to the last cwnd at which a

congestion event is detected, and min win is supposed to be the window size

without any segment losses observed. Specifically, when segment losses occur,

max win will be set to the current cwnd, and the reduced congestion window

will become the new min win; when cwnd reaches target win, min win will

be replaced with the current target win, which is then updated based on

the new min win and max win. In addition, to achieve TCP friendliness,

BIC-TCP engages only when cwnd is beyond a threshold, otherwise standard

TCP takes over the job.

CUBIC is an improved version of BIC-TCP and has been the default TCP

algorithm in Linux kernel since 2006 after version 2.6.18 [15]. The motivation

is to retain the concave and convex behavior before and after the equilibrium

point respectively while simplifying the complicated cwnd adjustment algo-

rithm in BIC-TCP, which adds complexity to analyzing the performance,

tuning parameters for optimization, and implementing the system. The so-

lution turns out to be a cubic function of the elapsed time since the last

congestion event, as indicated by its name. It produces a smoother variation

22

of cwnd as well as solves several problems remained in BIC-TCP. Firstly, it

is still too aggressive to increase cwnd in the additive increase phase, par-

ticularly in lowspeed networks. CUBIC employs a cubic function to perform

a smoother increase during this time period. Secondly, the real time nature

of CUBIC makes it TCP friendly regardless of RTT being short or long.

Additionally, it improves TCP friendliness by considering the long term con-

vergence window size of traditional AIMD mechanism. In general, CUBIC

inherits property of stability and scalability from BIC-TCP with a more a

elegant solution, and enhances the TCP friendliness and RTT fairness.

2.2 Reducing TCP Latency

As interactive applications such as online games and video conferencing be-

come more common, the poor latency performance of conventional loss-based

TCP variants has become a significant drawback. It was found that the

Bufferbloat problem, which causes large latencies due to the deep buffers

deployed in modern networks, was getting more and more prevalent [19]. It

was well-known that packet loss is a poor indicator of congestion [22], as the

sender will fill the buffer to full until buffer overflow happens and packets

are getting dropped, causing serious latency problem. Also it can only in-

dicate whether or not there is congestion, without offering any information

regarding the degree of congestion and how to adjust the sending rate. It was

found that the Bufferbloat problem was serious in not only traditional wired

networks, but also mobile cellular networks where larger buffers are deployed

to absorb network variations and improve link utilization [46, 28]. This moti-

23

vated a new class of congestion control mechanism that takes not only packet

loss, but also network delay into consideration. These TCP variants employ

both loss-based and delay-based congestion signaling.

2.2.1 Delay-based TCP

TCP Vegas is a loss-based and delay-based TCP implementation based on

modifications to TCP Reno, that tried to achieve more efficient use of the

available bandwidth and better prevention of packet losses due to over-

utilizing network links [3].

Vegas differs from TCP Reno by applying a proactive congestion avoid-

ance mechanism rather than the reactive one like TCP Reno. TCP Reno

detects and reacts to the network congestion with segment losses as a signal

of link over-utilization, and then reduces its sending rate. Therefore, basi-

cally TCP Reno oscillates between congesting network links and mitigating

the congestion back and forth. Vegas, on the other hand, attempts to prevent

over-utilizing the network link by comparing the measured throughput and

the expected throughput, and regulating the transmission before congestion

really happens.

The general idea of the new congestion avoidance mechanism is to main-

tain the ”right” amount of extra data in the work [3]. For every RTT, Vegas

computes the expected throughput by dividing the current window size by

the minimum RTT for the connection which translates to the situation when

the network is not congested, and calculates the current actual throughput

by counting how much data is delivered within the time period of the sending

24

and acknowledgment of a distinguished segment. Theoretically, the actual

throughput should not exceed the expected throughput, otherwise the mini-

mum RTT has to be updated to obtain a higher expected throughput. If the

expected throughput exceeds the actual throughput too much, which implies

more than capacity of segments have been sent, Vegas will decrease cwnd

linearly in the next RTT. Instead, if too little is the difference, Vegas will

increase cwnd linearly for the next RTT. The overall goal is to keep the extra

data in the network neither too much nor too little. The problem of Vegas is

that it is too sensitive to delay and thus competes poorly with CUBIC flows,

which fill the bottleneck buffer without considering delay.

While the Linux kernel uses CUBIC [15] as its default congestion con-

trol module, Microsoft developed Compound TCP (CTCP) [41] for its WIN-

DOWS OS. Microsoft’s CTCP algorithm combines the traditional TCP Reno

AIMD window algorithm with an additional delay-based window. The final

cwnd is the sum of these two windows. The delay-based window increases

when the RTT is small to quickly probe for more bandwidth. When queuing

is detected from an increasing RTT, the delay-based window is decreased to

keep the total cwnd constant. This approach combines both packet loss and

RTT to detect congestion.

FAST TCP uses queuing delay as the primary congestion measure to

adjust cwnd, while reacting to segment loss as well [20]. The authors argue

that queuing delay is a better measure than segment loss. Firstly, each

measurement of queuing delay provides multi-bit information rather than the

single bit information by a segment loss event. Secondly, packet loss events in

highspeed networks needs to be rare, making it difficult to accurately estimate

25

the packet loss probability. Additionally, it was shown that the dynamics of

queuing delay has the right scaling with respect to network capacity.

FAST TCP behaves like HSTCP, STCP and H-TCP. It updates cwnd ev-

ery 20ms with the measured average RTT and the minimum RTT observed

so far, in that the relation between these two metrics reflect the queuing

delay indirectly. It differs from the three TCP variants at the way cwnd

evolves with regard to a delay threshold served as an indicator of the equi-

librium state. FAST TCP increases cwnd aggressively when the delay is

well below the threshold, and gradually reduces the increasing rate when the

delay becomes closer to the threshold. It behaves symmetrically to reduce

cwnd when the delay exceeds the threshold. This window adjustment mech-

anism achieves more stable performance around the equilibrium rather than

those in HSTCP, STCP and H-TCP, which adjust cwnd without taking into

consideration the relative position of the current state and the target state.

Martin et al. used increases in RTT as an indicator of congestion and

future loss [29]. TCP Hybla [4] was developed for use in satellite connections,

as they experience large RTTs. When the RTT is large, the cwnd grows at a

slower rate than flows with shorter RTT. To overcome this slow growth, TCP

Hybla takes as reference the RTT of a fast wired connection and increases the

cwnd more aggressively to match the throughput to the reference connection.

Low extra delay background transport (LEDBAT) is another algorithm that

uses delay as the congestion signal [38].

Delay-based schemes have also been proposed for use in data centers [25,

32]. They perform better in data centers because the delay measurement is

more accurate and reliable in a highly controlled environment. All these algo-

26

rithms work by adjusting the cwnd which determines the maximum allowed

number of outstanding unacknowledged packets.

These delay-based TCP variants are cwnd-based, and use delay as a sup-

plement information to loss, so they inherit the problems of cwnd-based and

loss-based TCP variants. In addition, being sensitive to delay means they

cannot compete well with loss-based CUBIC, which prevents them from be-

ing deployed.

2.2.2 Improving Performance with Network Informa-

tion

Another class of TCP variants rely on network support to improve the latency

performance by detecting the network congestion earlier and reacting to it

faster. Explicit congestion notification (ECN) was firstly introduced in RFC

3168 to help sender detect network congestion with an ECN bit set by routers.

The sender can then react accordingly by checking the ECN bits of ACK

packets to ease network congestion [36].

XCP was among the earliest algorithms that exploited ECN for conges-

tion control [22]. In the design, an XCP router calculates the desired sending

rate of each flow, and feeds the information back to the sender. The sender

adjusts its cwnd based on the information carried in the header. Data cen-

ter TCP (DCTCP) is a new TCP variant that uses multi-bit information

from ECN to perform congestion control in data centers [1]. On a congestion

event, DCTCP decreases cwnd based on the proportion of ACK packets with

ECN bits marked, which performs well in data centers. Random early detec-

27

tion (RED [13]) and CoDel [33] are two attempts to assist senders perform

congestion control at switches and routers. They try to inform senders of

network congestion early and trigger congestion events to traditional cwnd-

based TCP variants by actively dropping packets. RED starts to drop packets

with a probability once the buffer occupancy is above some threshold, while

CoDel starts to drop packets when they stay too long in the buffer. Both

RED and Codel can effectively address the Bufferbloat problem.

ABC [14] is another recent approach that attempts to directly measure

link capacity with the help of cellular base stations. In ABC’s design, cellular

base stations will guide mobile clients to accelerate or decelerate their sending

of data packets. Although these algorithms are able to mitigate Bufferbloat

problem, it is not clear how to correctly set the parameters according to

various network conditions. In addition, they do not work with recently

proposed low-latency TCP variants since they are loss-insensitive.

It is not surprising that we can do better if the senders have more informa-

tion on the network. Unfortunately, these approaches require modifications

to network switches and routers, which makes them difficult to deploy. That

said, we believe that this deployment issue could be mitigated with SDN-

enabled switches in the near future.

28

2.3 Achieving Low Latency & High Through-

put

Although some earlier TCP variants managed to reduce latency, it typically

came at the cost of lower throughput. State-of-the-art TCP variants at-

tempted to achieve both high throughput and low latency. Most of them

employed a rate-based instead of cwnd-based packet regulation, and intro-

duced more sophisticated methods to set the sending rate. Before going

through these proposals, we first review the literature for early rate-based

TCP variants.

The idea of using rate information to control the sending rate of flows

is not new. Padhye et al. were first to propose TCP-Friendly Rate Control

(TFRC), an equation-based approach for congestion control that adjusts the

send-rate based on observed loss events [35, 11]. Instead of exploiting avail-

able bandwidth as much as possible, the goal of TFRC is to keep a steady

sending rate while still being responsive to network variations. TFRC uses a

control equation that explicitly gives the maximum acceptable sending rate

as a function of the packet size, round trip time (RTT), loss event rate, and

the TCP retransmit timeout. TFRC achieves smoothly changing sending

rate, which is beneficial for real time communication (RTC) applications,

but at the cost of a more moderate response to transient changes in conges-

tion as well as a sudden increase in the available bandwidth. WTCP [39]

is another early rate-based algorithm designed for CPDP networks. It also

uses packet loss as a congestion signal and is unlikely to perform well in fast

modern networks.

29

Ke et al. proposed Rate-Based Pacing (RBP), which suggests pacing the

sending of packets based on the current rate instead of sending them back-

to-back so as to avoid multiple packet losses in the same window [23]. The

motivation is that multiple packet losses will cause serious performance degra-

dation of TCP, thus we should insert a time delay between packets so as to

reduce the possibility of multiple packet losses in the same window. The

time delay is a function of the round trip time (RTT) and the current con-

gestion window size. However, this technique requires precise estimates of

RTT, which are not easily available and are not actually accurate indicators

of link quality in cellular data networks.

Another proposal of performing TCP congestion control using the rate

information is Rate Adaptive TCP (RATCP) [21], which is not a practical

approach as it requires the network to explicitly feedback the available rate

to the TCP source. Also, RATCP relies on accurate estimation of round trip

time (RTT), which is in general very difficult to obtain.

These approaches do not fit modern networks because they either require

network support or set the sending rate based on wrong metrics, such as

loss. They might work well previously, when loss was prevalent, but perform

poorly today where network loss is rare.

2.3.1 Forecast-based TCP

Forecast-based TCP assumes that the network performance in the near future

can be accurately predicted, and the end-to-end latency performance can be

improved by adjust the sending rate based on the prediction result.

30

Sprout was proposed to achieve high throughput and low delay for interac-

tive applications on cellular data networks [43]. It utilizes a doubly-stochastic

process which involves a Poisson process and a Brownian motion. The re-

ceiver helps to infer the uncertainty dynamics of the network link by making

use of the inter-arrival time of received packets, which enables the sender to

forecast how many bytes should be sent in the next few time periods.

PROTEUS is a prediction based TCP variant optimized for real time com-

munication (RTC) applications on cellular data networks that works under

UDP [45]. The basic assumption of PROTEUS is that the network perfor-

mance in the near future is predictable based on the history of the three

metrics: the throughput, one-way delay, and loss rate. PROTEUS exploits

regression trees to perform forecasting, and passes to applications the ex-

pected performance in terms of the throughput, one-way delay and loss rate

for reaction to future variations of network conditions.

In practice, they not only consume a large amount of computing power,

but also perform worse than the state-of-the-art TCP variants.

2.3.2 Utility Functions

A recent class of congestion control algorithms define network performance

as utility functions, with input arguments like throughput, packet loss, delay,

RTT, and loss rate. Different utility functions articulate different goals. For

example, delay and RTT will have more impact on the utility in low-latency

TCP variants rather than throughput-oriented TCP variants. For such TCP

variants using utility functions, congestion control is achieved by mathemati-

31

cally optimizing (or maximizing) the associated utility functions. Thus we re-

fer to these approaches as network-utility-maximization-based (NUM-based)

TCP variants. There are mainly two ways to achieve the goal: online and

offline. Online methods attempt to optimize utility functions dynamically,

while offline methods train a model before deployment.

