The Great Internet TCP Congestion Control Census

AYUSH MISHRA, National University of Singapore, Singapore
XIANGPENG SUN, National University of Singapore, Singapore
ATISHYA JAIN, Indian Institute of Technology, Delhi, India
SAMEER PANDE, Indian Institute of Technology, Delhi, India
RAJ JOSHI, National University of Singapore, Singapore

BEN LEONG, National University of Singapore, Singapore

In 2016, Google proposed and deployed a new TCP variant called BBR. BBR represents a major departure from
traditional congestion-window-based congestion control. Instead of using loss as a congestion signal, BBR
uses estimates of the bandwidth and round-trip delays to regulate its sending rate. The last major study on the
distribution of TCP variants on the Internet was done in 2011, so it is timely to conduct a new census given
the recent developments around BBR. To this end, we designed and implemented Gordon, a tool that allows us
to measure the exact congestion window (cwnd) corresponding to each successive RTT in the TCP connection
response of a congestion control algorithm. To compare a measured flow to the known variants, we created a
localized bottleneck where we can introduce a variety of network changes like loss events, bandwidth change,
and increased delay, and normalize all measurements by RTT. An offline classifier is used to identify the TCP
variant based on the cwnd trace over time.

Our results suggest that CUBIC is currently the dominant TCP variant on the Internet, and it is deployed
on about 36% of the websites in the Alexa Top 20,000 list. While BBR and its variant BBR G1.1 are currently
in second place with a 22% share by website count, their present share of total Internet traffic volume is
estimated to be larger than 40%. We also found that Akamai has deployed a unique loss-agnostic rate-based
TCP variant on some 6% of the Alexa Top 20,000 websites and there are likely other undocumented variants.
The traditional assumption that TCP variants “in the wild” will come from a small known set is not likely to
be true anymore. We predict that some variant of BBR seems poised to replace CUBIC as the next dominant
TCP variant on the Internet.

CCS Concepts: » Networks — Transport protocols; Public Internet; « General and reference — Mea-
surement;

Keywords: congestion control; measurement study

ACM Reference Format:

Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong. 2019. The Great Internet
TCP Congestion Control Census. In Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, 3, Article 45 (December 2019).
ACM, New York, NY. 24 pages. https://doi.org/10.1145/3366693

Authors’ addresses: Ayush Mishra, ayush@comp.nus.edu.sg, National University of Singapore, Singapore; Xiangpeng Sun,
sun.xiangpeng@comp.nus.edu.sg, National University of Singapore, Singapore; Atishya Jain, atishya.jain.cs516@cse.iitd.ac.
in, Indian Institute of Technology, Delhi, India; Sameer Pande, sameer.vivek.pande.cs117@cse.iitd.ac.in, Indian Institute of
Technology, Delhi, India; Raj Joshi, rajjoshi@comp.nus.edu.sg, National University of Singapore, Singapore; Ben Leong,
benleong@comp.nus.edu.sg, National University of Singapore, Singapore.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/12-ART45 $15.00

https://doi.org/10.1145/3366693

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

https://doi.org/10.1145/3366693
https://doi.org/10.1145/3366693

45:2 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

CuBIC

wP Remy
Illinois Sprout
HTCP PRR
HSTCP PCC Vivace
Veno CTCP Ledbat TIMELY Copa

Reno New Reno

Tahoe 2019

1986 1994 1999 2003| 2006
Binomial BIC YeAH DCTCP Proprate
Westwood FAST
Jersey
Hybla

Fig. 1. The evolution of TCP congestion control.

1 INTRODUCTION

Over the past 30 years, TCP congestion control has evolved to adapt to the changing needs of
the users and to exploit improvements in the underlying network. Most recently, in 2016, Google
proposed and deployed a new TCP variant called BBR [5] (Bottleneck Bandwidth and Round-trip
propagation time). BBR represents a major departure from traditional congestion-window-based
congestion control. Instead of using packet loss as a congestion signal, BBR uses estimates of the
bandwidth and round-trip delays to regulate its sending rate. BBR has since been introduced in the
Linux kernel [4] and deployed by Google across its data centers. We summarize the evolution of TCP
congestion control in Fig. 1 (with previous studies of TCP distributions indicated in red [25, 28, 39]).
As the TCP ecosystem has changed significantly since the last study [40] done in 2011, it is timely
to conduct a new census to understand the latest distribution of TCP variants on the Internet.

The goals of our TCP census are relatively modest. We aim to (i) understand how the distribution
of previously identified variants has changed since 2011; (ii) develop a method to identify BBR in
existing websites; and (iii) determine the proportion of undocumented TCP variants if any. The
final goal of our approach represents a significant departure from previous studies, which assumed
a fixed set of known TCP variants and attempted to classify all the measured websites as one of the
known variants.

To this end, we designed Gordon, a tool that allows us to measure the exact congestion window
(cwnd) corresponding to each successive RTT in the TCP connection response of a congestion
control algorithm “in the wild” While rate-based TCP variants do not maintain a congestion
window, they typically maintain a maximum allowable number of packets in flight [5], which we
can measure as the effective congestion window for each RTT. To compare this response to that
of known variants, we created a localized bottleneck where we introduced a variety of network
changes: loss events, bandwidth change, and increased delay. We also normalize all measurements
by RTT. An offline classifier is then used to identify the TCP variant based on the cwnd trace over
time. By decoupling measurement from classification unlike prior studies [25, 28, 39], our approach
allows us to not only identify known TCP variants but also detect new undocumented variants.
Our approach also makes it possible to improve the accuracy of the classifier without repeating
the relatively expensive measurements, if new network profiles are not required for the improved
classifier.

We used Gordon to measure the 20,000 most popular websites according to the Alexa rank-
ings [19]. The following are our key findings:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:3

(1) Our results suggest that, as expected, CUBIC is currently the dominant TCP variant on the
Internet and is deployed at 36% of all the classified websites, which is an increase from what
was reported in the last study in 2011 (§4.5).

(2) The rate of BBR adoption over the past 3 years since its release has been phenomenal. BBR
(together with its Google variant) is currently the second most popular TCP variant deployed
at 22% of the classified websites (§4.5).

(3) While BBR has a share of only 22% by website count, we estimate that its present share
of total Internet traffic volume already exceeds 40%. This proportion will almost certainly
exceed 50% if Netflix and Akamai also decide to adopt BBR (§4.3).

(4) The assumption that TCP variants “in the wild” will come from a known set is not true
anymore. In particular, we found that Akamai has deployed a unique loss-agnostic rate-based
TCP variant on some 6% of the Alexa Top 20,000 websites (§4.4).

Since our key design principle is to look for generic characteristics such as reaction to bandwidth
change, delay and different types of loss, Gordon can be extended to identify new future variants
that are not known today. Given that we expect the TCP congestion control landscape to undergo
rapid and significant change soon, we do not think that the previous approach of taking a snapshot
every 10 years is good enough. We are in the process of enhancing and automating Gordon into a
web-service that can capture a continuous view of the Internet’s ongoing transition to a new era of
rate-based congestion control. We hope that the current shift in congestion control philosophy and
our work in uncovering new undocumented rate-based variants would draw attention towards
studying the interaction between cwnd-based and rate-based protocols at scale.

The rest of the paper is organized as follows: in §2, we provide an overview of previous attempts
to characterize congestion control variants deployed in the wild. In §3, we describe the design and
implementation of Gordon’s measurement and classification techniques. In §4, we first evaluate
the measurement accuracy of Gordon and then present detailed results of using Gordon to identify
TCP variants for the Alexa Top 20,000 websites [19] on the Internet. In §5, we describe the practical
difficulties we faced, the current limitations of Gordon, and future directions to improve Gordon for
understanding the long-term evolution of Internet congestion control. Finally, we conclude in §6.

2 RELATED WORK

To the best of our knowledge, there have been four prior studies attempting to characterize TCP
congestion control variants deployed in the wild. In 2001, Padhye et al. [28] used a tool called TBIT
that performed a specialized 25-packet drop and accept pattern which allowed it to detect if a web
server was running one of the four target congestion control variants: Reno, New Reno, Reno Plus
and Tahoe. At the time of publication, the consensus was that Reno was the most widely deployed
variant. However, their results showed that most of the Internet was already using New Reno.

In 2004, Medina et al. [25] followed up on the work by Padhye et al. by using TBIT to conduct
active and passive measurements of over 84,000 hosts on the Internet. While they were only able to
classify 33% of their target hosts, the categorized hosts showed a continued trend of moving from
Reno to New Reno, as observed earlier by Padhye et al. [28].

