EpiChord: Parallelizing the Chord Lookup Algorithm with
Reactive Routing State Management
Technical Report MIT-LCS-TR-963

Ben Leong Barbara Liskov Erik D. Demaine
benleong@mit.edu liskov@csail.mit.edu edemaine@mit.edu

Abstract— EpiChord is a DHT lookup algorithm that building block of future large-scale distributed systems.
demonstrates that we can remove the)(log n)-state-per- - While most of the initial DHT research was directed to-
node restriction on eX|St|ng DHT tOpOlOgIes t(..).aChIeve .S|g' Wards m|n|m|z|ng the amount Of rou“ng state per node,
nificantly better lookup performance and resilience using more recent research has demonstrated that it is reason-
a novel reactive routing state maintenance strategy that

able to attempt to store a global lookup table at every node

amortizes network maintenance costs into existing lookups hi hop look h K ch : |
and by issuing parallel queries. Our technique allows us to {0 &chieve one-hop lookup, when network churm is rela-

design a new class of unlimited-state-per-node DHTSs that is tively low or if enough bandwidth is available, since local
able to adapt naturally to a wide range of lookup workloads. storage is relatively cheap [13].
EpiChord is able to achieveO(1)-hop lookup performance The DHT designs and the various DHT-related tech-
under lookup-intensive workloads, and at leastO(logn)- niques that have been proposed, e.g., proximity neighbor
hop I(_)okup performance under. ghurn-intensive workloads gajection [14], synthetic coordinates [15], [16], erasure
?;egn'gf/r;?a\’;g;m case (though itis expected to perform bet- coding [17] and integrated P2P transport protocol [18],

Our reactive routing state maintenance strategy allows essentially allow us to trgde off different amounts of stor-
us to maintain large amounts of routing state with only a age and background maintenance bandwidth for better or
modest amount of bandwidth, while parallel queries serve Worse lookup performance in a variety of ways. In this pa-
to reduce lookup latency and allow us to avoid costly lookup per, we describe EpiChord, a DHT that demonstrates that
timeouts. In general, EpiChord exploits the information e can remove the state storage restrictionOgiog n)-
gleaned from observing lookup traffic to improve lookup state DHTS to achieve better lookup performance using
performance, and only seno!s network pr_obes when nec- a novel reactive routing state maintenance strategy and by
essary. Nodes populate their caches mainly from observ-. .) . .

issuing multiple queries asynchronously in parallel. Our

ing network traffic, and cache entries are flushed from the , 4 L
cache after a fixed lifetime. technique allows us to design a new class of unlimited-

Our simulations show that with our approach can reduce State-per-node DHTs that is able to adapt naturally to
both lookup latencies and path lengths by a factor of 3 by is- a wide range of lookup workloads. EpiChord is able
suing only 3 queries asynchronously in parallel per lookup. to achieveO(1)-hop lookup performance under lookup-
Furthermore, we show that we are able to achieve this result jntensive workloads, and at leat(log n)-hop lookup
with minimal additional communication overhead and the performance under churn-intensive workloads even in the

number of messages generated per lookup is no more than o]
that for the corresponding sequential Chord lookup algo- \évr(;rgsé case, though it is expected to perform better on av

rithm over a range of lookup workloads. We also present a : o
novel token-passing stabilization scheme that automatidig While existing DHTs tend to decouple the lookup pro-
detects and repairs global routing inconsistencies. cess from routing state maintenance and adopt a proactive

routing state management strategy where nodes probe all
(or at least most of) their routing entries periodically te e
sure that they are alive, EpiChord employeactiverout-

In recent years, more than a dozen DHT lookup alg state management strategy where routing state main-
gorithms and routing topologies have been proposed [{dnance costs are amortized into the lookup costs. Nodes
[2], [3], [4], 5], [6], [7], [8], [9], [10], [11], [12], [13]. rely mainly on observing lookup traffic and on piggyback-
DHTS are important to diStribUted- ‘-SyStems- research -bel_t is known that limiting the amount of state stored per node t
cause they offer a scalable and efficient routing and Ob]%:(dog n) limits the average lookup path length to no better than

location platform for self-organizing peer-to-peer oagrl O(logn/loglogn) hops per lookup. Koorde [10] achieves this
networks. DHTs are expected to become a fundamentalog n/ loglog n)-hop lower bound.

I. INTRODUCTION

ing additional network information on query replies t¢19] to determine the nod&l of a new node. SHA-1 en-
keep their routing state up-to-date under reasonable trsfires that with high probability, the nodés do not col-

fic conditions. EpiChord only sends probes as a backlige (when the address space is sufficiently large, i.e. 128
mechanism if lookup traffic levels are too low to suppottits) and are uniformly distributed over the entire circula
the desired level of performance. id address space.