Utility-function-based TCP variants defines network performance quan-

titatively as a utility function of network metrics such RTT, loss rate and

receive rate. To achieve better network performance, they adjust the TCP

parameters such as cwnd and sending rate to optimize the utility function.

Remy [42] uses machine learning to generate an optimal congestion-control

algorithm offline based on assumptions and network data, whereas PCC [8]

attempts to optimize a carefully designed utility function online. Vivace [9]

uses ideas from online convex optimization literature and builds upon Allegro

with considerations for minimizing latency and improving TCP friendliness

along with fast and stable convergence. However, Sivaraman et al. claim that

gaps need to be closed before computer-generated algorithms can be deployed

in practice [40]. The jury is still out on how best to do congestion control. It

is likely that there is no algorithm that is optimal for all operating scenarios

and the question of whether a white-box approach or black-box approach is

unlikely to be settled soon [37]. Verus is a congestion control protocol that

is primarily designed for highly variable channel conditions that are hard to

predict [48]. Instead of attempting to predict the cellular channel dynamics,

Verus uses cues from delay variations to track channel conditions and quickly

change its sending window. The key idea of the Verus is find the relationship

between cwnd and achieved delay, and maximizes the utility function based

32

on this profiling model.

Copa [2] shares some desirable properties with EvaRate, such as bi-modal

operation and periodic draining of the buffer. However, Copa’s rate control

loop aims to maximize a utility function whereas EvaRate directly regulates

the overall buffer occupancy considering other flows. We believe that this is

the reason why EvaRate is able to keep the buffer occupancy low and avoid

losses. Like BBR, Copa is insensitive to losses and by not reacting to losses

(especially in the shallow buffer case), it inflicts loss on other loss-reacting

flows. In addition, all Copa flows try to maintain 1 BDP number of packets

in the bottleneck buffer, which is more than enough, especially when it is a

shallow buffer. Consequently, Copa achieves higher throughput at the cost

of other loss-reacting flows. EvaRate, on the other hand, is not insensitive

to losses. Last but not least, the theory in Copa’s design is based on the

assumption that all flows sharing the same bottleneck buffer have the RTT ,

which allows different flows to receive the latest measurement of RTTmin

at the same time and synchronize. However, flows have different RTTs

in practice and they will not synchronize and measure the actual RTTmin

accurately.

2.3.3 Modeling the Network

BBR [5] and PropRate [27] are the two state-of-the-art schemes that take

the classic model-based approach. Both BBR and PropRate use control

feedback-loops to keep the buffer occupancy low and achieve optimal through-

put while maintaining low latency. PropRate uses buffer delay estimates as

33

it’s control variable, while BBR uses an estimate of the bandwidth-delay

product (BDP).

In particular, BBR tries to estimate the bottleneck link bandwidth and

match the sending rate to the estimated bandwidth. For every 8 RTT, BBR

sends at 125% of the estimated bandwidth for 1 RTT to probe potential

increase of the bottleneck link bandwidth, and sends at 75% of the estimated

bandwidth for 1 RTT to drain the extra packets introduced in the previous

phase. BBR then match the sending rate to the newly estimated bandwidth.

In contrast to BBR, PropRate measures the bottleneck link buffer delay, and

oscillates the sending rate around the estimated bottleneck link bandwidth.

If the buffer delay exceeds an application-specified buffer delay, PropRate

sends slower than the estimated bandwidth to drain the bottleneck buffer,

otherwise it sends faster to gradually fills the buffer.

It was found that BBR is very aggressive and unfair when the bottleneck

link buffer is shallow, causing massive losses to itself and other flows sharing

the same bottleneck buffer [16]. It is because BBR focuses on keeping 1 BDP

number of packets in the buffer, without considering whether the buffer size

is larger than 1 BDP. In addition, it is also due to BBR ignoring packet

losses.

To the best of our knowledge, EvaRate is the first algorithm to use esti-

mated buffer occupancy as the control variable. BBR has only a single mode

of operation and thus is forced to choose aggressive parameters in order to

contend successfully with the predominant CUBIC. This results in issues such

as large queuing delays and massive packet loss [17]. PropRate on the other

hand is designed for cellular networks with proportionally fair buffer where

34

each PropRate sender tries to maintain a target buffer delay. With shared

buffers on the Internet, two PropRate senders with different target delays

will exhibit different levels of aggressiveness leading to unfairness. Because

EvaRate is able to estimate the buffer occupancy of other flows, it is able

to operate in two different modes. As a result, it can compete well in the

presence of buffer-filling flows, while also allowing collaborative congestion

control between EvaRate flows sharing the same bottleneck.

Like low-latency cellular TCP variants [43, 48, 27], EvaRate uses delay

instead of loss as the congestion signal. To achieve low latency, cellular TCP

variants typically operate way below the point where the bottleneck buffer

overflows. In EvaRate, we are more concerned about ensuring that the buffer

is not emptied to keep utilization high, without incurring large latencies,

and this is more challenging because unlike mobile cellular networks, the

bottleneck buffers are shared among many flows.

2.4 Summary

Based on our analysis of the literature, we argue that in modern networks,

cwnd-based packet regulation and loss-based congestion signal do not per-

form well, because they only indirectly control the sending rate and there

is a risk of overfilling the bottleneck buffer, causing Bufferbloat. The new

rate-based TCP variants solve this problem in indirect ways: (i) they ei-

ther define an ad-hoc utility function and maximize it, or (ii) try to forecast

the network bandwidth. We realized that it is important to determine the

operating environment, or deduce what other flows sharing the same bottle-

35

neck buffer are doing, and react accordingly. If we can achieve this, all flows

sharing the same bottleneck buffer can work together to keep the number

of packets in the buffer small. Copa is the first TCP variant that considers

the environment, achieves performance close to that for EvaRate. However,

as discussed, it is based on an ad-hoc utility function and the assumption of

equal RTT for all flows, which is not a realistic assumption in practice. On

the other hand, EvaRate was designed from first principles by modeling the

bottleneck link buffer and using a natural control loop. The result is that

EvaRate can directly estimate the number of packets in the bottleneck buffer

and manage the buffer accordingly. In Table 2.1, we provide a summary of

the related work on TCP.

36

Table 2.1: Previously Proposed TCP variants.

Algorithm Year Key Idea(s)

TCP Tahoe [18] 1988 cwnd-based, Loss, AIMD

TCP New Reno [12] 1999 cwnd-based, Loss, AIMD

TCP Westwood [30] 2001 cwnd-based, Loss, AIMD

Scalable TCP [24] 2003 cwnd-based, Loss, MIMD

HighSpeed TCP [10] 2003 cwnd-based, Loss, MIMD

BIC TCP [44] 2004 cwnd-based, Loss, MIMD

TCP CUBIC [15] 2008 cwnd-based, Loss, MIMD

TCP Vegas [3] 1994 cwnd-based, Loss, Delay, AIMD

TCP Hybla [4] 2004 cwnd-based, Loss, Delay, AIMD

LEDBAT [38] 2011 cwnd-based, Loss, Delay, AIMD

Fast TCP [20] 2004 cwnd-based, Loss, Delay, MIMD

H-TCP [26] 2004 cwnd-based, Loss, Delay, MIMD

Compound TCP [41] 2006 cwnd-based, Loss, Delay, MIMD

TCP LoLa [17] 2017 cwnd-based, Loss, Delay, MIMD

RED [13] 1993 cwnd-based, Loss, Network, AIMD

ECN [36] 2001 cwnd-based, Loss, Network, AIMD

XCP [22] 2002 cwnd-based, Loss, Network, AIMD

DCTCP [1] 2010 cwnd-based, Loss, Network, AIMD

Codel [33] 2012 cwnd-based, Loss, Network, AIMD

ABC [14] 2017 cwnd-based, Loss, Network, AIMD

Remy [42] 2013 cwnd-based, Utility, NUM, Offline

TAO [40] 2014 cwnd-based, Utility, NUM, Offline

Verus [48] 2015 cwnd-based, Utility, NUM, Online

PCC [8] 2015 Rate-based, Utility, NUM, Online

PCC Vivace [9] 2018 Rate-based, Utility, NUM, Online

WTCP [39] 1999 Rate-based, Loss, FUNC

Equation-based TCP [11] 2000 Rate-based, Loss, FUNC

TIMELY [32] 2015 Rate-based, Delay, FUNC

Copa [2] 2018 Rate-based, Delay, FUNC

Sprout [43] 2013 Rate-based, Loss, BW, Forecast

PROTEUS [45] 2013 Rate-based, BW, Forecast

BBR [5] 2016 Rate-based, BW, Estimate

PropRate [27] 2017 Rate-based, Delay, BW, Estimate

37

Chapter 3

Low-Latency TCP in the Wild

TCP congestion control has been studied for three decades and a large num-

ber of TCP variants have been proposed to improve network performance.

In particular, reducing the latency has been a recent focus and we have seen

more and more low-latency TCP variants. However, the deployment status

of these new TCP variants and their performance on the current Internet is

not known. In other words, we would like to know if TCP CUBIC is still the

dominant TCP variant on the Internet. In this chapter, we first conducted a

measurement study to classify and identify the TCP version used by Alexa

Top 5,000 websites, and investigate the performance of recent low-latency

TCP variants in the wild using Amazon web service (AWS) servers.

3.1 Census of TCP Variants

We conducted a measurement study to understand the deployment status

of various TCP variants in the Internet. Generally, TCP variants can be

38

classified by their level of aggressiveness, where the variants in the same

group exhibit similar levels of aggressiveness. We hypothesize that in a het-

erogeneous Internet, measuring the distributions of different groups of TCP

variants is sufficient to characterize the current Internet.

Therefore, we categorize existing TCP variants into 3 types based on their

aggressiveness: Linear, Polynomial and Rate-based. Linear variants includes

the cwnd-based TCP variants that increase cwnd linearly for each RTT, like

TCP Reno and TCP NewReno [12]. Similarly, Polynomial refers to the TCP

variants that increase cwnd more and more aggressive for each RTT, like BIC

and CUBIC. Rate-based TCP variants regulate the sending without cwnd.

Instead, they maintain a certain rate and are thus not ACK-clocked. BBR [5]

and PropRate [27] are the 2 examples of Rate-based TCP.

Yang et al. developed TCP Congestion Avoidance Algorithm Identifica-

tion (CAAI) [47] to identify various cwnd-based TCP algorithms. In partic-

ular, we measure the increase pattern of cwnd for the TCP variant running

on a remote website as follows:

1. the receiver creates a TCP connection to a remote Web server and

emulates a network environment needed to measure remote server’s

TCP cwnd;

2. the receiver measures the cwnd of the TCP running on the remote

server by counting the number of packets received during an RTT;

3. the receiver maintains the TCP connection until it has gathered a suf-

ficiently long trace of window sizes.

39

We set a small maximum segment size (MSS), and artificially increase the

RTT and retransmission timeout (RTO). The small MSS is needed to increase

the number of data packets for the probed web pages. This allows the receiver

to collect more packet trace data for more accurate identification. A long

RTT is needed to ensure that the maximum number of packets in flight is

larger than cwnd. If not, our measurement would be constrained by the

maximum number of packets in flight. To estimate current TCP cwnd of

the remote server, the receiver emulates a sufficiently long RTT so that the

remote server stops sending packets after cwnd of packets have been sent, and

before the ACK packet of the first packet reaches the server. Thus the receiver

can count the number of packets received during this RTT, which is an

estimate of remote server’s TCP cwnd. Packet loss is used to trigger different

behaviors of Congestion Recovery state. Finally, once RTO occurs, TCP will

reset cwnd and ssthresh differently so that by observing the variation of

cwnd, the TCP variant of the remote server can be identified.

We extended this approach to identify Rate-based TCP. Our key obser-

vation is that both Linear and Polynomial TCP require a long time to probe

the network bandwidth, while Rate-based can quickly measure the network

bandwidth and increase the sending rate to match the network bandwidth.

As a result, the number of delivered packets often increases exponentially for

Rate-based TCP.

In Figures 3.1, 3.2 and 3.3, we plot the increase of cwnd versus RTT for

Reno, CUBIC and BBR. We trigger an RTO event at 14th RTT and observe

the variation of cwnd. Note that we can trigger the RTO event at any time

as long as the sender has data to send, so there is nothing special about

40

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35 40

c
w

n
d

Number of RTT

Figure 3.1: RTT vs. cwnd for TCP Reno.

14th RTT. We can clearly observe different levels of aggressiveness in terms

of increasing cwnd. BBR does not maintain a cwnd, so what we see is the

effective cwnd. Note also that the figure for BBR in Figure 3.3 uses a logscale

for the y-axis.

We performed these measurements on the Alexa Top 5,000 websites.

Among 5,000 websites, we found that 4,571 were accessible. 318 (6.96%)

websites were classified as Linear and 3674 (80.4%) websites were classified

as Polynomial. The remaining 579 (12.7%) were classified as Unknown be-

cause the page sizes were too small for us to discern any patterns. Among

all the sites, we found YouTube’s TCP variant to behave like BBR.

3.2 Performance of Low-Latency TCP

From the results in §3.1, we can see that the dominant TCP variant on the

Internet today is the Polynomial buffer-filling variant TCP CUBIC [15]. As

such, we would expect the recent low-latency TCP variants like BBR [5],

41

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35 40

c
w

n
d

Number of RTT

Figure 3.2: RTT vs. cwnd for TCP CUBIC.