A study by Yang et al. [39] in 2011 provides the most recent update on the distribution of
congestion control variants on the Internet. In this work, they classify TCP variants on the Internet
using cwnd traces collected via two distinct network profiles. Their tool, CAAI, extracts feature
vectors from these cwnd measurements and identifies them via a classifier trained on cwnd traces
from controlled servers in a local testbed. While both CAAI and Gordon make cwnd measurements
to identify congestion control variants on the Internet, they do so in very different ways. CAAI uses
delayed ACKs to bloat the RTT in an attempt to ‘space out’ the individual cwnds in a connection.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:4 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

This approach would not work while measuring rate-based variants, which is one of the main
motivations for our work. Rate-based variants like BBR will continue to send packets that fill the
entire network pipeline and render CAAT’s delayed ACK measurement technique untenable. Their
measurements showed that BIC, CUBIC, and Compound TCP (CTCP) together had become more
popular than New Reno. Separately, Yang et al. also identified delay-based variants like YeAH [2],
Vegas [3], Veno [14] and Illinois [23] [40]. They found that about 4% of the Internet hosts tested
were using these delay-based congestion control variants. While we too aim to measure the general
distribution of congestion control protocols, we are more focused on studying the adoption of more
recent rate-based variants, like BBR. We summarize the key findings of our work together with
these previous studies in Table 9 (§4.5).

In terms of our measurement methodology, unlike prior tools [28, 39] that attempt to directly
classify the variants, Gordon decouples measurement and classification by design. In other words,
the classifier can essentially be swapped with other classifiers that work with our cwnd traces.
Instead of attempting to classify a TCP variant among a set of known TCP variants, we capture its
response to a fixed trace of varying network conditions to determine the entire evolution of a TCP
sender’s cwnd over time and normalize the result by RTT. Our approach allows us to identify and
make useful observations about undocumented variants (see §4.4). Our approach also makes Gordon
easily extensible as we leverage these observations to design new measurement and classification
methods to account for the new variants discovered in the wild. Like CAAI [39], Gordon also
emulates a controlled network environment between a measurement server and the web servers on
the Internet. However, CAAI emulates only changes in RTT and packet loss, while Gordon extends
the emulation to changes in bandwidth. Gordon differs from CAAI in the way that classification is
done. Gordon applies a decision tree to collected cwnd trace for a website, while CAAI collects a set
of reference traces under a range of controlled network conditions and compares the trace of a
probed website to these reference traces to find the closest match.

Chen et al. used deep neural networks to analyze passive measurements taken from TCP receivers
and identify the congestion control variant used by a TCP sender [9]. They used traces of long
continuous flows to train a Long Short Term Memory (LSTM) neural network that classifies the
trace behaviors into the congestion control variants by using features such as RTT, packets in flight
and throughput. Their evaluation was done only in a controlled testbed and so it is not surprising
that neural networks can classify relatively well-behaved traces. Because evaluation was not done
on actual Internet hosts, no attempts were made at addressing the noise from packet losses on
the Internet. We have reason to believe that such noise would introduce significant errors. A key
insight that makes Gordon work is our simple but effective technique to eliminate noisy traces from
random packet losses (see §3.1). Also, while supervised learning approaches can identify known
TCP variants, they will not be able to uncover new undocumented variants that are surprisingly
common (see §4.4).

There have also been some works on TCP-related measurements that focus on evaluating
congestion control algorithms and their implementations. Hagos et al. used machine learning
to infer the state of a TCP sender [17]. Comer et al. used active probing techniques to reveal
implementation flaws, protocol violations and design decisions of the 5 commercial black box
congestion control implementations [11]. Sun et al. [34] and Lubben et al. [24] also evaluated the
correctness of TCP implementations in controlled testing environments. None of these are directly
applicable for identifying TCP variants on the Internet.

3 METHODOLOGY

Gordon emulates a local bottleneck and tracks the evolution of the effective congestion window
(cwnd) (see §3.1) of the probed TCP variant while changing the available bandwidth, increasing

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:5

the delay and introducing packet losses in a controlled manner (see §3.2). In the case of rate-based
protocols that do not use a cwnd for rate regulation, we track the unacknowledged packets in
flight as the cwnd of the protocol. The key insight behind our design is that any congestion control
protocol must ultimately react to changing networking conditions. We then try to identify the TCP
variant from the observed cwnd response via offline processing (see §3.3).

Gordon targets identifying congestion control variants that have been deployed in the Windows
and Linux kernels. However, since it operates as an interceptor, it is not limited to measuring only
TCP behavior, and can be used to measure UDP traffic as well. In this work, we concentrate on
making measurements on TCP web traffic since TCP supports an overwhelmingly large proportion
of Internet traffic [33].

3.1 Measuring cwnd over time

At a high level, we want to determine the evolution of a target congestion control algorithm’s cwnd.
We note that the cwnd is essentially the maximum number of unacknowledged packets in flight
as allowed by the sender’s algorithm. Therefore, a simple way to measure the evolution of the
cwnd is to withhold acknowledgments from a TCP receiver (after the handshake) and count the
number of packets received until an RTO is triggered. We refer to this first congestion window
as C;. Next, we restart a new connection and this time, we will send C; acknowledgments and
stop. The total number of packets received before a re-transmission would be the total number of
packets for the first 2 RTTs, or C; + C,. In principle, by repeating this process and progressively
measuring C; + C + - - - + Cp,, we can determine the cwnd for the n’ h RTT and systematically track
the evolution of cwnd over time. It should be noted here that this effectively normalizes our cwnd
measurements by RTT. We employ this packet counting methodology with TCP SACK disabled.
We resort to restarting connections because we found that previous approaches that do similar
cwnd-based measurements using delayed acknowledgments do not work for rate-based variants
like BBR. These previous techniques typically use the bloated RTTs caused by the delayed ACKs as
‘separators’ to help them differentiate between different cwnd measurements for different RTT’s
in a single connection. This is not possible with rate-based variants like BBR that fill the entire
network pipeline, and thus render this delayed ACK approach to measuring cwnd untenable.

Unfortunately, we found that a naive packet counting strategy does not work well on the real
Internet for two reasons. First, most of the available web pages are relatively small and we would not
be able to plot any meaningful evolution of the cwnd. Second, the naive approach is very sensitive
to random packet losses.

MTU sizing and crawling for large web-pages. Since we measure cwnd in packets, a straight-
forward way to obtain more packets from an HTTP/HTTPS page download is to reduce the MTU
size of the connection. IPv4 [12] specifies a minimum MTU size of 68 bytes. However, we found
that setting an MTU size of 68 bytes often resulted in some connections failing without reason.
Through repeated trials for all the websites in the Alexa Top 20,000 list, we found that while an
MTU of 68 bytes works for most websites, some accept only connections with larger MTU sizes. To
address this issue, Gordon uses binary search to determine the minimum MTU size for a website
and performs the measurement using this MTU size. This acceptable MTU size search is done
before every measurement since the minimum acceptable MTU size could vary depending on the
underlying Internet path, which could change over time.

However, reducing the MTU size was often not enough to yield a sufficiently long trace to
identify the TCP variant. Thus, we first used a crawler to determine the available pages for each
website (to the best of our ability) and used the largest of these pages to perform our measurements.
Using our final network profile (see §3.2), Gordon needs about 80 packets for 30 RTTs to be able to
accurately plot cwnd evolution graphs for more complicated algorithms like CUBIC. With most

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:6 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

Correct cwnd

Accept Window measurement
A
f N RN
1
AN 2
1
Accepted Packets Dropped Packets :

Negative noise:

INNEIEEEEE [
IR
INNEENEE -

e . 1
Positive noise: 1
1

Y =l

[0 = packet drops on the Internet Il = Retransmission —> = Noise

Fig. 2. Possible scenarios for random losses.

websites accepting 68 -byte MTUs, this would mean an ideal web-page size for Gordon would be at
least 165 KB.

Handling Random Packet Losses. In Fig. 2, we present the various scenarios when we observe
packet loss in our measurements. We note that most packet losses result in a lower estimate (negative
noise). It is only when the first re-transmitted packet is lost that we end up counting the entire
re-transmitted window twice and have positive noise. The latter is easily eliminated if we stop
counting packets when we see the re-transmission of any packet in the current cwnd measurement
window.

We eliminate negative noise caused by random losses by repeating the measurement for each
congestion window several times and taking the maximum window measurement as the cwnd. In
Fig. 3, we plot the measurement noise from random losses while measuring various web-servers
on the Internet (both real hosts on the Internet and controlled servers set up on AWS) for different
number of trials. We see that 15 trials per cwnd measurement are sufficient to eliminate negative
noise. Here, by ‘noise’ we mean the cumulative sum of the difference between the measured and
ground truth cwnd values. In this experiment, the ground truth was taken to be the measurements
made over 50 trials. In addition to this, all our experiments were done over wired links to minimize
the possibility of random packet losses.

In Fig. 4, we plot the window measurements for reddit . comusing 15 trials per cwnd measurement.
The red points are the individual window measurements. We see that taking the maximum over 15
trials per window measurement are sufficient to provide us with a relatively smooth cwnd evolution
curve. The small cwnd during the first 5 RTTs is the result of the SSL certificate exchange protocol.