Our reactive routing state maintenance strategy does
not keep routing state quite as up-to-date as a proactive
strategy, and therefore we use parallel lookups to amelio-
rate the costs of keeping outdated routing state. In par-
ticular, there is a synergistic relationship between large
(> O(logn)) state and parallel lookups in our approach:
while parallel queries allow us to avoid lookup timeouts
due to stale routing entries, we can afford to issue parallel
queries without generating excessive amounts of lookup
traffic only because our large routing state reduces tpie_ 1
number of hops per lookup and thereby the number i
lookup messages.

Although one might expect a parallel lookup algorithm
to generate significantly more lookup traffic and therelyy. Basic Lookup Algorithm
consume significantly more network bandwidth, we show To look up a givenid, nodex initiatesp queries in par-

that we are able in practice to achieve significantly bettﬁﬁel to the node immediately succeedingand to the

lookup performance on average (both in terms of |00k%3_ 1 nodes preceding, within the set of nodes known

path Iength_and latency) than the_‘t for the correspong)— it (see Figure 2). Probing the succeeding node gives us
ing sequential Chord lookup algorithm with comparablg .46 of [ocating the destination node in one hop.
amounts of lookup traffic.

Our goal in this work is not to design the perfect DHT.
Rather, our main objective is to explore and quantify the
performance-cost trade-offs in moving from @iflog n)-
state-per-node DHT topology to an unlimited-state-per-
node architecture, by adopting a reactive routing state

management strategy and using parallel queries. Conse- \
9

Circular identifier address space with twenty nodes fave

1 entry
p — 1 entries

quently, we compare EpiChord to the optifaéquential increasin

Chord lookup algorithm. Our parallel lookup algorithm is w e cache entry

simple and effective, and our reactive approach to routing
state maintenance allows our DHT to adapt naturally tg™- 2. Initial cache entries returned from cache for nadfer a
range of lookup workloads. lookup ofid.

We adopt two simple policies to learn new routing en-
tries. (i) When a node first joins the network, it obtains a
full cache transfer from one of its two immediate neigh-

Like Chord [2], EpiChord is organized as a onepors. (ji) Nodes gather information by observing lookup
dimensional circular address space where each nodgigfic: a node updates its cache based on information re-
assigned a unique node identified)t As shown in Fig- trmed by queries and adds an entry to the cache each time
ure 1, the node responsible for a key is the node whése;; js queried by a node not already in the cache.

most closely follows the key, which we also call thec- \when contacted, a probed node will respondrtas
cessof. We use the cryptographic hash function SHA-|10ws:

2By optimal, we mean that we ignore Chord maintenance costs an ® If it owns id, it will simply say so and respond with

II. OVERVIEW

assume that the finger tables of the Chord nodes have pgrégctl- the value associated withl (if one exists) and infor-
rate finger entries at all times regardless of node failuFes.compet- mation about its current immediate predecessor.
ing sequential lookup algorithm is thus a reasonably stamhgersary

and not just a straw man. most closely precedes the key, i.e. giedecessqror the node that has

3The choice of which node to be responsible for a key is somewttheid closest to the key [4], [6], and our algorithm can still be g
arbitrary. We could have decided to map a key to the node whbsewith minor modifications.

« Ifitis a predecessor afi relative tox, it will provide to require2p x h messages (including both queries and
information about its immediate successor andithaesponses) per lookup, whersds the number of parallel
“best” next hops to the destinatiad from its caché&. queries per hop antl is the number of hops. With an it-

« Ifitis a successor ofd relative tox, it will provide erative approach, we usually require only ab®t + »)
information about its immediate predecessor and theessages per lookup.

[“best” next hops from its cache.

Here,l, like p, is a system parameter. We call an EpiChord Reactive Cache Management

network where there are at mgstoncurrent queries per . .
L d P Each cache entry has an associated time. When a node

lookup ap-wayEpiChord. . . it add irv for th der if
When these replies are received, further queries will pacelves aquery or reply, It adds an entry for ine sender |

. . . itis not already in the cache and sets (or resets) the time
dispatched asynchronously in parallelziflearns about . . .
. of the entry associated with the sender to that of its local
nodes that are closer to the targdtthan the best suc-

C oak. Query responses contairifatime for each entry,
cessor and predecessor nodes that have already responded. \ .)
qual to the sender’s clock at the time of the send minus

An example of a lookup for the network shown in Figure) ; .
P b 9 e node entry’s time in the sender’s cache, and this in-

is given in Figure 3. In this example, = 3,1 = 3 and S L L
nodeNN32 makes a lookup for the kelg2. Note that when formation is used to set or reset the time in the receiver’s
' cache for that node. Node entries are flushed if their asso-

the lookup terminatesy 32 would have leamed about a”ciated nodes do not respond to some number of queries or
the consecutive nodes in the range frofi0 to N9. The P d

simplified pseudocode for the lookup algorithm (which i&/NeN their lifetime exceeds some fimit,

implemented with callbacks and continuations) is given in
Appendix A.