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16 18 20

c
w

n
d

Number of RTT

Figure 3.3: RTT vs. cwnd for BBR.

PropRate [27], Copa [2], and Vivace [9] to contend poorly against CUBIC.

Surprisingly, when we measured the throughput and RTT of a host (in Sin-

gapore) to Amazon AWS servers located on four different continents – Aus-

tralia, Asia, North America and Europe. The detailed information of the

servers is in Table 3.1. We found that the effective throughput of BBR and

PropRate were similar to that for CUBIC, while Copa and Vivace often out-

performed CUBIC. Our results are shown in Figure 3.4 and the average RTT

42

Table 3.1: Information of the AWS servers.

Continent Location IP Address Instance Type

Europe London 35.177.93.102 t2.micro

North America North California 13.57.254.199 t2.micro

Australia Sydney 13.211.204.244 t2.micro

Asia Mumbai 13.127.68.183 t2.micro

Table 3.2: RTT for inter-continental traffic.

Australia Asia North America Europe

180ms 80ms 175ms 320ms

is shown in Table 3.2. There were only minor and statistically insignificant

variations in the observed RTT for the different TCP variants.

We used iperf to generate the traffic for CUBIC, BBR and PropRate,

and obtained the throughput for each protocol-continent pair in a round-

robin manner to eliminate underlying network variations. Custom clients

were used to generate traffic for Copa and Vivace (default utility functions

and parameters) since only user-space UDP implementations are publicly

available. We managed to obtain small error bounds after running 30 trials

during the same time of the day.

It is clear that the difference in the results between the different conti-

nents was due to the difference in the RTTs. In general, CUBIC, BBR and

PropRate had reduced throughput when the RTT was large, but we were

not convinced that the RTT difference alone would fully explain the differ-

ence in throughput. Analyzing the traces more carefully, we discovered that

one major difference between Copa and Vivace and the other variants was

that the loss rates for Copa and Vivace were significantly higher when they

43

 0

 50

 100

 150

 200

 250

 300

Australia Asia North America Europe

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Location

CUBIC
BBR

PropRate
Copa

Vivace

Figure 3.4: TCP throughput for inter-continental Internet traffic.

performed better as shown in Figure 3.5. On the other hand, the loss rates

for CUBIC, BBR and PropRate were negligible.

We also performed another set of experiments to validate the results we

obtained in the previous experiments and to further understand the sharing

of bandwidth at the bottleneck links. In this new set of experiments, instead

of initiating a single flow to the AWS remote servers in various continents,

we started two flows to the remote servers: one CUBIC flow followed by

another reference flow (for the protocol we want to test) after a delay of

20 s. After reference flow started, both flows ran for 40 s concurrently, and

stopped at the same time. We calculated the throughput and loss rate for

the CUBIC flow and the reference flow for the latter 40 s and plot them in

Figure 3.6 and 3.7. We observed that like the single flow experiment, the

low-latency TCP variants were clearly more aggressive than the background

CUBIC flow, even if they started later. The loss rate of low-latency TCP

44

 0

 0.5

 1

 1.5

 2

Australia Asia North America Europe

L
o
s
s
 R

a
te

 (
%

)

Location

CUBIC
BBR

PropRate
Copa

Vivace

Figure 3.5: Loss rate of TCP variants for inter-continental traffic.

 0

 50

 100

 150

 200

 250

 300

C
U

B
IC

 T
P

 (
M

b
p
s
)

CUBIC
BBR

PropRate
Copa

Vivace

 0

 50

 100

 150

 200

 250

 300

Australia Asia North America Europe

R
e
fe

re
n
c
e
 T

P
 (

M
b
p
s
)

Location

CUBIC
BBR

PropRate
Copa

Vivace

Figure 3.6: TCP throughput of CUBIC and reference flows for inter-
continental Internet traffic.

variants was slightly lower than that of the single flow experiment, but still

relatively significant. In addition, CUBIC behaved more friendly and was

45

 0

 0.2

 0.4

 0.6

 0.8

 1

C
U

B
IC

 L
o
s
s
 (

%
)

CUBIC
BBR

PropRate
Copa

Vivace

 0

 0.2

 0.4

 0.6

 0.8

 1

Australia Asia North America Europe

R
e
fe

re
n
c
e
 L

o
s
s
 (

%
)

Location

CUBIC
BBR

PropRate
Copa

Vivace

Figure 3.7: TCP loss rate of CUBIC and reference flows for inter-
continental Internet traffic.

fairer to itself in this case. It is clear from Figure 3.7 that the low-latency

TCP variants inflict loss on the background CUBIC flow, possibly up to

0.2%.

In Figure 3.8, we plot the throughput for the reference flow against the

background CUBIC flow. We can see that CUBIC and PropRate are some-

what fairer to the background CUBIC flows than the low-latency flows. Vi-

vace seems particularly aggressive and unfair.

Given the seemingly superior performance of Vivace and Copa, one could

imagine that they could become more and more common, and the natural

question is: should we be concerned with the loss that we observed? We

suspect that the loss rates were likely caused by buffer overflows at some

bottleneck in the core Internet. This means that flows sharing the same bot-

tleneck will also experience loss. Given that we are currently seeing negligible

46

 0

 50

 100

 150

 200

 0 50 100 150 200

C
U

B
IC

 T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Reference Throughput (Mbps)

CUBIC
BBR

Copa

Vivace
PropRate

Figure 3.8: Throughput of CUBIC flows vs. reference flows for inter-
continental traffic.

loss with CUBIC, the intrinsic characteristic of the Internet might change and

it might become more lossy if Vivace and Copa become more common. To

understand the likely impact of increasing loss rates, we performed a simple

experiment, where we measured the throughput of a TCP flow on a 32Mbps

link as we varied the loss rates of the bottleneck link from 0 to 1% for both

a large RTT (300ms) and a low RTT (80ms) link. We also investigated the

impact of a shallow (roughly 1 × BDP) buffer and a deep (2,000 packet)

buffer. The results are shown in Figure 3.9.

Given that CUBIC is throttled by losses, it should not be surprising

that even a slight increase in loss rates from zero to 0.1% can result in the

47

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Loss Rate (%)

Deep Buffer Small RTT
Shallow Buffer Small RTT

Deep Buffer Large RTT
Shallow Buffer Large RTT

Figure 3.9: Impact of loss on CUBIC throughput.

significant degradation of CUBIC’s throughput. In other words, it would not

be surprising if the superior performance that we observed for both Copa and

Vivace on the Internet is due to them successfully throttling CUBIC with

packet losses. If so, this would be extremely troubling because it means that

low-latency variants like Vivace and Copa are actually TCP unfriendly!

Unfortunately, low-latency TCP is fundamentally incompatible with CU-

BIC: it is impossible for a TCP variant to keep the latency low when the

bottleneck buffer is saturated by a CUBIC flow to the point of buffer over-

flow. Intuitively, it is also clear that a TCP variant which tends to occupy

a larger proportion of the buffer will be likely more aggressive and take up

a larger share of the available bandwidth. However, what Copa and Vivace

seem to suggest is that it is possible to still contend successfully with CUBIC

by causing packet losses.

We felt it is philosophically problematic for the evolution of the Internet

to try to achieve low latencies while simultaneously causing packet losses in

48

the network. In this thesis, we argue that there is a better way: (i) we can

work on keeping the number of packets in the buffer small at all times to keep

losses low (and avoid changing the character of the Internet); and (ii) flows

that can detect the total occupancy of the shared bottleneck buffer attempt

to keep buffer occupancy low collaboratively.

49

Chapter 4

Loss-Free Congestion Control

From the results of our measurement study in Chapter 3, we hypothesize

that Copa and Vivace perform well in practice because the buffers on the

Internet are relatively shallow and Copa and Vivace are insensitive to loss

compared to conventional loss-based flows like CUBIC. This means that CU-

BIC will back off quite conservatively, leaving enough free bandwidth to the

low-latency TCP variants. But we have also seen in Figure 3.9 that a small

loss rate can cause significant degradation to CUBIC flows. Hence to oper-

ate effectively in the current Internet without degrading competing CUBIC

flows, a new low-latency TCP should be designed to minimize the loss it

causes to competing flows to allow the Internet to transition smoothly to a

benevolent future. Our key insight is that we can directly estimate not only

the buffer occupancy for our flow (§4.1), but also that of competing flows

sharing the same bottleneck buffer (§4.2). By implementing a control loop

that keeps the buffer occupancy low, EvaRate keeps latency low and avoids

overflowing the buffer and inflicting loss on competing flows.

50

Like existing TCP variants, EvaRate adopts a slow start phase where it

tries to rapidly increase the sending rate to match the available bandwidth.

Also, like the previous algorithms [27], we send 10 initial packets and wait

for the corresponding ACKs to have an initial estimate of the receive rate.

However, instead of doubling the sending rate after every RTT (like CUBIC

or BBR), we increase the rate approximately only 1.5 times every RTT until

we do not observe a significant increase in the receive rate. This is because,

while doubling the sending rate would allow us to converge to the available

bandwidth faster, it also risks overshooting the available bandwidth by a

significant amount. Once we detect that the current sending rate is higher

than the estimated receive rate, we switch to congestion avoidance mode.

EvaRate goes back to the slow start phase only when the retransmission

timeout (RTO) expires, upon which EvaRate discards the measured infor-

mation of the network and sends a burst of packets to reprobe the network.

In congestion avoidance mode, EvaRate adopts a control loop which uses

the estimated real-time buffer occupancy as a feedback signal to regulate

the sending rate. The sending rate is adjusted such that the flow’s buffer

occupancy converges to a target occupancy, Btarget. The initial Btarget is

determined by the maximum tolerable latency specified by the application,

while the real-time buffer occupancy is estimated from the number of packets

in flight, RTT and the estimated receive rate (see §4.1).

To achieve full link utilization, we only need to ensure that the buffer

occupancy is non-zero. At the same time, we want to keep the buffer occu-

pancy low in order to minimize the buffer delay. To do so, we adopt a time-

varying Btarget which decreases, or decays, exponentially with some half-life.

51

As Btarget decays to a low value, the buffer occupancy becomes closer to zero

due to the sending rate control loop trying to match the buffer occupancy to

Btarget. At this point, the buffer is at the risk of emptying and we know that

Btarget might have decayed to a value that is too low. Therefore, we increase

Btarget and resume the decay process. This mechanism has two additional

benefits: (i) it allows newly joined flows to grab a share of the bottleneck

bandwidth, and (ii) in benevolent environments, it allows EvaRate flows to

collaboratively maintain the total buffer occupancy low.

In the following sections, we describe EvaRate’s design in detail. We first

explain the buffer-occupancy-based control loop used to regulate the sending

rate (§4.1). We then describe how EvaRate infers the operating environment

using an augmented model of the buffer (§4.2). Finally, we describe how

EvaRate operates differently in the two operating scenarios (§4.3).

4.1 Aggregate Network Model

Consider a simplified model of the network pipe between two end hosts where

there is a bottleneck buffer somewhere along the pipe (see Figure 4.1). The

simplification and assumption of an aggregate bottleneck link is also used

by many TCP variants, such as BBR and Copa [5, 2]. While the outgoing

link of a buffer typically has a fixed capacity in wired networks, sharing

the bottleneck link with other flows will make it seem to our flow that the

bottleneck bandwidth is a time-varying function ρ(t). We note that ρ(t)

can be measured at the receiver as the receive rate. We denote B(t) as the

number of packets in the bottleneck link buffer, tbuff as the time a packet

52

Server

(sender)

Client

(receiver)

Bottleneck Buffer

Figure 4.1: Simplified model of network bottleneck.

spends in this buffer and L as the end-to-end latency (RTT) between the

sender and the receiver. Assume that we can measure the minimum RTT

(denoted as RTTmin) i.e. the two-way propagation delay between the sender

and receiver (refer §4.4.2 for details), then:

tbuff ≈ L−RTTmin (4.1)

And since tbuff = B
ρ
,

B ≈ ρ(L− RTTmin) (4.2)

Equation (4.2) articulates the relationship between buffer occupancy (B)

and end-to-end latency (L). In other words, to achieve a desired latency no

more than L, the buffer occupancy needs to be kept below ρ(L− RTTmin).

In Figure 4.2, we illustrate the relationship between the sending rate and

the variation in the buffer occupancy, where S(t) is the sending rate, and

ρ(t) is the time-varying receive rate at time t. It is clear that:

B(t) =

∫

S(t)− ρ(t) dt (4.3)

53

Rate

t
Bu�er

Occupancy

t

S(t)

ρ(t)

B(t)

Figure 4.2: Relationship between the sending rate and buffer occupancy.

Basically, when we send packets at a rate above the receive rate, the buffer

fills; on the other hand, if we send at a rate below the receive rate, the buffer

drains.