3.2 Designing a Network Profile

Our goal is to identify TCP variants from the evolution of their cwnd over time. Conceptually,
we described a way to do this measurement in §3.1. However, we need a way to normalize the
measurements so that they can be compared to base measurements of known TCP variants. Since
we have full control over the network bottleneck, we can impose a common network profile on all
the websites. In particular, we introduce a packet loss event and a bandwidth change event at the
network bottleneck and observe the response of the probed TCP algorithm.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:7

: Single trials . g
160 Maximum cwnd A

150 % 80 | v iy
100 i H H c 60 - l' s ®e eecens
3

(63}
o

i + L + 28.4%, L | | | It It It + J
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of trials per RTT RTT #

Avg Error (Pkts)

o

Fig. 3. Sensitivity analysis for repeated measurements. Fig. 4. cwnd measurement for reddit. com.

Packet Loss. Most congestion control algorithms enter their Congestion Avoidance phase when
they see a packet loss. The general assumption is that packet losses signal congestion due to buffer
overflow. Since we control the network bottleneck, we can decide exactly when a packet loss should
happen.

Through measurements, we found that most connections have a starting window size of 10
packets, as suggested by Chu et al. [20, 32]. This means that for a typical Slow Start, we can expect
the first few congestion windows to be 10, 20, 40, 80, etc. In Fig. 5, we plot the evolution of cwnd
for a controlled web server running CUBIC while Gordon emulates a drop at different stages of
a connection - namely when the measured cwnd first reaches more than 40, 80 and 160 packets.
We evaluate CUBIC since it has relatively complex cwnd evolution in the Congestion Avoidance
phase. Fig. 5 shows that if the packet drop occurs too early, the subsequent cwnd is relatively small
and it might be hard to discern between the curve shapes after the packet drop. On the other hand,
if the packet drop is too late, the window size becomes very large and we need very large flows
(large web pages) to make a measurement that captures the entire CUBIC curve. We found that
inflicting a packet loss after the cwnd reaches 80 packets achieves a good trade-off between these
two concerns. We call this value the Packet Drop Threshold. Except for this inflicted packet drop
meant to “force” cwnd-based TCP variants into Congestion Avoidance phase, no other packets are
explicitly dropped by Gordon during the measurement. Our buffer is big enough to avoid buffer
overflows.

Regulating the Bottleneck Bandwidth. Recent rate-based congestion control algorithms like
BBR do not back off when they encounter a packet loss. Even so, these algorithms still cap the
maximum number of packets in flight. In particular, BBR limits the number of packets in flight to
twice the estimated bandwidth-delay product (BDP). To characterize such algorithms, we vary the
bottleneck bandwidth and observe how the measured cwnd changes when the bottleneck bandwidth
changes.

Since our methodology requires us to limit the sender’s cwnd to about 100 packets to make the
flows last long enough, we emulate a BDP of 50 packets. We achieve this BDP by maintaining an
RTT of 100 ms between the sender and the receiver and limiting the initial bottleneck bandwidth
to 500 packets/s for the first 1,500 packets received. This rate is reduced to 334 packets/s for the
next 1,500 packets before the bandwidth is restored to 500 packets/s. This behavior can be seen in
Fig. 6, where we show the available bandwidth in terms of the BDP for the flow (since the delay is
a constant). We can see that the cwnd for a controlled web server running BBR tracks the available
bandwidth at twice the BDP emulated by Gordon after a measurement delay of 10 RTTs. We decided
on changing the BDP every 1,500 packets because it would result in a period of 15 to 20 RTTs and
works for the general file sizes in our sampled websites. This change in bandwidth also allows us

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:8 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

250 160

loss at 160 pkts 140 | Packet Loss X

200 - loss at 80 pkts . BDP - - - -

2 loss at 40 pkts ©120

(4] Q

5150 5100

s S 80

-§ 100 -§ 60 e S R e S ‘

40 - '
o L o | J A U g v
50 20 |
0 It It It It It It J 0 L L L L J
0 10 20 30 40 50 60 70 0 10 20 30 40 50

RTT # RTT #

Fig. 5. Evolution of CUBIC cwnd for different packet Fig. 6. How BBR reacts to the bandwidth changes.
drops.

to identify other rate-based variants that may react to a change in bottleneck bandwidth but track
the emulated BDP differently.

Final Network Profile. In summary, we inflict a packet drop for the first window where the
number of packets received is strictly larger than 80. The available bandwidth of the bottleneck
alternates between 500 packets/s and 334 packets/s after every 1,500 packets received. In Fig. 7,
we plot the responses for some common congestion control algorithms as measured by Gordon
while applying the final network profile. We note that except three pairs of congestion control
algorithms (Veno/Vegas, New Reno/HSTCP and CTCP/Illinois) we are generally able to identify the
TCP variant from the shape of the curve within the first 30 RTTs. These shapes are deterministic and
Gordon is consistently able to record traces like the ones in Fig. 7 over multiple runs. These shapes
show slight deviations when measured over the Internet, and their impact on our classification
accuracy is discussed in § 4.1.

In the future, if there are deployments of other congestion control variants, additional network
profiles can easily be added to Gordon to identify them. In this work, we limit ourselves to using a
single network profile because of the cost associated with measuring each website.

3.3 Classification

The output from Gordon is a plot of estimated cwnd versus time (RTT #) of the target host in
response to our final network profile. It remains for us to determine the TCP variant from the shape
of the graphs. For measurements that are sufficiently long and yield enough data, we expect the
shapes to be similar to those shown in Fig. 7.

We use a simple decision-tree-based approach to identifying variants over the Internet (see §4.1).
One of the benefits of our approach of decoupling measurement and classification is that other
researchers are free to swap our classifier with a different classifier. We have made the source code
for Gordon and our measurement traces publicly available (§8).

To compute the shape, we first identify the back-off points in the trace that signify the end
of Slow Start and the beginning of the Congestion Avoidance phase. Then the traces are treated
differently based on the emulated network stimulus that caused this back-off.

Case 1: Back-off After Packet Loss. We divide the resulting Congestion Avoidance phase into
3 regions (as shown in Fig. 8).

(1) Catch-Up: This region corresponds to the region right after the algorithm backs off to a lower
cwnd after encountering a packet loss.
(2) Steady: This is the region where cwnd demonstrates linear or no growth.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census

45:9

X Packet Loss 160 |
A160 -l . BDP . Packet Loss X
z Z 120 BDP -
X X
[} [}
[©
£ £ 80
el el
c = Y A B
z g 40

! 0
30 0 5 10 15 20 25 30
RTT #
(b) BBR
250
X Eg%(et Loss
2 :@200
[Q
S 150
s 3
o 5100
5 5
©20 PacketLoss X © 50
BDP - - - -
0 ‘ ‘ ‘ ‘ ‘ 0
0 5 10 15 20 25 30
RTT #
(c) BIC
100 8
§ 60 g g
Taof TSN E) =
3 5 320 320

Packet Loss X
BDP - - -

PacketLoss X
BDP - - - -

PacketLoss X
BDP - - - -

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
RTT # RTT # RTT #
(e) Scalable (f) New Reno (g) lllinois
X 100 Packet Loss X
580 = _80 BDP - - --
@ @ 80 0
T T T
§ 60 —é 60 _é 60
& [T k=3 F N R A e e S S
B e e R S 5 40 240
2 2 2
3 3 320
20 Packet Loss X 20 PacketLoss X
BDP - - - - 0 BDP - - -- o
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
RTT# RTT # RTT #
(h) CTCP (i) YeAH (j) Vegas
120 Packet Loss X 120 PacketLoss X
_80 BDP - - -- __100 BDP - - --
[2
260 g 80
&[T Eoof |
24 2 40
3 3
20 Packet Loss X 20
BDP - - - - 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
RTT# RTT # RTT#
(k) Veno (I) Westwood (m) HSTCP

Fig. 7. Curves for TCP congestion control algorithms in response to our final network profile.

(3) Probe: This is the region when the algorithm tries to probe for more available bandwidth by
increasing the cwnd.
In addition to this, we also calculate two features common to most loss-based congestion control

algorithms — & and . Where C; is the cwnd value at the i** RTT of the Congestion Avoidance
phase,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:10 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

Cy

backoff

________ <

|
‘n—Catch up —»<——Steady——><——Probe—>
A !

Fig. 8. Calculating @ and f from the 3 regions.

(a) CUBIC (b) BIC (c) HTCP (d) Linear
Fig. 9. Shapes identified by the classifier.

Table 1. Shape Classification.