Our key insight is that, in practice, we can estimate the number of packets

in the buffer, B(t), rather accurately as the difference between the number of

unacknowledged packets in flight, Pif , and the number of on-wire packets in

the pipe. The former is known by the sender and the latter can be estimated

as the bandwidth delay product ρ × RTTmin, where the receive rate ρ is

an estimate of the bandwidth, while RTTmin is an estimate of the two-way

propagation delay between the sender and the receiver. Therefore, the buffer

occupancy B(t) is given by,

B(t) ≈ Pif(t)− ρRTTmin (4.4)

54

Figure 4.3: The negative-feedback loop to manage the bottleneck link
buffer.

Given B(t) and the receive rate ρ (see §4.4.1), we can increase buffer

occupancy by setting S(t) > ρ and drain the buffer by setting S(t) < ρ. The

goal of the control loop is to adjust the sending rate such that the bottleneck

buffer occupancy B(t) converges to a target buffer occupancy, Btarget. To do

so, we use a negative-feedback loop as shown in Figure 4.3 to update S(t) as

follows:

S(t) = αρ(1− k
B(t)− Btarget

Btarget

) (4.5)

where α is an aggression factor that can make EvaRate more aggressive

in the presence of buffer-filling flows and k is a constant that controls the

rate of convergence to the target buffer occupancy Btarget (see §4.4.4). Ba-

sically, given the measured receive rate ρ, we want to send faster than ρ

when B(t) < Btarget, and slower than ρ when B(t) > Btarget. Note that the

negative-feedback loop’s aggressiveness in updating S(t) is proportional to

the difference between B(t) and Btarget.

To determine an initial value for Btarget, EvaRate assumes the application

55

will specify the maximum tolerable round-trip latency , Lmax. For exam-

ple, Lmax for real-time communication applications like Skype and FaceTime

would be low (say 100ms), while that for throughput-intensive applications

could be potentially larger. Then, using Equation (4.2), we can set the initial

Btarget to be equal to the buffer occupancy corresponding to Lmax:

Btarget initial = ρ(Lmax − RTTmin) (4.6)

However, our goal is not to converge to this upper bound but to mini-

mize the buffer occupancy without emptying the buffer. Maintaining a low

buffer occupancy is essential for achieving low latency and preventing packet

loss [27], especially in networks with shallow buffers. To this end, we make

Btarget decay with a half-life equivalent to 2 × RTT , which is roughly the

minimum time required by the sender to detect the impact of changes made

to the sending rate. In other words,

Btarget(t) = Btarget initiale
−

t.ln(2)
2RTT (4.7)

Btarget(t) will be allowed to decay according to (4.7), until we find that B(t)

falls below a threshold that puts the buffer at the risk of emptying (see details

in §4.4.5). This suggests that Btarget(t) has become too low and we will reset

Btarget initial as follows (refer §4.4.5 for details):

Btarget initial → min(ρ
RTTmax −RTTmin

2
, 2Btarget(t)) (4.8)

In Figure 4.4, we illustrate the time evolution of B(t) and Btarget(t). As

56

t1 t2 t3

B
u

e
r

L
e
v
e
l

Time

Threshold
B(t)

Btarget(t)

Figure 4.4: Time evolution of Btarget(t) [schematic].

Btarget(t) decays, the negative-feedback loop (Equation (4.5)) updates the

sending rate so that B(t) tracks Btarget(t). However, when Btarget(t) is very

low, B(t) will drop below the risk threshold (i.e. at times t1, t2 and t3). At

these points, Btarget(t) is reset according to Equation (4.8).

Note that our basic control loop makes no assumptions about the capac-

ity of the bottleneck link. We are able to make a decision on the appropriate

sending rate from just the observed receive rate and measured RTT. There-

fore, we can fully utilize the available bandwidth by keeping the buffer not

empty, and achieve low latency by keeping the buffer occupancy low.

By ensuring that the buffer is not emptied, we fully utilize the available

bandwidth; by keeping the buffer occupancy low, we achieve low latency.

4.2 Inferring the Operating Environment

Our key insight to distinguish between the two environments is that, in a

hostile environment, the buffer occupancy of the competing flows is more

57

S�����

(������)

C�	��

(r�e�	����

B�

����e
 Bu�er

O
���

�������

O
���

r�e�	����

P��� f�om our flow

Pkts from other flows

Figure 4.5: Augmented model of network bottleneck.

volatile compared to a benevolent environment. To capture the buffer occu-

pancy of the competing flows, we consider an augmented and more realistic

model of the network shown in Figure 4.5. In this model, we consider two

flows: (i) our flow, and (ii) an aggregate flow consisting of all the competing

flows sharing the same bottleneck buffer. We denote the sending rates of

the two flows with S(t) and S ′(t), respectively. Each flow has packets in the

buffer, which we denote with B(t) and B′(t), respectively.

Assume that we are able to estimate (i) the link capacity C, (ii) the

number of packets of our flow in the bottleneck buffer i.e. B; and (iii) the

overall buffer delay tbuff . We know that tbuff = B+B′

C
, so we can estimate B′

as follows:

B′ = tbuffC −B (4.9)

Since we already have an estimate for B (see §4.1), it remains for us to

estimate tbuff and C.

Estimating Buffer Delay tbuff . There is no way to directly measure the

buffer delay tbuff without having access to the bottleneck buffer. However,

it is possible to achieve a good estimate of tbuff indirectly based on the

58

information available at the sender. In particular, for an end-to-end link,

the RTT of packets is roughly the sum of the round-trip propagation delay,

RTTmin and the buffer delay tbuff . Therefore,

tbuff = RTT −RTTmin (4.10)

Since the occupancy of the bottleneck buffer is highly volatile, we use an

exponential-weighted moving-average (EWMA) filter to smooth our estimate

of tbuff .

Estimating Maximum Available Link Capacity C. In principle,

we could measure C if we were able to send large number of packets in a

short burst. However, doing this reliably in practice is improbable because

the Internet backbones typically have large capacities and they are traversed

by a large number of flows. Instead, we opt for an approximation and take

C to be the largest instantaneous receive rate ρ during a time window (see

§4.4.3).

Hostile vs. Benevolent. Existing TCP variants generally have very

little information about competing flows. The main novelty of EvaRate is

that it uses the inferred buffer occupancy B′ of competing flows to determine

whether the operating environment is hostile or benevolent. In a benevolent

environment, B′ remains relatively stable compared to a hostile environment.

This is because in the benevolent environment, all the flows try to utilize the

link while minimizing the buffer occupancy. On the other hand, CUBIC-like

flows keep filling the buffer and halving the congestion window when there

is packet loss. Both the aggressive filling of the buffer and the halving of the

59

congestion window leads to a noticeable variance in B′. In practice, EvaRate

decides the environment is hostile if the variance of the B′ estimate over time

is large (see §4.4.6). There is a possibility of a false positive, i.e. EvaRate

might decide it is facing a hostile environment even when it is not. However,

the only consequence of such an occurrence is that EvaRate would have a

slightly higher buffer occupancy than necessary.

4.3 Adapting to the Environment

Once an EvaRate flow detects its operating environment, it adjusts its send-

ing rate control loop accordingly.

Hostile Environment. Recall that in a hostile environment, the bot-

tleneck buffer is saturated by aggressive CUBIC-like flow(s), causing the

bottleneck link buffer to fill and making all flows suffer from long latency or

even packet losses. In such situation, it is beneficial to help ease the con-

gestion by remaining less aggressive to add little burden to the bottleneck

link. So the priority is to avoid getting starved by CUBIC and remain less

aggressive than CUBIC. It turns out that it is sufficient to adjust the sending

rate according to Equation (4.5) to prevent EvaRate from getting starved by

CUBIC. And doing so, EvaRate will only have a small number of packets in

the buffer at any time. In competition with CUBIC flows, the CUBIC flows

would have significantly higher buffer occupancy and hence take up a much

larger share of the bandwidth. Nevertheless, EvaRate performs very well on

the Internet (§5.7) so we chose to not make EvaRate behave more aggres-

sively. It remains as work in progress to come up with a good analytical

60

model for the interactions between CUBIC and EvaRate.

Benevolent Environment. When all competing flows at the bottle-

neck are attempting to minimize latency, we can estimate B′ accurately.

This means that EvaRate flows can work together to keep the overall buffer

occupancy low. We do this by modifying the control loop in Equation (4.5)

to use the estimated total buffer occupancy B + B′. More specifically, the

sending rate is now controlled by the following equation:

S(t) = ρ(1− k
B(t) +B′(t)− Btarget

Btarget

) (4.11)

where, B(t) is the flow’s own buffer occupancy and B′(t) is the estimated

buffer occupancy of the competing flows. This control loop manages to keep

the latency low even if the competing flows are not EvaRate flows, but other

low-latency variants like BBR. The impact is that EvaRate tends to be even

less aggressive than when it operates in the presence of CUBIC. Unsurpris-

ingly, EvaRate is less aggressive than BBR (see §5.2).

According to Equation (4.7), a set of EvaRate flows exhibit the same

behavior with the decay of Btarget(t). When they detect the overall buffer

level, i.e. B(t) +B′(t), falling below a threshold, they reset Btarget according

to Equation (4.8). While this might suggest that synchronization across flows

could happen, it doesn’t occur in practice because there is a measurement

lag of approximately 1 RTT where some flow would have already increased

its sending rate and caused the buffer to fill before the other flows react. The

convergence rate is related to the rate of Btarget decaying and resetting but it

is a trade-off because if the oscillations are too fast, the system will become

61

unstable. It takes time to measure the effect of a change before the next

change can be made.

4.4 Implementation

We implemented EvaRate in the latest Linux kernel v3.19 as a kernel module,

with about 2,500 lines of code. In this section, we provide an overview of

some of the more important implementation details.

4.4.1 Receive Rate (ρ) Estimation

Unlike previous algorithms [43, 46], we have chosen to perform receive rate

estimation at the sender instead of the receiver to avoid modifications to the

receiver’s TCP stack and to ensure that EvaRate is compatible with existing

TCP implementations. To estimate the receive rate, the sender relies on

the TCP timestamp option at the receiver which by default is enabled on

all major operating systems (Windows, MacOS, Linux, Android, etc.). With

the TCP timestamp option enabled, the TCP receiver will send ACK packets

with the TSval set to its current time. This timestamp corresponds to the

receiving time of the data packet at the receiver. From the ACK number and

the timestamp value, the sender can determine the number of bytes received

by the receiver and the time taken to receive this data. The only caveat to our

method is that the sender needs to know TCP timestamp granularity at the

receiver. Our current implementation uses 4ms as the receiver’s timestamp

granularity since it is currently the default on most OS’s. However, we have

separately developed a simple technique to detect the receiver’s timestamp

62

granularity within one RTT. The details of which are omitted in the interest

of space.

After making a change to the sending rate, we need to let the change

take effect before making the next change. Hence, we update the estimated

receive rate at intervals of one RTT. The sender designates one packet as

a ”signal packet” and, upon receiving its ACK, calculates the number of

acknowledged bytes (Bcurr) and the duration elapsed (Dcurr) to estimate the

instantaneous receive rate ρ̂ = Bcurr

Dcurr
; it then sends out a new ”signal packet”.

ρ̂ can be volatile, so we use ρ̄ which an exponentially weighted moving average

(EWMA) of ρ̂:

ρ̄ = αρ̄+ (1− α)ρ̂ (4.12)

where, α is set to 1

8
in our implementation. We use ρ̂ for Equation (4.4)

and for our C estimate (see §4.4.3) because we want an instantaneous esti-

mate of the buffer occupancy B(t) and the maximum available link capacity

respectively. All other equations in our algorithm use ρ̄ as the receive rate

estimate.

4.4.2 Propagation Delay (RTTmin) Estimation

Like for the receive rate, the sender continuously measures the network RTT

using the timestamps of the sent packets and corresponding received ACKs.

The minimum observed RTT since the beginning of the connection is used

as an estimate for the round-trip propagation delay RTTmin between the

sender and the receiver. If an EvaRate flow shares a bottleneck buffer with

other flows after the other flows have already started, the estimated RTTmin

63

would tend to be higher than the actual round-trip propagation delay. This

has only a minor impact since this results in a lower initial Btarget, which will

eventually oscillate anyway.

4.4.3 Capacity (C) Estimation

To estimate the maximum available link capacity, we use ρ̂ instead of ρ̄, as

we want to estimate the upper bound. However, C may change over time

due to various reasons, e.g. shifting of the network bottleneck. So, instead

of taking the largest ρ̂ observed since the beginning of a flow as the estimate

for C, we instead take the largest ρ̂ observed within the last 10RTT time

window. This allows us to adapt to changes in C and potentially eliminate

spurious ρ̂ estimates (if any).

4.4.4 Regulating the Sending Rate

Recall that in Equation (4.5), the parameter k controls the rate of conver-

gence of the control loop. The rate of convergence is basically the aggressive-

ness in matching B(t) to Btarget. In our implementation, we found that k = 1

2

works well in practice. With this setting, S(t) has a maximum value of 3

2
ρ̄

when B(t) = 0, where ρ̄ is the estimated receive rate. This limits the sending

rate S(t) to 3

2
ρ̄ and prevents the sender from becoming overly aggressive.