Regions
Shape | Catch-up Steady Probe
CUBIC 2—‘;‘ <0 vooodEso
BIC T <0 v -
HTCP - - sy
Linear - v -

(1) ap = C, —Cp—1,n > 3 is the increase in cwnd between 2 successive measurements by Gordon
for all RTTs after back off (see Fig. 8).
(2 p= %, is the proportion of back-off after packet loss.

Based on the division of the Congestion Avoidance phase into 3 regions, we found that the curves
for the known cwnd-based TCP variants would take one of the 4 shapes shown in Fig. 9. We can
computationally classify a curve into one of the 4 shapes based on the change in gradient (fli—‘;‘) for
each region and by determining whether the steady region exists, as shown in Table 1.

Once we have the shape and the values of @; and f, we can determine the variant from Table 2 by
computing &, the mean of @;. Many of the values in Table 2 were obtained from the papers [3, 5, 16,
21-23, 29, 35, 38] describing the various algorithms. However, we found some difference when we
measured the references traces obtained in our network testbed. Some adjustments were then made
to ensure that the values of § and & reflected what we observed in our traces. Algorithms that react
to loss, but cannot be classified into one of these shapes are classified as Unknown. We note that

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:11

Table 2. Known TCP Variant Classification.

Shape B a ‘ Variant
CUBIC > 0.66 - CUBIC
BIC >0.66 - BIC
HTCP >05 - HTCP
> 0.8 =1.01 Scalable
>08 [1,1.01] YeAH
Linear > 0.5 N.A. CTCP/Illinois
(0.2,0.5] <1 Vegas/Veno
(0.2,0.5] =1 New Reno/HSTCP
<0.2 =1 Westwood
Stable regions = 2XBDP | BBR

CUBIC [16], BIC [38] and HTCP [22] can be identified by shape alone. Scalable [21], Illinois [23],
CTCP [35], YeAH [2], New Reno [29], Veno [14], Westwood [8] and Vegas [3] all increase their
cwnd linearly during Congestion Avoidance and are very similar in shape.

While most variants can be differentiated by their values of f and & (slope of the cwnd graph in the
Congestion Avoidance phase), Gordon is not able to differentiate between three pairs of algorithms -
CTCP and Illinois, New Reno and HSTCP and between Vegas and Veno. In the Congestion Avoidance
phase, both Vegas and Veno initially increase their congestion window by 1 every RTT (a = 1)
before having more or less constant cwnd and are therefore indistinguishable when they interact
with our network profile. Similarly, both CTCP and Illinois evolve their cwnd values using similar
functions after seeing a packet loss. HSTCP and New Reno both back-off to half their cwnd on
seeing a packet loss and increment their cwnd by 1 every RTT in Congestion Avoidance mode.
Therefore, Gordon classifies them together as ‘Vegas/Veno’, ‘CTCP/Illinois’, and ‘New Reno/HSTCP,
respectively. It remains as future work to introduce a second stage to disambiguate between these
pairs (§5).

Case 2: No Back-off. For variants that do not back-off after a packet loss, we try to either classify
them as BBR or an unknown variant. Even though BBR is a rate-based algorithm, it maintains a
cwnd that is equal to twice the BDP. Also, since BBR uses the maximum receive rate in the past 10
RTTs for calculating it’s BDP [6], we expect to see a drop in cwnd corresponding to our network
profile’s drop in bandwidth delayed by 10 RTTs.

Therefore, to identify if these unique behaviors are present in a measurement, the classifier starts
by identifying stable regions that show little change in cwnd as shown in Fig. 10. This is because
since our emulated BDP is a step function, we expect BBR’s cwnd to trace this step function as
well. We then compare these cwnd stable regions with the emulated BDP. If the cwnd is twice the
emulated BDP and the website reduces its cwnd 10 RTTs after a bandwidth change was emulated,
the algorithm is classified as BBR. If not, it is classified as Unknown.

3.4 Implementation

In Fig. 11, we present an overview of Gordon’s system design. To inflate the RTT between our
measurement server and the remote host (as discussed in §3.2), Gordon is run inside a Mahimahi
delay shell [26]. We use wget [31] to emulate a browser making an HTTP/HTTPS GET request to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:12 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

% 120 + \ < \ Stable
¥ \ / Regions
g 80
S 4o |
c ¥ Emulated BDP
v 0 ‘ ‘ ‘ ‘ ‘ X Packet loss
0 5 10 15 20 25 30
RTT #
Fig. 10. ldentifying stable regions for loss-agnostic flows.
v T T T T DI T |
: I !
1
| | o= Client (wget) : |
Incomi | e = L
ncoming o=l 'y
traffic : HE =] controlied .
\ oy degze?eiate Accept | :
1
i : i :l k——»lﬁercepﬁl::
_______________ ——— .
: Gordon Drop 1
I
NSRS y
S Mahimahi Delay shell ,
—_—
—
/; /
\
1 Internet ~. L

;\"‘/4\
A
Remote Server Localizing the Bottleneck Receiver

Fig. 11. Gordon Design.

the target web server. The incoming HTTP response packets are redirected to an NFQueue [27]
using a Linux Netfilter redirect rule.

The interceptor module of Gordon dequeues packets from the NFQueue and selectively delivers
them to wget or drops them. Gordon controls the rate at which packets are dequeued from the
NFQueue to localize the bottleneck of the connection and to regulate the bottleneck bandwidth
(as described in §3.2). The interceptor module is implemented in about 350 lines of C code. The
final output consists of a trace of the maximum cwnd size observed for each RTT period, which is
processed offline by a classifier written in 440 lines of Python code. For each website in the Alexa
Top 20,000 list [19], we used a web crawler written in about 300 lines of Python code to obtain
URLs to the largest web pages/objects that it could find on the website.

Because of the scale of our measurements, Gordon was also extended into a web service. This
web service consisted of a single centralized server responsible for aggregating measurements made
by 250 clients (workers) distributed across 5 regions (viewpoints) - Ohio, Sao Paulo, Paris, Mumbai,
and Singapore. These workers requested jobs at the granularity of a single cwnd measurement for a
website, allowing us to spread our connections over time and seem less aggressive to a website.
Each host was measured five times (once from each viewpoint) while the centralized server tracked

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:13

08 r
E 0.6 | larger than
Co4t 165 KB
0.2
_—d—/
0 I j j
0.01 1 100 10000
File Size (KB)

Fig. 12. CDF of file sizes used in measurements.

these five individual measurements separately. This web service was implemented in about 2,050
lines of TypeScript code.

At the moment, we have made Gordon and our measurements available on GitHub (see §8).
We are still working to make the web service available as a live dashboard of the TCP variant
distribution on the Internet.

4 RESULTS

We measured and classified the top 20,000 websites on the Internet based on their Alexa ranking [19].
These measurements were made between 11 July 2019 and 17 October 2019 (unless specified). The
distribution of the file sizes obtained using a crawler (see §3.1) for the measurements is shown in
Fig. 12. We can see that about 18% of the websites return pages smaller than the ideal page size
of 165KB (§ 3.1). We were able to classify the variants for some of these websites with page sizes
smaller than 165 KB. We refer to the remaining websites that cannot be classified as ‘Short flows’.

We also found that about 1,302 websites in the Alexa Top 20,000 list did not respond to wget
requests. These websites had DDoS protection from Cloudflare or Google’s ReCaptcha, and therefore
did not respond to repeated wget requests. A small fraction of the websites also had invalid URLs
that did not even open on a web browser. Upon further investigation, we found that these URLs
were links to phishing websites that had been visited so often that they had made it to the Alexa
Top 20,000 list. Collectively, we consider these websites to be ‘Unresponsive’.

4.1 Verification of Measurement Accuracy

First, we validate the accuracy of our approach by setting up a physical test web server in Singapore
and performing measurements from AWS EC2 instances in 9 locations (viewpoints): Paris, London,
Ireland, Sydney, Seoul, Mumbai, Virginia, Oregon, and Ohio. The RTTs for the measurements ranged
from 59 ms to 255 ms. To provide the ground truth, the test server runs one of the known TCP
variants, which was then measured 5 times from each viewpoint, to give a total 45 measurements
for each variant. Later, the configuration was reversed, with the AWS instances running a known
variant and acting as web servers while a local server made measurements. In Table 3, we present
the confusion matrix for these 90 measurements (per algorithm). The key takeaway is that for
known variants, the accuracy is high and false positives are relatively rare. Note that the figures
in Table 3 reflect the accuracy of single measurements. If we take the majority result across the
five measurements from an individual viewpoint, we can achieve 100% classification success. The
errors are caused by noisy measurements arising from Internet traffic.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:14 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

Table 3. Classification accuracy.
Classified as

Vegas/ New Reno/ CTCP/
Veno HSTCP Illinois

BBR CUBIC BIC HTCP Scalable YeAH Westwood Unknown

BBR 98% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2%
CUBIC 0% 95% 0% 0% 0% 0% 0% 0% 0% 0% 5%
BIC 0% 9% 91% 0% 0% 0% 0% 0% 0% 0% 0%
HTCP 0% 0% 0% 95% 0% 0% 0% 0% 0% 0% 5%
Scalable 0% 0% 0% 0% 98% 0% 0% 0% 0% 0% 2%
YeAH 0% 0% 2% 0% 0% 98% 0% 0% 0% 0% 0%
Vegas/Veno 0% 0% 0% 0% 0% 0% 94% 6% 0% 0% 0%
New Reno/HSTCP 0% 0% 0% 0% 0% 0% 0% 96% 0% 0% 4%
CTCP/Illinois 0% 0% 3% 0% 0% 0% 0% 0% 94% 0% 3%
Westwood 0% 0% 0% 0% 0% 0% 0% 2% 0% 98% 0%

Table 4. Distribution of variants as measured from different viewpoints on the Internet.

Ohio Paris Mumbai Singapore Sao Paulo

Variant Websites Share Websites Share Websites Share Websites Share Websites Share
CUBIC 5,966 29.83% 5,893 29.47% 5,950 29.75% 5,930 29.65% 5,966 29.83%
BBR 3,297 16.49% 3,414 17.07% 3,378 16.89% 3,386 16.93% 3,393 16.96%
BBR G1.1 167 0.84% 167 0.84% 167 0.84% 167 0.84% 167 0.84%
YeAH 1,102 5.51% 1,092 5.46% 1,081 5.40% 1,115 5.57% 1,112 5.56%
CTCP/Illinois 1,085 5.42% 1,054 5.27% 1,092 5.46% 1,082 5.41% 1,097 5.48%
Vegas/Veno 556 2.78% 557 2.78% 556 2.78% 551 2.75% 548 2.74%
HTCP 543 2.71% 551 2.75% 544 2.72% 541 2.70% 500 2.50%
BIC 169 0.85% 166 0.83% 161 0.80% 165 0.83% 165 0.83%
New Reno/HSTCP 154 0.77% 151 0.75% 154 0.77% 147 0.73% 151 0.75%
Scalable 36 0.18% 37 0.18% 37 0.18% 37 0.18% 36 0.18%
Westwood 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%
Unknown 4,143 20.71% 4,132 20.66% 4,096 20.48% 4,105 20.52% 4,074 20.37%
Short-flows 1,480 7.40% 1,484 7.42% 1,482 7.41% 1,472 7.36% 1,489 7.44%
Unresponsive 1,302 6.51% 1,302 6.51% 1,302 6.51% 1,302 6.51% 1,302 6.51%
Total 20,000 100% 20,000 100% 20,000 100% 20,000 100% 20,000 100%

4.2 TCP variants on the Internet

Each target website from Alexa Top 20,000 was measured from AWS EC2 instances in the US (Ohio),
Europe (Paris), South America (Sao Paulo) and Asia (Mumbai and Singapore). Our measurements
were made from different viewpoints to help us get the best view of a website’s congestion control
behavior (since all websites are not hosted by CDNs). In addition, we kept re-measuring websites
that we were not able to classify as a known variant. These iterative measurements were stopped
only when a re-run did not further improve the number of classified websites.

Table 4 shows the distribution of TCP variants on the Internet as measured from these viewpoints.
As expected, we found that for certain websites, some viewpoints gave less noisy measurements
compared to others. This is the only reason for the slight discrepancies between numbers reported
from different viewpoints. Out of the 20,000 target websites, a total of 13,739 websites were classified
similarly from all viewpoints. Out of the remaining 6,261 websites, 1,424 websites were successfully
classified from some viewpoint and 3,535 websites could not be classified from any viewpoints.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:15

X Packet Loss Packet Loss X
Z-- BDP BDP -~ --

10 20 30 40 50 0 10 20 30 40 50
RTT # RTT #

(a) youtube.com Dec ’18. (b) youtube.com Feb 19 (c) BBRv2, Alpha release, July *19.
Fig. 13. The evolution of BBR.

Table 5. Distribution of variants.

Variant Websites Proportion
CUBIC [16] 6,139 30.70%
BBR [5] 3,550 17.75%
BBR G1.1 167 0.84%
YeAH [2] 1,162 5.81%
CTCP [35]/Illinois[23] 1,148 5.74%
Vegas [3]/Veno [14] 564 2.82%
HTCP [22] 560 2.80%
BIC [38] 181 0.90%
New Reno [29]/HSTCP [13] 160 0.80%
Scalable [21] 39 0.20%
Westwood [8] 0 0.00%
Unknown 3,535 17.67%
Short flows 1,493 7.46%
Unresponsive websites 1,302 6.51%
Total 20,000 100%

The distribution of variants as measured from these viewpoints shows the same general trend of
CUBIC [16] being the dominant congestion control variant in terms of website count, with BBR [18]
coming in second. In Table 5, we show the consolidated numbers for all websites following the rule
that if a website has been identified to be using some known congestion control variant in any of the
regions, it is considered to be running that congestion control variant. There were no classification
conflicts between different viewpoints for these 1,424 successfully classified websites. In other
words, we found no evidence for websites deploying different congestion control algorithms in
different regions.

Google’s custom version of BBR. Gordon discovered that some Google-owned domains (167,
including YouTube) were using a modified version of BBR that reacted differently to packet loss
compared to vanilla BBR (see Fig. 13b). This difference was first observed in February 2019. Before
that, we had observed traces resembling vanilla BBR (Fig. 13a). While we initially suspected that
this new variant was BBRv2, we checked the cwnd evolution of BBRv2 that was recently released
in July 2019 (see Fig. 13¢) and found that it was not. We thus refer to this variant as BBR G1.1 in
Tables 4 and 5. It should be noted here that this anomalous behavior was only observed for Google
websites. None of the other websites identified to be using BBR showed this anomalous behavior
even after repeated measurements. They all deployed vanilla BBR.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:16 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

Table 6. Excerpt of website traffic share (source: Sandvine [33]).

Site Downstream traffic share ~ Variant’
Amazon Prime 3.69% CUBIC
Netflix 15% CUBIC
Netflix Video ’ New Reno*
YouTube 11.35% BBR Gl1.1
Other Google sites 28% BBR G1.1
Steam downloads 2.84% BBR

" as measured on servers serving static HTTP/HTTPS pages.
* as informed by Netflix, not measured by Gordon.

We have confirmed our findings about BBR with Google. In particular, Google is frequently
running experiments and testing refinements to BBR. Google currently runs a slightly modified
version of BBRv1 that has a gentler reaction to packet loss than the open-source BBRv1. This
experimental variant (BBR G1.1) was meant as an incremental step toward BBRv2. However, BBR
G1.1 was deployed in late 2017, which does not explain our observation of a trace resembling
vanilla BBR from Google websites in December 2018. We have thus been measuring Google sites
repeatedly and found that we still see traces with the shape shown in Fig. 13a occasionally. Hence,
it is possible that Gordon occasionally fails to detect the drop in cwnd for BBR G1.1 immediately
after a packet loss event from time to time. At some level, this is not surprising since BBR does not
actively maintain a cwnd like traditional cwnd-based TCP variants.

4.3 Traffic Volume & Popularity

We believe that the distribution of TCP variants by pure website count in Table 5 does not present
the full picture.

Understanding Traffic by Volume. In Table 6, we present Internet traffic volume data by
Sandvine [33]. Based on the reported Internet traffic volume, we expect BBR variants to already
contribute at least 40% of the global Internet traffic. During our measurements, we found that Netflix
had switched from CUBIC to BBR in early March 2019, only to switch back to CUBIC in April 2019.
We note that Google recently announced that Netflix is currently experimenting with BBR [7]. We
also contacted Netflix and were told that the Netflix website was hosted on AWS. Netflix however
uses different protocols depending on the context, and that most of their video streaming traffic
is delivered via their Open Connect Appliances running FreeBSD’s New Reno with RACK [10]
extensions. The reason for choosing New Reno over CUBIC was that the Netflix team felt that
the New Reno stack was more mature and that improving loss-detection/loss-recovery heuristics
from RACK would be more helpful for their chunked-delivery use case. We were informed by the
Akamai team that Akamai would be deploying BBR G1.1 on more of their hosted sites in the near
future. If Netflix and Akamai does do the switch to BBR, BBR and its variants’ traffic share on the
Internet would increase to well above 50%.

Understanding Traffic by Popularity. Similar trends can also be observed if we consider the
popularity of the websites. In Fig. 14, we plot the distribution of the identified variants for the top-k
sites. We see that BBR is the most widely deployed variant among the top 250 websites, accounting
for 25.2% of all hosts. Another interesting observation was that BBR was the most common TCP
variant for adult entertainment websites. All in all, our results suggest that BBR is rapidly catching

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:17

100

Unresponsive

N r84%—

16.0%

— Short-flows
Unknown

= BBR
25:2% == BBR G1.1

22.4%— mmmm Cubic

Percentage share

9.2% —> mmmmm |llinois/Compound
7.6% —> mmmm YeAH

BIC mmmm Vegas
11.2% { s HTCP Re?‘no

K

Fig. 14. Distribution of variants among the Alexa Top-k sites.