4.4.5 Regulating Btarget initial

Equation (4.6) initializes Btarget initial using the application-specified target

average latency Lmax. It is possible that Lmax is less than the network’s

64

measured RTTmin. In such a case, Btarget initial obtained from Equation (4.6)

would be negative. We handle this case by setting Btarget initial to 10 packets,

since we also sent out a burst of 10 packets during slow start. It is also possible

that the bottleneck buffer is shallow and the Btarget based on the application-

specified Lmax is too large and unachievable. In such case, attempting to fill

the buffer to Btarget can cause a lot of losses due to buffer overflow and hurt

other flows. We found that RTTmax−RTTmin

2
, which is half of the maximum

observed buffer occupancy is a safer and more reasonable basis to reset Btarget.

Therefore, we use the minimum of 2Btarget and RTTmax−RTTmin

2
as the new

Btarget, as shown in Equation (4.8).

It it not possible to implement exponential decay in the kernel precisely

since we do not have access to floating point operations. As a result, our

implementation approximates Equation (4.7) by interpolation as follows:

e−
t.ln(2)
2RTT ≈































(− 1

4RTT
t+ 1), t ≤ 2RTT

(− 3

16RTT
+ 7

8
), t ≤ 4RTT

1

8
, otherwise

Also, recall that Btarget is reset using Equation (4.8) when B(t) falls below

a certain threshold. This is because of allowing B(t) to fall to zero risks

link under-utilization. Our current implementation sets this threshold at 10

packets because it works well in practice. In the long term, we intend to

study how this threshold should be set as a function of network volatility.

65

4.4.6 Hostile Environment Detection

From §4.2, we know that the defining characteristic of a hostile environment is

a large standard deviation in the estimated B′, which is the buffer occupancy

of the competing traffic. In our current implementation, we compute the

standard deviation of B′ in time windows of 100 seconds and decide that we

are operating in a hostile environment if the standard deviation exceeds 50

packets.

4.4.7 Handling Losses and Network Outage

Notwithstanding that EvaRate is a delay-based congestion control algorithm,

it is still important to handle losses appropriately to avoid inflicting losses on

competing flows. First, when EvaRate detects more than 1 packet loss during

the Slow Start phase, it instantly switches to Congestion Avoidance mode.

Second, EvaRate limits the maximum number of packets in flight to no more

than the sum of the estimated bandwidth-delay product and Btarget. This

helps mitigate the impact of network outages or sudden drop in bandwidth.

In addition, packet losses will cause the ACK number to stop increasing

and thus need to be handled. Since SACK is enabled, we simply retransmit

dropped packets. We can obtain reasonably good send rate estimates by

assuming that each duplicate ACK corresponds to one MSS packet received.

Also, when enabled, SACK blocks in the ACKs can be used to accurately

determine the exact number of bytes received.

66

Chapter 5

Performance Evaluation

In this chapter, we evaluate EvaRate using both trace-driven emulations and

real network experiments to demonstrate that EvaRate not only works in

practice, but that it can also improve the latency performance of the whole

network when incrementally deployed. To compare EvaRate to previous

algorithms under the same network conditions, most of our experiments were

performed with trace-driven emulation. We used a trade-driven emulation

tool Cellsim, developed by Winstein et al. [43] and subsequently enhanced by

Leong et al. [27]. Apart from emulating the network delay and bandwidth

according to a network trace, Cellsim also maintains separate uplink and

downlink tail-drop buffers that allows us to verify the ground-truth buffer

occupancy.

Our testbed setup is shown in Figure 5.1. Multiple TCP senders running

on different physical machines connect via an Ethernet switch and Cellsim to

a TCP receiver. The bottleneck link and the corresponding buffer is emulated

by Cellsim which runs on a physical machine with two network interfaces. We

67

�����

�������

Downlink

U����

�����

Receiver!"#$%&
M')$#*)+
!+,-+./

02345

Figure 5.1: Testbed setup using Cellsim [43].

generated some constant bandwidth traces and also used publicly-available

cellular traces from Leong et al. [27].

First, we conducted trace-driven emulations to study whether EvaRate is

able to manage the bottleneck link buffer as we expect in an ideal environ-

ment, where the background link capacity is fixed and only a single EvaRate

flow runs in the network. We show that EvaRate works as designed and it

is able to probe the bottleneck link buffer occupancy and keep the buffer

occupancy low.

Next, we conducted 2-flow experiments to investigate how EvaRate in-

teracts with itself, CUBIC and BBR. Our results suggest that EvaRate is

fair to itself, and that 2 EvaRate flows can collaboratively keep the bottle-

neck link buffer. Also, we show that EvaRate acquires a small share of the

throughput when competing with CUBIC, which demonstrates that while it

is not as aggressive as CUBIC, we can indeed avoid starvation in a hostile

environment. We also show with trace-driven emulation that BBR, Vivace

and Copa can trigger a large number of losses, while EvaRate still manages

to keep the buffer occupancy low for deep buffers. We then evaluated the

mode detection in various scenarios and found that EvaRate’s mode detec-

tion has lower false positive and false negative rate than Copa’s, at the cost

of a slightly longer detection time.

68

Finally, we conducted Internet experiments to compare the performance

of EvaRate, to other state-of-the-art TCP variants. We show that as EvaRate

is gradually deployed in the Internet, the latency and loss of the whole net-

work reduces. On the contrary, widespread deployment of BBR, Copa and

Vivace could potentially make the latency and loss rate worse. Also, we show

that EvaRate is able to achieve good performance on the Internet even though

it is clearly not as aggressive as CUBIC. This result was counter-intuitive.

5.1 Baseline: Single Flow

We first performed trace-based emulations with constant-rate traces of dif-

ferent link capacities (4Mbps, 8Mbps, 16Mbps, 32Mbps and 64Mbps) to

verify that our implementation of EvaRate behaves in a manner consistent

with our network model and control loop. In these experiments, an EvaRate

sender initiates a transmission to a receiver using iperf for a duration of

60 seconds. The results were all within expectations and similar, so we only

plot the network metrics for the 16Mbps trace in Figure 5.2. The buffer size

was set to 2,000 packets (but it does not matter since it was never filled) and

Lmax was set to 100ms.

We see in Figure 5.2 that slow start works as expected and quickly ramps

up to probe the network capacity. We can see the sending rate significantly

overshoots the available capacity. This explains our decision to increase

the sending rate by 50% every RTT, as doubling it would have made it

even worse. We can see that the buffer estimate B(t)est is very close to

the actual buffer occupancy B(t)act, and that Btarget is oscillating, thereby

69

 0
 5

 10
 15
 20
 25
 30
 35

B
a
n
d
w

id
th

 (
M

b
p
s
) S(t)act

ρ(t)act

 0
 5

 10
 15
 20
 25
 30
 35

B
a
n
d
w

id
th

 (
M

b
p
s
) C(t)est

C(t)act

 0

 50

 100

 150

 200

 250

 300

N
u
m

b
e
r

o
f
P

a
c
k
e
ts Btarget(t)

B(t)est

B’(t)est

 0

 50

 100

 150

 200

 250

 300

N
u
m

b
e
r

o
f
P

a
c
k
e
ts B(t)act

B(t)est+B’(t)est

 0
 50

 100
 150
 200
 250
 300

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
T

T
 (

m
s
)

Time (s)

RTT(t)

RTTmin(t)

Figure 5.2: Network metrics for constant-rate (16Mbps) trace.

causing B(t)act to oscillate in step. RTT remains comfortably below Lmax

(100ms).

Impact of Lmax. In Figure 5.3, we show how Lmax affects the average

70

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50 100 150 200 250 300

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Lmax (ms)

ISP B mobile
ISP C stationary
ISP B stationary

ISP A mobile
ISP A stationary

ISP C mobile

(a) Throughput.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300

R
T

T
 (

m
s
)

Lmax (ms)

ISP C mobile
ISP A mobile

ISP B stationary
ISP A stationary

ISP B mobile
ISP C stationary

(b) RTT .

Figure 5.3: Impact of Lmax on throughput and latency.

RTT for different cellular traces. We see that Lmax has minimal impact on

RTT. The resulting RTT tends to be much lower than Lmax and seems more

dependent on the network volatility rather than Lmax. It is not shown in

the figures, but while we might see some slight increase in throughput for a

higher Lmax, the impact of Lmax on average throughput is marginal at best.

71

5.2 Playing Well with Others

Next, we investigate how EvaRate interacts with itself, CUBIC, and BBR.

CUBIC is currently the dominant TCP variant on the Internet and BBR

is the state-of-the-art delay-based algorithm. For each protocol, we run a

60 seconds experiment using a constant-rate trace with a bottleneck link ca-

pacity of 2000KB/sec. The first flow starts at 0 seconds while the second

flows starts after 20 seconds.

EvaRate vs EvaRate. In Figure 5.4, we plot network metrics measured

for two EvaRate flows sharing the same 2000KB/s bottleneck link. This

scenario illustrates the idealized benevolent environment. Both flows are able

to estimate their own buffer occupancy B(t)est and the total buffer occupancy

B(t)est + B′(t)est accurately and consistently. The standard deviation of

B′(t)est is small from the perspective of both flows and they both operate in

benevolent mode. The two flows are able to collaboratively keep the total

buffer occupancy low and the RTT below 100ms.

EvaRate vs CUBIC. In Figure 5.5, we plot the interaction between an

EvaRate flow and a CUBIC flow sharing the same bottleneck buffer. When

CUBIC reduces its congestion window upon packet loss, EvaRate is able

to momentarily measure C and obtain a good estimate of the total buffer

occupancy B(t)est+B′(t)est. This does not last very long as we refresh C and

our estimate of total buffer occupancy starts to diverge, while our estimate

of B′(t) starts to drop significantly. The large standard deviation of B′(t) is

interpreted as a signal that EvaRate is operating in a hostile environment.

In general, the interaction between CUBIC and EvaRate seems to exhibit a

72

 0

 500

 1000

 1500

 2000

 2500

 3000

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

EvaRate 1 (send)
EvaRate 2 (send)

 0

 500

 1000

 1500

 2000

 2500

 3000

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

EvaRate 1 (receive)
EvaRate 2 (receive)

 0

 50

 100

 150

 200 EvaRate 1

N
u
m

b
e
r

o
f
P

a
c
k
e

ts B(t)act+B’(t)act

B(t)est+B’(t)est

B(t)est

Std Dev(B’(t)est)

 0

 50

 100

 150

 200 EvaRate 2

N
u
m

b
e
r

o
f
P

a
c
k
e
ts B(t)act+B’(t)act

B(t)est+B’(t)est

B(t)est

Std Dev(B’(t)est)

 0
 50

 100
 150
 200
 250
 300

 0 10 20 30 40 50 60

R
T

T
 (

m
s
)

Time (s)

EvaRate 1
EvaRate 2

Figure 5.4: Interaction between two EvaRate flows for constant-rate
(16Mbps) trace.

significant amount of randomness. The only constant factor among them is

a high standard deviation in B′(t). CUBIC tends to keep the buffer very full

and it is difficult for EvaRate to get a fair share of the available bandwidth,

73

 0

 1000

 2000

 3000

 4000

 5000

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

CUBIC (send)
EvaRate (send)

 0

 1000

 2000

 3000

 4000

 5000

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

CUBIC (receive)
EvaRate (receive)

C(t)est

 0

 200

 400

 600

 800

 1000

N
u
m

b
e
r

o
f
P

a
c
k
e
ts Btarget

B(t)est

B’(t)est

Std Dev(B’(t)est)

 0

 500

 1000

 1500

 2000

 2500

N
u
m

b
e
r

o
f
P

a
c
k
e
ts B(t)act+B’(t)act

B(t)est+B’(t)est

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60

R
T

T
 (

m
s
)

Time (s)

RTT
RTTmin

Figure 5.5: Interaction between CUBIC and EvaRate for constant-rate
(16Mbps) trace.

but our control loop does successfully prevent flow starvation.

74

 0

 500

 1000

 1500

 2000

 2500

 3000

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

BBR (send)
EvaRate (send)

 0

 500

 1000

 1500

 2000

 2500

 3000

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

BBR (receive)
EvaRate (receive)

C(t)est

 0

 50

 100

 150

 200

N
u
m

b
e
r

o
f
P

a
c
k
e
ts Btarget

B(t)est
B’(t)est

Std Dev(B’(t)est)

 0

 50

 100

 150

 200

N
u
m

b
e
r

o
f
P

a
c
k
e
ts B(t)act+B’(t)act

B(t)est+B’(t)est

 0
 50

 100
 150
 200
 250
 300

 0 10 20 30 40 50 60

R
T

T
 (

m
s
)

Time (s)

RTT
RTTmin

Figure 5.6: Interaction between BBR and EvaRate for constant-rate
(16Mbps) trace.

EvaRate vs BBR. In Figure 5.6, we plot the interaction between an

EvaRate flow and a BBR flow sharing the same bottleneck buffer. Unlike

CUBIC, BBR periodically (every 10 seconds) stops sending for 400ms, al-

75

lowing EvaRate to periodically get a good measurement of the link capacity

C, thereby improving the estimate of the overall buffer occupancy. BBR is

clearly more aggressive than EvaRate, but we are able to estimate the buffer

occupancy for both flows accurately. The standard deviation of B′ is small so

EvaRate operates in benevolent mode. However, while seemingly benevolent,

BBR’s higher aggressiveness results in it having a higher number of packets

in the buffer than EvaRate in the steady state, which results in overall higher

RTT .