Table 7. Custom network profiles to investigate uncategorized hosts.

Packet Drop RTT BDP

Profile Threshold (packets) (ms) (packets)
1 80 100 50
2 80 100 25
3 80 50 25
4 40 100 50
5 40 100 25
6 40 50 25
7 40 200 100
8 40 100 100

up with CUBIC in popularity and some variant of BBR is poised to overtake CUBIC as the dominant
TCP variant.

4.4 Whithering the Unknown Variants

One of the benefits of our methodology is that Gordon can provide us with insights on a congestion
control variant even if we are not able to identify it. Given that a larger number of websites (5,028
in total) were classified as ‘Unknown’ or ‘Short flows’ (together referred to as ‘Uncategorized’ hosts
henceforth), we ran a variety of new network profiles to investigate their behavior under different
conditions. These network profiles were designed with different combinations of emulated BDPs,
delays and Packet Drop Thresholds. We hypothesize that the same TCP variant would exhibit
the same behaviors for all network profiles, while different TCP variants may exhibit the same
behavior for some profiles, but different behavior for others, to allow us to tell them apart. Our goal
is to identify large clusters of traces that could suggest the presence of a new major, but hitherto
unknown, variant.

Given that Gordon can modify these three network parameters, we came up with eight custom
network profiles (shown in Table 7) that are distributed over the range of these network parameters.
Each of these network profiles emulates a fixed RTT and BDP for an experiment run and introduces
a packet drop when the cwnd size goes above the Packet Drop Threshold for the first time.

Reaction to Loss. We found that among the 5,028 (25.14%) websites with unknown variants,
only 3,275 (16.38%) of them reacted to packet loss. Out of these 3,275 websites, 1,493 (7.47%) are

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:18 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

o N
o o
o n
o o

80

@
o

cwnd (packets)
(o2}
o

cwnd (packets)
(o2}
o

40 o e 40 o
20 Packet Loss X 20 Packet Loss X
o ‘ ~ BDP ---- o ‘ ~ BDP----
0 10 20 30 40 50 0 10 20 30 40 50
RTT # RTT #

(a) Custom Network Profile 4 - Shape 1. (b) Custom Network Profile 4 - Shape 2.
120 120

100 100

@
o
o]
o

N
o
EN
o

cwnd (packets)
D
o

cwnd (packets)
[o2}
o

20 20 Packet Loss
o ‘ 0 ‘ ~ BDP
0 10 20 30 40 50 0 10 20 30 40 50
RTT # RTT #
(c) Custom Network Profile 1 - Shape 1. (d) Custom Network Profile 1 - Shape 2.

Fig. 15. Sample traces for websites hosted by Akamai.

short flows and the remaining 1,782 (8.91%) websites gave inconsistent measurements after reacting
to a packet loss. In other words, repeating our measurements yielded different traces each time. We
hypothesize that these are likely cwnd-based TCP variants that we are not able to classify because
of noise. It was surprising that this noisiness was observed for all 5 viewpoints.

Among the remaining 1,753 (8.77%) websites with variants that did not react to the packet loss, we
found that a large class of 1,103 (5.52%) websites reacted to changes in the BDP. For the remaining
650 (3.25%) websites that did not react to the packet loss, we could not determine if they reacted
to changes in the BDP because of noisy measurements. Again, repeating measurements yielded
different traces each time.

Akamai Congestion Control Variant. We found that all 1,103 (5.52%) websites that reacted
to changes in the BDP but not to packet loss were all hosted by the Akamai CDN. These websites
typically maintained the cwnd at a fixed multiple of the BDP, ranging from 1.2 to 1.5. Typical shapes
for these websites are shown in Fig. 15. We found that the traces for the AkamaiCC websites in
response to our custom network profiles tend to take one of 2 shapes shown in Figs. 15a and 15b. As
shown in Figs. 15¢ and 15d, these shapes remain consistent across different network profiles. While
this behavior matches no known TCP implementation in the Windows or the Linux kernel, we
hypothesized that it was the result of TCP optimizations developed at Akamai [1] or the deployment
of FAST TCP [37]. We refer to this variant as AkamaiCC in the rest of the paper. Some notable
websites identified to use AkamaiCC include microsoft.com, apple.com, and hulu. com.

We found that a total of 1,260 (6.30%) websites among the Alexa Top 20,000 websites were hosted
by Akamai, but not all of them show the behavior illustrated in Fig. 15. All the remaining 157
(0.79%) Akamai-hosted websites did not react to loss and yielded noisy measurements and so are
categorized as ‘Unknown. It is plausible that these websites are also running AkamaiCC, but we
are not able to see the AkamaiCC shape in their traces because of noise.

We contacted Akamai to verify these results and they have confirmed that AkamaiCC was likely
FAST TCP. That said, the Akamai team also highlighted that Akamai does not typically deploy a

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:19

Table 8. Summary of websites not classified as known congestion control variants.

Type React to Packet Loss? React to BDP? Websites (share)
AkamaiCC X v 1,103 (5.52%)
Unknown Akamai X ? 157 (0.79%)

? (
Unknown Y : 182 891
Short flows v ? 1,493 (7.47%)
Unresponsive ? ? 1,302 (6.51%)
Total 6,330 (31.65%)

specific TCP variant for a specific website (though there were cases where they might). It is plausible
that our findings were an artifact of our experimental setup and the pages that we had chosen to
download from the Alexa Top 20,000 websites. Akamai currently deploys a variety of Congestion
Control variants including FAST TCP, a modified version of Reno, vanilla BBR, a modified version
of BBR, QDK (a proprietary Congestion Control algorithm), and CUBIC. In addition, under some
network conditions, Akamai servers could switch between these algorithms in the middle of a
connection. This would be a plausible explanation for the noisy and unrecognizable traces observed
for some of the 157 Akamai-hosted websites that we could not classify.

In summary, as shown in Table 8, a large number of the websites that Gordon was not able to
identify as known variants can be attributed to the 1,103 (5.51%) websites running AkamaiCC. In
other words, Gordon can classify 14,773 (73.87%) of the Alexa Top 20,000 websites as some variant.
Among the remaining 5,227 (26.14 %) websites, 1,302 (6.51%) were found to be unresponsive, 1,493
(7.47%) had web pages that were too small to yield a long enough trace for classification, and 2,432
(12.16%) could not be classified because most of them yielded noisy and inconsistent traces.

The best of the rest. We know from our results in §4.1 that some of the websites classified as
one of the 2,432 “Unknown” websites would be known variants that Gordon is not able to identify
because of noise. However, it is likely that there also new and undocumented variants because of
the diverse behaviors that we observed. We reproduce 3 of the more interesting traces in Fig. 16:

(1) amazon.com: In Fig. 16a, we see that Amazon has deployed a TCP variant which resembles
HTCP in its Congestion Avoidance phase. However, the variant either does not back-off on
seeing a Gordon-induced packet loss or has a significant multi-RTT delay in its response to
loss. The reduction at cwnd = 200 is not due to buffer overflow. The buffer for Gordon can
hold significantly more packets than that without suffering overflow.

(2) zhihu. com: The behavior observed for the trace in Fig. 16b showed an unrestricted growth
in the sender’s cwnd. It seems like the deployed TCP variant is oblivious to packet losses and
bandwidth changes, and simply maintains a very high and constant cwnd.

(3) yahoo.co. jp: The behavior in Fig. 16c suggests that whatever congestion control variant
Yahoo has deployed is exiting Slow Start prematurely, and conservatively increases its cwnd
until it sees a packet loss.

We believe that these examples serve to illustrate the diversity in the unknown variants and
would convince the reader that it was not embarrassing that we have not been able to identify these
variants in the first instance. It would likely take another full paper to comprehensively analyze
and classify these variants. At some level, these results are also a wake-up call. In academia, we
often assumed that we would be the ones to invent new TCP variants and the industry would

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:20 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

X Packet Loss
Z-- BDP

Packet Loss X Packet Loss X
BDP -~ -- BDP - - - -

5 10 15 20 25 30 35 40 0 10 20 30 40 50
RTT # RTT #
(a) amazon.com (b) zhihu.com (c) yahoo.co. jp

Fig. 16. The weird and wonderful universe of TCP “in the wild”

Table 9. Evolution of TCP variants on the Internet over the past 2 decades.

2001 [28] 2004 [25] 2011 [39] 2019
Loss-based New Reno 35% (1,571) New Reno 25% (21,266) New Reno" 0.80% (160)
AIMD Reno 21% (945) Reno 5% (4,115) AIMD 12.46% (623) Reno® -
Tahoe 26% (1,211) Tahoe 3% (2,164) Tahoed -
CUBIC 22.30% (1,115) CUBIC 30.70% (6,139)
Loss-based) .) . BIC 10.62% (531) BIC 0.90% (181)
MIMD HSTCP 7.38% (369) HSTCPR
Scalable 1.38% (69) Scalable 0.20% (39)
Delay-based i))) Vegas 1.16% (58) Vegas 2.82% (564)
AIMD Westwood 2.08% (104) Westwood 0% (0)
CTCP 6.68% (334) CTCP
Illinois 0.56% (28) Illinois 5.74% (1,148)
Delay-based v
MIMD - - - Veno 0.90% (45) Veno
YeAH 1.44% (72) YeAH 5.81% (1,162)
HTCP 0.36% (18) HTCP 2.80% (560)
- - - - - BBR 17.75% (3,550)
Rate-based - - - - -BBRGL1 0.84% (167)
- - - - - - AkamaiCC 5.51% (1,103)
Unknown 17.30% (792) 53% (44,950) Unknown - 3.96% (198) 12.16% (2,432)
Abnormal S 2.88% (144)
Short flows - - 26% (1,300) 7.47% (1,493)
Unresponsive 0.7% (30) 14% (11,529) - 6.51% (1,302)
Total hosts 100% (4,550) 100% (84,394) 100% (5,000) 100% (20,000)

d These implementations have been deprecated.

" HTCP and New Reno have been classified together.

¥ Veno and Vegas have been classified together.

" websites identified by CAAI having abnormal Slow Starts.

subsequently, pick the winner. The development of BBR has been led by Google, and it seems that
companies such as Akamai, Amazon, and Netflix, are not too far behind.

4.5 TCP Evolution over the past Two Decades

To have an overview of TCP evolution on the Internet over the years, we compare our results to
previous studies conducted by Padhye et al. [28], Medina et al. [25] and Yang et al. [39] in Table 9.
Since the total hosts measured over the various studies vary widely and there is also a large variance
in terms of success rates, we normalize the results over the total reported successful classifications
for each study in Table 10 to obtain estimated proportions of the various variants. New Reno had

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:21

Table 10. Share of TCP variants normalized over all successful classifications.

2001 [28] 2004 [25] 2011 [39] 2019
Loss-based New Reno 35% New Reno 29% New Reno! <1%
AIMD Reno 21% Reno 6% AIMD 17% Renod -
Tahoe 26% Tahoe 3% Tahoed -
CUBIC 30% CUBIC 36%
Loss-based) . .) BIC 14% BIC 1%
MIMD HSTCP 10% HSTCP!
Scalable 2% Scalable <1%
Delay-based i)) _ Vegas 2% Vegas’ 3%
AIMD Westwood 3% Westwood 0%
CTCP 9% CTCP
Illinois <1% Illinois 7%
Delay-based V. ’ Veno?
MIMD - - - - eno 1% Veno
YeAH 2% YeAH 7%
HTCP <1% HTCP 3%
- - - - - - BBR 21%
Rate-based i)) o - BBRG11 1%
- - - - - - AkamaiCC 6%
Unknown 18% 62y, Unknown 5% 14%
Abnormal SS 4%
Total Measurable hosts 100% 100% 100% 100%

d These implementations have been deprecated.

"' HTCP and New Reno have been classified together.

¥ Veno and Vegas have been classified together.

" websites identified by CAAI having abnormal Slow Starts.

rapidly surpassed Reno as the dominant TCP variant in early 2000’s. The next 10 years saw the
rise of loss-based MIMD protocols such as CUBIC and BIC which dominated the overall adoption
decreasing the share of loss-based AIMD protocols. By 2011, HSTCP and Microsoft’s CTCP also
held significant shares of 10% and 9% respectively.

Five years later in 2019, traditional loss-based AIMD schemes have become near-extinct (at least
in terms of pure website count). On the other hand, the adoption of delay-based Vegas has almost
doubled. CUBIC has remained the most popular TCP variant and has increased its share among
the top 20,000 hosts to some 36% compared to 30% in 2011, while the share of BIC and HSTCP has
reduced significantly.

While delay-based variants seem to have become slightly more popular over the past decade
(increasing in share from 15% in 2011 to 20% in 2019), CTCP seems to have slightly decreased in
popularity in recent years. We suspect that this is likely due to Microsoft’s addition of CUBIC as an
option in Windows Server 2016 and making CUBIC the default congestion control algorithm in
Windows 10 (2019 builds) and Windows Server 2019 [30].

Finally, the most significant development between 2011 and 2019 is the emergence of rate-based
variants like BBR and AkamaiCC. BBR and it’s variant BBR G1.1 now have an approximate 22%
share while AkamaiCC has a 6% share. Overall, CUBIC seems to have increased in popularity at the
expense of traditional loss-based AIMD variants, but this lead will likely be under pressure from
rate-based variants in the near future.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:22 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

5 DISCUSSION AND FUTURE WORK

Over the course of our measurements, it became clear that the Internet was a constantly evolving
entity and a moving target. While the main results reported in this paper were from the measure-
ments done between July and October in 2019, findings like Google’s change in its BBR deployment
and the existence of rate-based variants other than BBR on the Internet shows that we are currently
in midst of a shift from the traditional congestion control paradigm.

The Gordon project started as a measurement study to understand the latest distribution of TCP
variants on the Internet since the last study was done 8 years ago. We decided to start with a simple
approach of measuring cwnd one RTT at a time. While the modifications we adopted (§3.1) might
seem straightforward, in hindsight, it took us a while to get the details right and collect all the data.
It turns out that our chosen approach made the mitigation of random losses much easier and works
well for the vast majority of websites surveyed.

Bringing Uncooperative Sites On-board. We suspect that our approach in making a large
number of abrupt connections can be improved. In particular, we observed that many of the websites
for which we were not able to identify the TCP variant were in the banking and government sectors
(§4.2). We are not entirely surprised that we were often throttled or blocked in the midst of a
measurement run since our connections would seem to be misbehaving to the TCP sender. We
have classified these hosts as ‘Unresponsive’ in Table 5. Currently, we are studying how we can
optimize the probing of target websites without restarting new connections so that we can reduce
the proportion of unresponsive websites.

Easy Extensions. While we had hoped to design “one tool to measure them all,” we have
subsequently realized that there is a limitation to our approach. Because we normalize a host’s
sending behavior by RTT, behavioral differences that exist at a granularity smaller than one RTT
cannot be observed. This would also explain why we are often unable to observe a drop in the
cwnd after a packet loss event for the currently deployed Google G1.1 BBR variant (see §4.2). That
said, the variants that Gordon is not able to differentiate are relatively small and insignificant in
terms of popularity, so we did not invest more time to work on them. In principle, we can classify
them by adding a second stage to the classification process after Gordon is done with a high-level
classification. In the future, we plan to add such extensions to Gordon for differentiating between
such variants.

Further Exploration. There is still room to investigate the sites that we have not been able to
classify successfully. For example, the hosts with loss-agnostic behavior might react to multiple
packet losses (instead of one) and a new network profile (§3.2) that drops several packets or explicitly
sends triple duplicate ACKs could potentially be able to detect such behavior. Since our key design
principle is to look for generic characteristics such as reaction to bandwidth changes, delay and
different types of loss, Gordon can easily adapt to and discover new future variants that are not
known today.

Understanding Long-Term TCP Evolution. Our results suggest an active push by large
Internet companies towards rate-based TCP variants. However, as common cloud service providers
like Google Cloud are now enabling BBR [15] and the Akamai CDN is running AkamaiCC, small
entities using these services might be making the switch to rate-based variants without knowing it.
This suggests that the landscape of TCP congestion control is undergoing rapid and significant
change, possibly led by the CDNs. Therefore, we do not think that taking a snapshot every 10 years
is good enough. Moving forward, we plan to enhance and automate Gordon to record a continuous
view of the Internet’s ongoing transition to a new era of rate-based congestion control.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:23

6 CONCLUSION

In this paper, we used Gordon to identify the TCP variants for the top 20,000 websites based on
their Alexa rankings [19]. Our results suggest that CUBIC is currently still the dominant TCP
variant on the Internet and is deployed at 36% of the Alexa Top 20,000 websites that we successfully
classified. Rate-based TCP variants like BBR have the next largest share. While BBR and its variant
BBR G1.1 have a share of only 22% in terms of website count, their present share of total Internet
traffic volume is likely to be larger than 40% [33]. This proportion will almost certainly exceed 50%
if Netflix also decides to adopt BBR.