Looking at these results, we can also make some predictions on how

EvaRate will react to multiple BBR flows. Unlike EvaRate, BBR does not

attempt to coordinate across flows and each BBR flow will maintain its own

small but non-negligible number of packets (˜100) in the buffer. If there are

many BBR flows sharing the same buffer, there can be a large and constant

number of packets in the buffer at any time, so the overall latency will not

be low. We verify this in the next section.

5.3 Plausible Explanation for Internet Ob-

servations

To understand the observations in the Internet experiments (see §3.2) and

answer the question of what the future might look like as the dominant TCP

variant changes from CUBIC to new low-latency TCP variants, we ran an

experiment where 10 flows share a common 32Mbps bottleneck link with a

shallow 210-packet (1 × BDP) buffer. The RTT was set at 80ms. At first,

76

 0

 50

 100

 150

 200

R
T

T
 (

m
s
)

BBR
CUBIC

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

BBR
CUBIC

 0

 10

 20

 30

 40

 0 20 40 60 80 100

L
o
s
s
 r

a
te

 (
%

)

Percentage of BBR (%)

Loss Rate

Figure 5.7: Impact of different proportions of BBR for shallow buffers.

all 10 flows were CUBIC and we measured the throughput, RTT and loss

rates. Then we repeated the experiment by replacing the CUBIC flows with

a low latency flow (one of BBR, Copa, Vivace, or EvaRate) flows one at a

time until all 10 flows were the latter variants. We plot the average values

for RTT and throughput for the individual flows as well as the loss rate for

all the 10 flows in Figures 5.7 to 5.10. The error bars are used to indicate

the highest and lowest values for individual flows to provide us a sense of the

fairness across the flows.

BBR. We make the following observations about BBR from Figure 5.7:

(i) as highlighted in [17], BBR is much more aggressive than CUBIC. Just one

BBR flow can take up 25 Mbps of the available bandwidth when competing

with 9 CUBIC flows; (ii) as expected, RTT remains high as long as there

77

 0

 50

 100

 150

 200

R
T

T
 (

m
s
)

Vivace
CUBIC

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Vivace
CUBIC

 0

 10

 20

 30

 40

 0 20 40 60 80 100

L
o
s
s
 r

a
te

 (
%

)

Percentage of Vivace (%)

Loss Rate

Figure 5.8: Impact of different proportions of Vivace for shallow buffers.

is one CUBIC flow; and (iii) the distribution of throughput is not very fair

even when all flows are BBR flows.

Vivace and Copa. We make the following observations from Figures 5.8

and 5.9: (i) both Vivace and Copa take up a larger share of the throughput

than CUBIC; (ii) loss rates increase as the number of Vivace and Copa flows

increases. At 10 flows, the loss rates for both Vivace and Copa are quite

significant at around 10%.

78

 0

 50

 100

 150

 200

R
T

T
 (

m
s
)

Copa
CUBIC

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Copa
CUBIC

 0
 2
 4
 6
 8

 10

 0 20 40 60 80 100

L
o
s
s
 r

a
te

 (
%

)

Percentage of Copa (%)

Loss Rate

Figure 5.9: Impact of different proportions of Copa for shallow buffers.

 0

 50

 100

 150

 200

R
T

T
 (

m
s
)

EvaRate
CUBIC

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

EvaRate
CUBIC

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

L
o
s
s
 r

a
te

 (
%

)

Percentage of EvaRate (%)

Loss Rate

Figure 5.10: Impact of different proportions of EvaRate for shallow buffers.

79

EvaRate. From Figure 5.10, we see that: (i) EvaRate hardly contributes

to the RTT; the resulting RTT is determined by the competing CUBIC flows.

(ii) EvaRate achieves a fairer share of the bandwidth when contending with

CUBIC, unlike the other variants that tend to throttle CUBIC with increased

losses. (iii) EvaRate seems to increase loss rates slightly when there are more

EvaRate flows, but the increase is not significant even with the majority being

EvaRate flows. When the system is 100% EvaRate, loss rate is actually lower

than that with some CUBIC flows.

5.3.1 Codel-Enabled Buffer

Codel is a queuing policy in switches to maintain the queuing delay under

a certain level [33]. Since Codel is commonly deployed on the Internet, we

also investigated the impact of BBR, Vivace, Copa and EvaRate in Codel-

enabled switches. We set the queuing delay threshold to be 70ms, which

corresponds to the buffer size in the previous shallow-buffer experiments

when the link capacity and RTTmin are 32Mbps and 80ms. In Figure 5.14,

we can see that Codel has similar effect on EvaRate flows. However, in

Figures 5.11, 5.12 and 5.13, we observe larger RTTs for BBR, Vivace and

Copa flows compared to the result in the shallow-buffer experiments. The

reason is that Codel is essentially a drop-head queue instead of a drop-tail

queue, which means that the packets at the tail will not be instantly dropped

when the buffer delay exceeds the threshold. As a result, more aggressive

flows will flood the bottleneck buffer and experience higher latencies. The

study reveals that Codel is mostly equivalent to using a shallow buffer, except

80

 0

 50

 100

 150

 200

R
T

T
 (

m
s
)

BBR
CUBIC

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

BBR
CUBIC

 0

 10

 20

 30

 40

 0 20 40 60 80 100

L
o

s
s
 r

a
te

 (
%

)

Percentage of BBR (%)

Loss Rate

Figure 5.11: Impact of different proportions of BBR for Codel-enabled
buffers.

it is a drop-head queue.

Our results cannot fully replicate what we observed with AWS servers

on the Internet because we assume all steady state flows and we do not

know the parameters of the core Internet routers. They do however suggest

that there is a need for more in-depth study on how the newly proposed

low-latency flows will impact the Internet as the proportion of these flows

increases relative to that of CUBIC.

81

 0

 50

 100

 150

 200

R
T

T
 (

m
s
)

Vivace
CUBIC

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Vivace
CUBIC

 0

 10

 20

 30

 40

 0 20 40 60 80 100

L
o

s
s
 r

a
te

 (
%

)

Percentage of Vivace (%)

Loss Rate

Figure 5.12: Impact of different proportions of Vivace for Codel-enabled
buffers.

 0

 50

 100

 150

 200

R
T

T
 (

m
s
)

EvaRate
CUBIC

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

EvaRate
CUBIC

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

L
o
s
s
 r

a
te

 (
%

)

Percentage of EvaRate (%)

Loss Rate

Figure 5.14: Impact of different proportions of EvaRate for Codel-enabled
buffers.

82

 0

 50

 100

 150

 200

R
T

T
 (

m
s
)

Copa
CUBIC

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Copa
CUBIC

 0
 2
 4
 6
 8

 10

 0 20 40 60 80 100

L
o
s
s
 r

a
te

 (
%

)

Percentage of Copa (%)

Loss Rate

Figure 5.13: Impact of different proportions of Copa for Codel-enabled
buffers.

83

 0

 200

 400

 600

 800

 1000

R
T

T
 (

m
s
)

BBR
CUBIC

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

BBR
CUBIC

 0

 10

 20

 30

 40

 0 20 40 60 80 100

L
o

s
s
 r

a
te

 (
%

)

Percentage of BBR (%)

Loss Rate

Figure 5.15: Impact of different proportions of BBR for deep buffers.

5.4 Deep Buffers

The results in §5.3 suggest that a plausible reason why Vivace and Copa seem

to compete well with CUBIC on the Internet is that bottleneck link buffers

are relatively shallow, Vivace and Copa are not sensitive to packet losses

and thus can take the share of the CUBIC flows that back off due to packet

losses. We decided that it was important to also investigate and understand

the impact of deep buffers. To do so, we repeated the experiments in §5.3,

but with a relatively deep buffer of 2,000 packets. The results are shown in

Figures 5.15 to 5.18.

84

 0

 200

 400

 600

 800

 1000

R
T

T
 (

m
s
)

CUBIC
Copa

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

CUBIC
Copa

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

L
o
s
s
 r

a
te

 (
%

)

Percentage of Copa (%)

Loss Rate

Figure 5.17: Impact of different proportions of Copa for deep buffers.

 0

 200

 400

 600

 800

 1000

R
T

T
 (

m
s
)

Vivace
CUBIC

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Vivace
CUBIC

 0

 10

 20

 30

 40

 0 20 40 60 80 100

L
o
s
s
 r

a
te

 (
%

)

Percentage of Vivace (%)

Loss Rate

Figure 5.16: Impact of different proportions of Vivace for deep buffers.

85

 0

 200

 400

 600

 800

 1000

R
T

T
 (

m
s
)

CUBIC
EvaRate

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

CUBIC
EvaRate

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

L
o
s
s
 r

a
te

 (
%

)

Percentage of EvaRate (%)

Loss Rate

Figure 5.18: Impact of different proportions of EvaRate for deep buffers.

Figures 5.15 and Figure 5.16 show that BBR and Vivace are still able

to contend well with CUBIC but as expected, the RTT is capped at 800ms

because of the buffer-filling behavior of CUBIC. The loss rates for both BBR

and Vivace are significant as the proportion of these flows increases relative

to CUBIC. This suggests that the evaluations of new low-latency flows need

to take into account the “stacking” of multiple flows more carefully. In

contrast, we see from Figure 5.17 that Copa and EvaRate are relatively well-

behaved and the RTT falls as the proportion of these flows increases relative

to CUBIC. The loss rates are also low with loss falling to zero when all

the flows are EvaRate flows. Unfortunately, both Copa and EvaRate now

contend poorly against CUBIC. It is plausible that Copa could potentially

be tuned to contend better with CUBIC, but unlike what was claimed in [2],

86

Copa in its default configuration does not perform well under all scenarios.

5.4.1 Tuning Aggressiveness

Next, we demonstrate the usefulness of decoupling the congestion control

algorithm into two different modes of operation depending on whether it

is operating in the presence of buffer-filling flows. Note that there is an

aggression factor α in Equation (4.5). α can be used to make EvaRate more

aggressive in the presence of buffer-filling flows, or in a hostile environment.

Specifically, we set α = 1.5 when EvaRate is in a hostile environment to

increase its aggressiveness. We call this variant EvaRate++. Note that we

believe it is beneficial to the whole network to stay less aggressive in a hostile

environment. Thus EvaRate++ is only to demonstrate that the design of

EvaRate allows it to compete well in a hostile environment by adjusting α.

In Figure 5.19, we see that EvaRate++ is able to achieve a fair share of

the bandwidth when contending with CUBIC in the presence of deep buffers.

In other words, if we can detect the operating environment accurately, we can

tune EvaRate to match any desired level of aggressiveness just by adjusting

α. This, however, comes at a cost. We see in Figure 5.20 that EvaRate++

has effectively replicated BBR’s behavior and caused loss rates to increase

to about 8% for a network with shallow buffers. We are not in favor of

inflicting loss on the underlying network, so α is set at 1 for the default

EvaRate implementation. This also suggests that EvaRate could be enhanced

to dynamically set α to an appropriate value greater than 1 when operating

in a hostile environment with deep buffers. This remains as future work.

87

 0

 200

 400

 600

 800

 1000

R
T

T
 (

m
s
)

CUBIC
EvaRate++

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

CUBIC
EvaRate++

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

L
o
s
s
 r

a
te

 (
%

)

Percentage of EvaRate (%)

Loss Rate

Figure 5.19: Impact of different proportions of EvaRate++ (α = 1.5) for
deep buffers.

 0

 50

 100

 150

 200

R
T

T
 (

m
s
)

EvaRate++
CUBIC

 0
 5

 10
 15
 20
 25
 30

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

EvaRate++
CUBIC

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

L
o
s
s
 r

a
te

 (
%

) Loss Rate

Figure 5.20: Impact of different proportions of EvaRate++ (α = 1.5) for
shallow buffers.

88

Scenario A

6789: F;<=

T>?@ F;<=

A DA EA GA

A DA EA GA

A1 HI HJ

 KI KJ

LNQVWXiY Z

Figure 5.21: Two scenarios of mode detection for Copa and EvaRate.

5.5 Mode Detection Accuracy

To decouple the congestion control algorithm into two operating modes, we

need to be able to detect the presence of buffer fillers accurately. The natural

question is therefore: how accurate is EvaRate’s simple standard-deviation-

based mode detection mechanism (§4.4.6)? It turns out that Copa also at-

tempts to detect the presence of buffer fillers by inferring whether a queue is

empty at least once every 5 RTT [2].

To investigate the accuracy of these mode detection mechanisms, we con-

sidered the 2 scenarios illustrated in Figure 5.21. In Scenario A, we start

a test flow and 20 s later, we start a CUBIC flow that persists for 20 s. In

Scenario B, we start a CUBIC flow and then the test flow 20 s later. The

first CUBIC flow then ends after another 20 s. The goal of these scenarios

is to cause the system to change from buffer filling to non-buffer filling and

vice versa, and we measured the time taken for the 2 algorithms to detect

the changes.

In Figure 5.22, we plot the detection delays for the different scenarios. Our

results show that in general, Copa has lower detection delays than EvaRate.

Copa concludes that there are no buffer-filling flows (Scenarios A1, A3 and

B3) in less than 0.5 s. It is also quite fast in detecting a new buffer filling flow

89

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

Detection Time (s)

Copa A1-A3-B3
Copa A2
Copa B2

EvaRate A2
EvaRate A1-A3-B3

EvaRate B2

Figure 5.22: Cumulative distribution of mode detection delay.

(Scenario A2). What we found, however, was that Copa took significantly

longer (around 2 s) to detect the presence of an existing buffer-filling flow

(Scenario B2). EvaRate has a comparable delay to Copa in this scenario

(Scenario B2).

The delays in Figure 5.22 do not however reflect the full picture. We

found that both Copa and EvaRate were constantly evaluating the operat-

ing environment and even after detecting a change correctly, both algorithms

will occasionally switch back to the wrong mode (even if there was no actual

change in the background). In Figures 5.23 and 5.24, we plot the false pos-

itive and false negative rates respectively. A false positive means that the

algorithm decides that it is operating in the presence of buffer fillers when it

is not, and a false negative means that an algorithm mistakenly believes that

it is operating in a benevolent environment even though there is CUBIC-like

traffic in the background. It is clear from Figures 5.23 and 5.24 that Copa

has traded off detection accuracy for lower detection delays, while EvaRate’s

90

 0

 5

 10

 15

 20

210 400 800 1600

F
a
ls

e
 P

o
s
it
iv

e
 (

%
)

Buffer Size

Copa-A1
Copa-A3

Copa-B3
EvaRate-A1

EvaRate-A3
EvaRate-B3

Figure 5.23: False positive rates for Copa and EvaRate.

detection accuracy is very much higher in spite of the longer detection delay.

91

 0

 10

 20

 30

 40

 50

210 400 800 1600

F
a
ls

e
 N

e
g
a
ti
v
e
 (

%
)

Buffer Size

Copa-A2
Copa-B2

EvaRate-A2
EvaRate-B2

Figure 5.24: False negative rates for Copa and EvaRate.

92

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
e
rc

e
n
ta

g
e

Jain’s Index

Vivace
BBR

CUBIC
EvaRate

Copa

Figure 5.25: CDF of Jain’s index for various TCP variants.

5.6 Fairness to Own Kind

We replicated the experiment in [2] to understand how EvaRate compares

with CUBIC, BBR, Copa and Vivace in terms of being fair to other flows

of the same kind. In this experiment, the bottleneck bandwidth was set to

100Mbps, the buffer size to 333 packets (1 × BDP), the RTT was set to

40ms. For each run, 10 flows are started one at a time at an interval of 1 s,

and each flow runs for 10 s. We calculated the throughput of each flow at a

window granularity of 100ms and plot the resulting cumulative distribution

of Jain’s fairness for all algorithms in Figure 5.25. We can see that EvaRate

achieves a similar level of fairness to other flows of the same kind as Copa,

and is fairer than the others. However, we note that we had earlier shown

in §5.3 that some algorithms can potentially throttle CUBIC under certain

scenarios, so the fairness of an algorithm to flows of its own kind is only one

facet of fairness.

93

5.7 Realistic Operating Scenarios

To understand how EvaRate would perform in more realistic operating sce-

narios, we evaluated EvaRate by repeating the AWS-based experiments de-

scribed in §3. We also compared the performance of EvaRate to other algo-

rithms for mobile cellular networks and satellite networks using Cellsim.

AWS Experiments. We plot the results for the single-flow experiments

in Figures 5.26 and 5.27. We found that the throughput for EvaRate is

generally comparable to Copa, but is generally lower than Vivace. However,

the loss rate result shown in Figure 5.27 suggests that EvaRate achieves the

throughput performance at a much smaller cost of loss rate. It turns out that

the loss rate for EvaRate is similar to CUBIC for most source-destination

pairs.

We also performed another set of double-flow experiments to validate the

results we obtained in the previous experiments and to further understand

the sharing of bandwidth at the bottleneck links. In this new set of ex-

periments, instead of initiating a single flow to the AWS remote servers in

various continents, we started two flows to the remote servers: one CUBIC

flow followed by another reference flow (for the protocol we want to test)

after a delay of 20 s. After reference flow started, both flows ran for 40 s

concurrently, and stopped at the same time. We calculated the throughput

and loss rate for the CUBIC flow and the reference flow for the latter 40 s

and plot the results in Figure 5.28 and 5.29. We observed that like the single

flow experiment, the low-latency TCP variants were clearly more aggressive

than the background CUBIC flow, even if they started later. The loss rate of

94

 0

 50

 100

 150

 200

 250

 300

Australia Asia North America Europe

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Location

CUBIC
BBR

PropRate
EvaRate

Copa
Vivace

Figure 5.26: Comparison of throughput for single-flow AWS experiment.

low-latency TCP variants was slightly lower than that of the single-flow ex-

periment, but still relatively significant. On the other hand, EvaRate behaves

more TCP-friendly than the recent low-latency TCP variants and achieves

better fairness and global throughput performance, which comes at a lower

loss rate as shown in Figure 5.29.

We found that the default TCP receive window was relatively too small

and we thought that maybe this might have prevented cwnd-based TCP

variants like TCP CUBIC from sending enough data to obtain a larger share

of the bottleneck link buffer. We thus repeated the 2-flow AWS experiments

by increasing the receive window from the default 200KB to a much larger

value of 40MB, and plot the results in Figure 5.30. In general, CUBIC

generally obtains a larger share of the available bandwidth, though at a higher

loss rate. We can see that a larger TCP receive window has more impact for

flows with long RTTs and has minimal impact on those with short RTTs. It

95

 0

 0.5

 1

 1.5

 2

Australia Asia North America Europe

L
o
s
s
 R

a
te

 (
%

)

Location

CUBIC
BBR

Copa
Vivace

PropRate
EvaRate

Figure 5.27: Comparison of loss rate for single-flow AWS experiment.

 0

 50

 100

 150

 200

 250

 300

C
U

B
IC

 T
P

 (
M

b
p
s
)

CUBIC
BBR

PropRate
Copa

Vivace
EvaRate

 0

 50

 100

 150

 200

 250

 300

Australia Asia North America Europe

R
e
fe

re
n
c
e
 T

P
 (

M
b
p
s
)

Location

CUBIC
BBR

PropRate
Copa

Vivace
EvaRate

Figure 5.28: TCP throughput of background CUBIC flows and reference
flows for double-flow AWS experiment.

was interesting for us to note that the current default CUBIC receive window

effectively helps low-latency variant compete better against CUBIC.

96

 0

 0.2

 0.4

 0.6

 0.8

 1

C
U

B
IC

 L
o
s
s
 (

%
)

CUBIC
BBR

PropRate
Copa

Vivace
EvaRate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Australia Asia North America Europe

R
e
fe

re
n
c
e
 L

o
s
s
 (

%
)

Location

CUBIC
BBR

PropRate
Copa

Vivace
EvaRate

Figure 5.29: TCP loss rate of background CUBIC flows and reference flows
for double-flow AWS experiment.

 0

 50

 100

 150

 200

 250

 300

C
U

B
IC

 T
P

 (
M

b
p
s
)

CUBIC
BBR

PropRate
Copa

Vivace
EvaRate

 0

 50

 100

 150

 200

 250

 300

Australia Asia North America Europe

R
e
fe

re
n
c
e
 T

P
 (

M
b
p
s
)

Location

CUBIC
BBR

PropRate
Copa

Vivace
EvaRate

Figure 5.30: TCP throughput of background CUBIC flows and reference
flows with a larger receive window.

97

 0

 0.2

 0.4

 0.6

 0.8

 1

C
U

B
IC

 L
o
s
s
 (

%
)

CUBIC
BBR

PropRate
Copa

Vivace
EvaRate

 0

 0.2

 0.4

 0.6

 0.8

 1

Australia Asia North America Europe

R
e
fe

re
n
c
e
 L

o
s
s
 (

%
)

Location

CUBIC
BBR

PropRate
Copa

Vivace
EvaRate

Figure 5.31: TCP loss rate of background CUBIC flows and reference flows
with a larger receive window.

98

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400 450

Mean 95%
EvaRate

Other TCP

CUBIC

Vegas

Sprout

Verus

BBR

Proprate

Vivace

CopaT
h
ro

u
g
h
p
u
t

(M
b
p
s
)

RTT (ms)

EvaRate

Figure 5.32: Mobile cellular network trace: M1.

Mobile Cellular Networks. For the mobile cellular network, we used

a publicly-available set of cellular traces collected by Leong et al. [27]. The

traces are collected using 3 local ISPs in Singapore (M1, Starhub and Singtel)

on a shuttle bus moving around the university campus. We plot the results

in Figures 5.32 to 5.34. We can see that although not specially designed for

mobile cellular networks, EvaRate operates at an efficient point along the

throughput-latency frontier, with a throughput close to CUBIC and a much

lower latency than CUBIC. Also, in the result of Singtel trace, in which

network condition varies significantly, Vivace becomes very aggressive and

causes a much higher latency than other low-latency TCP variants. EvaRate

manages to keep the overall latency low, although the throughput is lower

than CUBIC, PropRate and Vivace.

Satellite Networks. For the satellite network, we use the measurement

results from the WINDS satellite system: 42Mbps link capacity, 800ms RTT,

1 × BDP buffer size and a 0.74% stochastic loss rate [34]. In each experiment,

99

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700

Mean 95%
EvaRate

Other TCP

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

RTT (ms)

CUBIC

Vivace

Vegas
Copa

Sprout

VerusBBR

PropRate

EvaRate

Figure 5.33: Mobile cellular network trace: Starhub.

 0

 1

 2

 3

 4

 5

 6

 7

 0 200 400 600 800 1000 1200 1400

Mean 95%
EvaRate

Other TCP

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

RTT (ms)

CUBIC

Sprout

Vegas

Copa

Vivace

Verus
BBR

PropRate
EvaRate

Figure 5.34: Mobile cellular network trace: Singtel.

a sender starts the connection and transmits data for 60 seconds. The results

are presented in Figure 5.35. It is clear from these results that it is difficult

to compare TCP variants directly because different algorithms are optimized

for different trade-offs.

100

 0.1

 1

 10

 100

 600 800 1000 1200 1400 1600 1800

Mean 95%
EvaRate

Other TCP

Vivace

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

RTT (ms)

BBR

CUBIC

Copa

 Verus

Vegas

Sprout

EvaRate

Figure 5.35: Satellite network trace.

5.8 Computation Overhead

In Figure 5.36, we compare the measured CPU overhead of EvaRate to the

state-of-the-art algorithms for various Intel processors. We used iperf for

CUBIC, BBR, PropRate and EvaRate, and custom clients for Verus, Vivace

and Copa to generate TCP traffic and measured the CPU utilization ratio

at the sender for three different CPUs. Our results show that EvaRate has

low overheads comparable to those of CUBIC. It is worth noting however

that Verus, Copa and Vivace are implemented using UDP in user space. It

is likely that a kernel implementation of these algorithms would be more

efficient.

101

 0.1

 1

 10

 100

Cubic EvaRate PropRate BBR Copa Vivace Verus

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

E5-2630 i7-2600 Q9550

Figure 5.36: CPU utilization of state-of-the-art congestion control algo-
rithms.

102

Chapter 6

Conclusion & Future Work

In this thesis, we first proposed an algorithm to detect and identify the TCP

variant deployed at remote web servers. With the algorithm, we performed

a measurement study to determine the distribution of various TCP variants

in the Internet. Our results suggests that TCP CUBIC is still the most

dominant TCP variant deployed in the Internet. In addition, we also found

that BBR, a low-latency TCP variant proposed by Google, has been deployed

“in the wild.”

Given that TCP CUBIC is loss-based and aggressive, we investigated how

the recently proposed low-latency TCP variants would interact with CUBIC.

We found in our AWS experiments that, surprisingly, the new low-latency

TCP variants were able to match, and even outperform CUBIC in terms of

throughput, but at a higher loss rate. With further analysis, we concluded

that the new low-latency achieved a high throughput by inflicting packet

losses to other flows sharing the same bottleneck link buffer, due to them

being insensitive to packet loss.

103

Based on the measurement study, we argue that it is not sufficient for

a low-latency TCP variant, like BBR, Copa and Vivace, to be insensitive

to losses. To operate effectively in the current Internet, it should also avoid

causing significant degradation to existing flows to allow the Internet to tran-

sition smoothly to a benevolent future. Our key insight is that we can directly

estimate not only the buffer occupancy for our flow, but also that of com-

peting flows sharing the same bottleneck buffer. With our new approach

to estimate the buffer occupancy of our own flow and the competing flows,

EvaRate is able to detect and distinguish hostile environment and benevo-

lent environment based on the variance of the buffer occupancy. EvaRate

flows will collaboratively manage the bottleneck link buffer in a benevolent

environment, and keep minimum number of packets in the buffer in a hostile

environment. By designing and implementing a negative-feedback control

loop that keeps the buffer occupancy low, EvaRate keeps latency low and

avoids overflowing the buffer and inflicting loss on competing flows.