Since it is natural for the Internet to evolve, this is not the first time that we are seeing a dominant
TCP variant in the process of being replaced by an alternative. However, we believe that the current
change represents a fundamental shift in the underlying Internet. In previous transitions, all the
TCP variants were cwnd-based and the interactions between AIMD/MIMD protocols have been
well-understood. BBR represents a fundamental departure in our approach to congestion control.
While BBR has been studied and issues have been highlighted [18, 36], to the best of our knowledge,
the interactions between BBR and CUBIC at scale are not fully understood. While nothing seems
to have broken thus far even as BBR has gained traction, we do not yet know for sure that nothing
will necessarily go wrong. We believe that our results suggest the need for more in-depth study in
the interactions between BBR and CUBIC to ensure the future stability and success of the Internet.

7 ACKNOWLEDGMENTS

We thank our shepherd, Michael Sirivianos and the anonymous SIGMETRICS reviewers for their
valuable feedback and comments. We thank Neal Cardwell, Yuchung Chen, Nimantha Baranasuriya,
Venkat Padmanabhan, Daniel Havey, Praveen Balasubramaniam, Igor Lubashev, and Mike Afergan,
for their suggestions and for their help in corroborating some of the findings presented in this

paper.
8 RESOURCES

Our measurement tool, along with the cwnd traces for the Alexa Top 20,000 websites is available
on GitHub (https://github.com/NUS-SNL/Gordon).

REFERENCES

[1] Akamai Developer Blogs 2019. TCP Optimizations - Akamai Developer. (2019). https://bit.ly/35LYJUx.

[2] Andrea Baiocchi, Angelo P Castellani, and Francesco Vacirca. 2007. YeAH-TCP: yet another highspeed TCP. In
Proceedings of PFLDnet.

[3] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. 1994. TCP Vegas: New Techniques for Congestion
Detection and Avoidance. In Proceedings of SSIGCOMM.

[4] Neal Cardwell. 2017. tcp_bbr: add BBR congestion control. (2017). https://bit.ly/2VAJcDD

[5] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson. 2017. BBR: Congestion-
based Congestion Control. CACM 60, 2 (2017), 58-66.

[6] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, and Van Jacobson. 2017. BBR Congestion Control. IETF Draft.
(2017). https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00

[7] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Ian Swett, Victor Vasiliev, Priyaranjan Jha, Yousuk Seung,
Matt Mathis, and Van Jacobson. 2019. BBR v2 - A Model-based Congestion Control. ICCRG at IETF 104. (2019).
https://bit.ly/2HgGOuQ

[8] Claudio Casetti, Mario Gerla, Saverio Mascolo, Medy Y Sanadidi, and Ren Wang. 2002. TCP Westwood: end-to-end
congestion control for wired/wireless networks. Wireless Networks 8, 5 (2002), 467-479.

[9] Xiaoyu Chen, Shugong Xu, Xudong Chen, Shan Cao, Shunqing Zhang, and Yanzan Sun. 2019. Passive TCP Identification
for Wired and Wireless Networks: A Long-Short Term Memory Approach. arXiv preprint:1904.04430 (2019).

[10] Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaranjan Jha. 2019. RACK: a time-based fast loss detection
algorithm for TCP. IETF Draft. (2019). https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rack-05
[11] Douglas E. Comer and John C. Lin. 1994. Probing TCP Implementations. In Proceedings of USTC.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

https://github.com/NUS-SNL/Gordon
https://bit.ly/2VAJcDD
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://bit.ly/2HgGOuQ
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rack-05

45:24 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

[12]
[13
[14]

[t

[15]
[16]
[17]
[18]

[19]
[20]

[21]
[22]
[23]
[24]
[25]
[26]
[28
[29
[30

[31
[32

]
]
]
]
]
]
[33]
[34]
[35]

[36]

[37]
[38]

[39]

[40]

DARPA. 1981. Internet Protocol. RFC 791. (1981).

Sally Floyd. 2003. HighSpeed TCP for Large Congestion Windows. RFC 3649. (2003).

Cheng Peng Fu and S. C. Liew. 2006. TCP Veno: TCP Enhancement for Transmission over Wireless Access Networks.
IEEE JSAC 21, 2 (2006), 216—228.

Google Cloud Blogs 2017. TCP BBR congestion control comes to GCP: your Internet just got faster. (2017). https:
//bit.ly/2Hk4WLH

Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New TCP-friendly High-speed TCP Variant. SIGOPS
Operating Systems Review 42, 5 (2008), 64-74.

Desta H. Hagos, Paal E. Engelstad, Anis Yazidi, and @ivind Kure. 2018. General TCP State Inference Model From
Passive Measurements Using Machine Learning Techniques. IEEE Access 6 (2018), 28372-28387.

Mario Hock, Roland Bless, and Martina Zitterbart. 2017. Experimental Evaluation of BBR Congestion Control. In
Proceedings of ICNP.

Alexa Internet Inc. 2018. The Top 500 websites on the Internet. (2018). https://www.alexa.com/topsites

Yuchung Cheng Jerry Chu, Nandita Dukkipati and Matt Mathis. 2013. Increasing TCP’s Initial Window. RFC 6928.
(2013).

Tom Kelly. 2003. Scalable TCP: Improving Performance in Highspeed Wide Area Networks. SIGCOMM CCR 33, 2
(2003), 83-91.

Douglas Leith, R Shorten, and Y Lee. 2005. H-TCP: A framework for congestion control in high-speed and long-distance
networks. In Proceedings of PFLDnet.

Shao Liu, Tamer Basar, and R. Srikant. 2006. TCP-Illinois: A Loss and Delay-based Congestion Control Algorithm for
High-speed Networks. In Proceedings of VALUETOOLS.

Ralf LAijbben and Markus Fidler. 2016. On characteristic features of the application level delay distribution of TCP
congestion avoidance. In Proceedings of ICC.

Alberto Medina, Mark Allman, and Sally Floyd. 2005. Measuring the Evolution of Transport Protocols in the Internet.
SIGCOMM CCR 35, 2 (2005), 37-52.

Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein, James Mickens, and Hari Balakrishnan.
2015. Mahimahi: Accurate Record-and-Replay for HTTP. In Proceedings of ATC.

Netfilter Organization. 2019. libnetfilter_queue. (2019). https://bit.ly/2HimY17

Jitendra Padhye and Sally Floyd. 2001. On Inferring TCP Behavior. In Proceedings of SSIGCOMM.

Vern Paxson and Mark Allman. 2009. TCP Congestion Control. RFC 5681. (2009).

Brien Posey. 2019. Explore the Cubic congestion control provider for Windows. (2019). https://bit.ly/2VfhxoA

GNU Project. 2019. wget. (2019). https://www.gnu.org/software/wget

Jan Riith, Christian Bormann, and Oliver Hohlfeld. 2017. Large-scale scanning of TCP’s initial window. In Proceedings
of IMC.

Canada Sandvine Inc. Waterloo, ON. 2018. The 2018 Global Internet Phenomena Report. (2018). https://www.sandvine.
com/phenomena

W.Sun, L. Xu, and S. Elbaum. 2018. Scalably Testing Congestion Control Algorithms of Real-World TCP Implementations.
In Proceedings of ICC.

Kun Tan, Jingmin Song, Qian Zhang, and Murad Sridharan. 2006. A compound TCP approach for high-speed and long
distance networks. In Proceedings of INFOCOM.

Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry. 2019. Modeling BBR’s Interactions with
Loss-Based Congestion Control. In Proceedings of IMC.

David X Wei, Cheng Jin, Steven H Low, and Sanjay Hegde. 2007. FAST TCP. IEEE/ACM Transactions on Networking.
Lisong Xu, K. Harfoush, and Injong Rhee. 2004. Binary increase congestion control (BIC) for fast long-distance
networks. In Proceedings of INFOCOM.

Peng Yang, Juan Shao, Wen Luo, Lisong Xu, Jitendra Deogun, and Ying Lu. 2011. TCP Congestion Avoidance Algorithm
Identification. IEEE/ACM Transactions on Networking 22, 4 (2011), 1311-1324.

Peng Yang and Lisong Xu. 2011. A survey of deployment information of delay-based TCP congestion avoidance
algorithm for transmitting multimedia data. In Proceedings of GLOBECOM Workshops.

Received August 2019; revised September 2019; accepted October 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

https://bit.ly/2Hk4WLH
https://bit.ly/2Hk4WLH
https://www.alexa.com/topsites
https://bit.ly/2HimY17
https://bit.ly/2VfhxoA
https://www.gnu.org/software/wget
https://www.sandvine.com/phenomena
https://www.sandvine.com/phenomena

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Measuring cwnd over time
	3.2 Designing a Network Profile
	3.3 Classification
	3.4 Implementation

	4 Results
	4.1 Verification of Measurement Accuracy
	4.2 TCP variants on the Internet
	4.3 Traffic Volume & Popularity
	4.4 Whithering the Unknown Variants
	4.5 TCP Evolution over the past Two Decades

	5 Discussion and Future Work
	6 Conclusion
	7 Acknowledgments
	8 Resources
	References