We then extensively evaluate the performance of EvaRate using both

trace-driven emulations and Internet experiments. We made 3 major obser-

vations: i) EvaRate performs exactly as designed in the single-flow experi-

ments, successfully keeping the buffer occupancy low and non-zero; ii) In the

evolution experiments where BBR, Vivace, Copa and EvaRate are progres-

sively deployed, we find that BBR, Vivace and Copa inflict packet losses on

other CUBIC flows in shallow buffers, but EvaRate stays friendly to other

competing CUBIC flows; iii) In the AWS Internet experiments, we find that

BBR, Vivace and Copa outperform CUBIC by inflicting losses to compet-

ing CUBIC flows, while EvaRate achieves slightly lower throughput but is

104

friendly to competing CUBIC flows.

Philosophically, we do not believe that there is a best or optimal conges-

tion control algorithm. The best algorithm likely depends on the context.

With sufficient information, an approach like Remy would probably work.

That said, we can probably all agree that there is no good reason to require

buffer overflows and packet losses for congestion control and it is timely to

move beyond CUBIC.

EvaRate highlights a new point in the congestion control design space

where instead of having a single response to observed network metrics, we

incorporate an environment inference step to allow us to decouple the han-

dling of the existing CUBIC-like TCP variants from that of a future low-

latency utopia (or benevolent regime). It is a place that we all intuitively

know should exist, and yet to the best of our knowledge, few have studied

this “Never Never Land of TCPs” where low-latency transport protocols can

live happily ever after.

6.1 Future Work

While we have investigated a number of issues related to EvaRate, there is

still much room to explore. We highlight a few possibilities.

6.1.1 Distribution of TCP Variants

Although we estimated the distribution of 3 classes of TCP variants on the

Internet in Chapter 3, we can do more to design an algorithm to identify

the exact TCP variant of remote web servers. This will not only allow us

105

to determine the deployment progress of state-of-the-art TCP variants, but

also potentially provide valuable information for the parameter setting of

controlled network simulation experiments. Also, with a more detailed mea-

surement study, we can better understand the reason why low-latency TCP

variants compete better than CUBIC in the real Internet.

6.1.2 Understanding Benevolence and Fairness

We have an intuitive understanding of benevolence and we have devised a

simple way to detect it. However, we have found that benevolence is a

concept that describes an operating environment more than an algorithm.

For example, we found that while one BBR flow is benevolent to EvaRate, a

shared bottleneck with many BBR flows is hardly benevolent.

Similarly, fairness should consider not only the share of bandwidth but

also loss rate. We found that Vivace can be fair in terms of throughput, but

at a very high loss rate. Essentially the reason is that if everyone behaves

aggressive, each one will get similar share of throughput. Thus, we need a

new definition of fairness to better handle this situation.

EvaRate seems to be benevolent to its own kind, but it is not clear whether

this property holds if we scale up to a large number of flows. There is scope

to study and perhaps define this concept of benevolence more precisely, and

perhaps eventually develop an algorithm that is ”provably-benevolent.”

106

6.1.3 Achieving Ultra-low Latencies

We have seen that EvaRate was not able to achieve the low latencies reported

for PropRate [27]. Leong et al. had earlier observed that in order to achieve

ultra-low latencies, it is sometimes necessary to allow the buffer to empty for

some periods of time. EvaRate attempts to keep the buffer full at all times,

which explains why there seems to be a lower bound on how low RTT can go.

We are confident that EvaRate can be tuned to achieve even lower latencies

(potentially in a cellular network) by allowing the buffer to be emptied for

some duration of time. However, unlike PropRate, our feedback loop is not

directly related to the latency, so it is not straightforward to make EvaRate

converge to a desired (low) latency even if the network conditions allow for

it.

6.1.4 Reducing Estimation Errors

We can estimate our own buffer occupancy B accurately. However, the max-

imum available capacity C is a quantity that is extremely hard to measure

or estimate accurately in a hostile environment. If we could find a tech-

nique to measure C accurately and faster, we would significantly improve

our estimate of B′, the buffer occupancy of competing flows. This informa-

tion could potentially be used to improve fairness when contending with other

(non-EvaRate) flows in a hostile environment. BBR has an interesting mech-

anism where it would stop sending for 400ms every 10 s. Something similar

might also be helpful for improving the measurement of network metrics for

EvaRate.

107

6.1.5 Handling Packet Losses

The loss and fairness issues reported in this thesis suggest that packet loss

should not be ignored. Instead, we need a better mechanism to understand

what packet losses really mean to modern networks, and distinguish random

packet losses and packet losses due to buffer overflow. Not reacting to packet

losses is likely to cause a large number of packet drops for shallow buffers. We

are looking into how EvaRate can best respond to packet losses and perhaps

react differently to different packet loss patterns.

108

Bibliography

[1] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Pad-

hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari

Sridharan. Data Center TCP (DCTCP). In Proceedings of SIGCOMM

’10, 2010.

[2] Venkat Arun and Hari Balakrishnan. Copa: Practical Delay-Based Con-

gestion Control for the Internet. In Proceedings of NSDI ’18, 2018.

[3] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP

Vegas: New Techniques For Congestion Detection and Avoidance. In

Proceedings of SIGCOMM ’94, 1994.

[4] Carlo Caini and Rosario Firrincieli. TCP Hybla: A TCP Enhancement

For Heterogeneous Networks. International Journal of Satellite Com-

munications and Networking, 2004.

[5] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas

Yeganeh, and Van Jacobson. BBR: Congestion-Based Congestion Con-

trol. Queue, 14(5):50:20–50:53, 2016.

109

[6] Vint Cerf and Robert E. Kahn. A Protocol for Packet Network Intercom-

munication. Communications, IEEE Transactions on, 22(5):637–648,

1974.

[7] Dah-Ming Chiu and Raj Jain. Analysis of the Increase and Decrease

Algorithms for Congestion Avoidance in Computer Networks. Computer

Networks and ISDN Systems, 17(1):1 – 14, 1989.

[8] Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael

Schapira. PCC: Re-architecting Congestion Control for Consistent High

Performance. In Proceedings of NSDI ’15, 2015.

[9] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,

Brighten Godfrey, and Michael Schapira. PCC Vivace: Online-Learning

Congestion Control. In Proceedings of NSDI ’18, 2018.

[10] Sally Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649

(Best Current Practice), 2003.

[11] Sally Floyd, Mark Handley, Jitendra Padhye, and Jörg Widmer.

Equation-based Congestion Control For Unicast Applications. In Pro-

ceedings of SIGCOMM ’00, 2000.

[12] Sally Floyd and Thomas R. Henderson. The NewReno Modification to

TCP’s Fast Recovery Algorithm. RFC 2582, 1999.

[13] Sally Floyd and Van Jacobson. Random Early Detection Gateways

for Congestion Avoidance. IEEE/ACM Transactions on Networking,

1(4):397–413, 1993.

110

[14] Prateesh Goyal, Mohammad Alizadeh, and Hari Balakrishnan. Rethink-

ing Congestion Control for Cellular Networks. In Proceedings of HotNets

’17, 2017.

[15] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New TCP-friendly

High-Speed TCP Variant. ACM SIGOPS Operating Systems Review,

42(5):64–74, 2008.

[16] Mario Hock, Roland Bless, and Martina Zitterbart. Experimental Eval-

uation of BBR Congestion Control. In Proceedings of ICNP ’17, 2017.

[17] Mario Hock, Felix Neumeister, Martina Zitterbart, and Roland Bless.

TCP LoLa: Congestion Control for Low Latencies and High Through-

put. In Proceedings of LCN ’17, 2017.

[18] Van Jacobson. Congestion Avoidance and Control. In Proceedings of

SIGCOMM ’88, 1988.

[19] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. Tack-

ling Bufferbloat in 3G/4G Networks. In Proceedings of IMC ’12, 2012.

[20] Cheng Jin, David Wei, and Steven Low. Fast TCP: Motivation, Ar-

chitecture, Algorithms, Performance. In Proceedings of INFOCOM ’04,

2004.

[21] Aditya Karnik and Anurag Kumar. Performance of TCP Congestion

Control with Explicit Rate Feedback: Rate Adaptive TCP (RATCP).

In Proceedings of Globecom ’00, 2000.

111

[22] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion Control for

High Bandwidth-delay Product Networks. In Proceedings of SIGCOMM

’02, 2002.

[23] Jun Ke and Carey Williamson. Towards a Rate-Based TCP Protocol

for the Web. In Proceedings of MASCOT ’00, 2000.

[24] Tom Kelly. Scalable TCP: Improving Performance in Highspeed Wide

Area Networks. SIGCOMM Comput. Commun. Rev., 33(2):83–91, 2003.

[25] Changhyun Lee, Chunjong Park, Keon Jang, Sue B Moon, and Dongsu

Han. Accurate Latency-based Congestion Feedback for Datacenters. In

Proceedings of ATC ’15, 2015.

[26] Douglas Leith and Robert Shorten. H-TCP: TCP For High-Speed and

Long-Distance Networks. In Proceedings of PFLDnet ’04, 2004.

[27] Wai Kay Leong, Zixiao Wang, and Ben Leong. TCP Congestion Control

Beyond Bandwidth-Delay Product for Mobile Cellular Networks. In

Proceedings of CoNEXT ’17, 2017.

[28] Wai Kay Leong, Yin Xu, Ben Leong, and Zixiao Wang. Mitigating

egregious ACK delays in cellular data networks by eliminating TCP

ACK clocking. In Proceedings of ICNP ’13, 2013.

[29] Jim Martin, Arne Nilsson, and Injong Rhee. Delay-based Conges-

tion Avoidance For TCP. IEEE/ACM Transactions on Networking,

11(3):356–369, 2003.

112

[30] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren

Wang. TCP Westwood: Bandwidth Estimation for Enhanced Transport

over Wireless Links. In Proceedings of MobiCom ’01, 2001.

[31] Sally Floyd Matt Mathis, Jamshid Mahdavi and Allyn Romanow. TCP

Selective Acknolwdgement Options. RFC 2018, 1996.

[32] Radhika Mittal, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia

Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, David Zats,

et al. TIMELY: RTT-based Congestion Control for the Datacenter. In

Proceedings of SIGCOMM ’15, 2015.

[33] Kathleen Nichols and Van Jacobson. Controlling Queue Delay. Queue,

10(5):20–34, 2012.

[34] Hiroyasu Obata, Kazuya Tamehiro, and Kenji Ishida. Experimental

Evaluation of TCP-STAR for Satellite Internet over WINDS. In Pro-

ceedings of ISADS ’11, 2011.

[35] Jitendra Padhye, Jim Kurose, Don Towsley, and Rajeev Koodli. A

Model Based TCP-Friendly Rate Control Protocol. In Proceedings of

NOSSDAV ’99, 1999.

[36] K. K. Ramakrishnan, Sally Floyd, and David L. Black. The Addition

of Explicit Congestion Notification (ECN) to IP. RFC 3168, 2001.

[37] Michael Schapira and Keith Winstein. Congestion-Control Throwdown.

In Proceedings of HotNets ’17, 2017.

113

[38] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. Low Extra Delay

Background Transport (LEDBAT). IETF Working Draft, 2012.

[39] Prasun Sinha, Narayanan Venkitaraman, Raghupathy Sivakumar, and

Vaduvur Bharghavan. WTCP: A Reliable Transport Protocol for Wire-

less Wide-Area Networks. In Proceedings of MobiCom ’99, 1999.

[40] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Bal-

akrishnan. An Experimental Study of the Learnability of Congestion

Control. In Proceedings of SIGCOMM ’14, 2014.

[41] Kun Tan, Jingmin Song, Qian Zhang, and Murari Sridharan. A Com-

pound TCP Approach for High-speed and Long Distance Networks. In

Proceedings of INFOCOM ’06, 2006.

[42] Keith Winstein and Hari Balakrishnan. TCP ex Machina: Computer-

generated Congestion Control. In Proceedings of SIGCOMM ’13, 2013.

[43] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochas-

tic Forecasts Achieve High Throughput and Low Delay over Cellular

Networks. In Proceedings of NSDI ’13, 2013.

[44] Lisong Xu, K. Harfoush, and Injong Rhee. Binary Increase Conges-

tion Control (BIC) For Fast Long-Distance Networks. In Proceedings of

INFOCOM ’04, 2004.

[45] Qiang Xu, Sanjeev Mehrotra, Zhuoqing Mao, and Jin Li. PROTEUS:

Network Performance Forecast for Real-time, Interactive Mobile Appli-

cations. In Proceeding of MobiSys ’13, 2013.

114

[46] Yin Xu, Wai Kay Leong, Ben Leong, and Ali Razeen. Dynamic Regula-

tion of Mobile 3G/HSPA Uplink Buffer with Receiver-Side Flow Control.

In Proceedings of ICNP ’12, 2012.

[47] Peng Yang, Wen Luo, Lisong Xu, Jitender Deogun, and Ying Lu.

TCP Congestion Avoidance Algorithm Identification. In Proceedings

of ICDCS ’11, 2011.

[48] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian,

and Carmelita Görg. Adaptive Congestion Control for Unpredictable

Cellular Networks. In Proceedings of SIGCOMM ’15, 2015.

115