There are several reasons why queried nodes respond
with information about their successors or predecessors.
Firstly, this allows us to check for terminatiarSecondly,
since successors and predecessors are probed relatively
more frequently than other cache entries, they are likely increasing
to be alive and hence with high probability, the querying id
node will make at least one step of progress towards the
targetid with each query. Lastly, even if nodes have ahig- 4. Division of address space into exponentially smallees
outdated view of the segment of théspace that they are With respect to node.
responsible for, the querying node will be able to detect | jue Chord, the correctness of the lookup algorithm is
such a situation and resolve a lookup correctly. For e?Uaranteed because a query can always reach the destina-
ample, an inconsistency can arise if the predecessor i@, ;4 by moving sequentially down the successor lists.
given nodey is responsible for a queried and it fails |, general,0(logn)-hop DHT routing schemes have a
without informingy. Nodey would not know that it is yreqefined set af(log 1) fingers and provide guarantees
now responsible ford. o on lookup performance by ensuring that a node knows

Our lookup algorithm is intrinsically iterative. Theapout some nodes in the vicinity of each finger. EpiChord
main reason for this is that an iterative approach allows {gides the address space into two symmétsiets of ex-
to avoid sending redundant queries. If we employ parapnentially smaller slices as shown in Figure 4. For per-

lel queries in a recursive lookup, nodes at the subsequeiinance guarantees, a node enforces the following in-
hops would not know when other nodes respond to thgiant:

original node that issued the lookup, and hence which new
nodesnotto query. In general, such an approach is likely

e cache entry

xT

Cache Invariant; Every slice contains at least
ﬁ cache entries at all times.

“Correspondingly, thé “best” next hops are the node immediatelpWherey is a local estimate of the probability that a cache
succeedingd and to thel — 1 nodes precedingd. entry is out-of-date (i.e., that the associated node had
5In general, we can terminateg@t () lookup operation and return
when the targetd falls between a responding node and its successofIn contrast to the asymmetric Chord finger table, the divisibthe
or predecessor or whenever a node returns the requestexd. djsv- address space into slices is symmetric by design. The keyisdbat
ever, if the node failure rate is high, we may choose to teaeima when noder responds to nodg, they will each know that each other is
put () lookup operation only after both the best predecessor asid balive, and if the node entry fay helpsz to satisfies its cache invariant
successor respond and we check that they are consisterth@tghink for a particular slice, we want the node entry foto also be useful in
that they are adjacent to each other in the address space). satisfying the invariant for a corresponding sliceyis cache.

Node | Initial cache contents
N32 | ---,N55, N60, NO, N9, N17,---
N60 | ---,NO,N1,N3,N9,N15,---
NO | ---,N60,N1,N3,N8,N15---
N1 | ---,NO,N3,N8,N9,N15---
N3 | ---,NO,N1,N8,N9,N17---
N8 | ---,NO,N1,N3,N9,N15---
N9 | ---,N55,N1,N3, N8 N15---
Time | Action by N32 Pending Best Best Comment
Queries Predecessor| Successor
t =0 | Send queries t&v60, N0, N9 N60, NO, N9 N32 N32 sendp queries
t=1 | Reply fromN60—-{NO, N1, N3} NO,N9 N60 N32
t =2 | Send query tav1 NO,N1,N9 N60 N32
t =3 | Reply fromN9—{N8, N55, N1, N3} NO, N1 NG60 N9 N55 ignored becaus& 60 responded
t =4 | Send query taV3 NO,N1,N3 N60 N9
t =5 | Reply fromN0-{N60, N1, N3} N1,N3 NO N9
t =6 | Send query taV8 N1,N3,N8 N60 N9
t=17 | Reply fromN8—{NO, N1, N3} N1,N3 NO N8
t =8 | Reply fromN3 — found keyK 2! N1 NO N3 lookup returns
t=9 | Reply fromN1-{NO,N1, N3} - N1 N3 lookup terminates

Fig. 3. Example of a lookup for the network shown in Figurerithis examplep = 3, [= 2 and nodeV32 makes a lookup for the ke 2.

failed). A node checks its cache slices periodically andentally that we can obtain relatively good estimates (to
ensures that there are sufficient unexpired cache entrugthin 25% of the true value) in the steady state with our
in each slice. Should a slice be found not to have sufixperimental parameters.

cient unexpired cache entries, a node makes a lookup to

the midpoint of that slice. Sincg¢is small (e.g. 2), one C

lookup is usually all it takes to satisfy the cache invariant _ . _
The key idea is that to provide ai(log n)-hop guar- When multiple nodes attempt to join the Chord ring at

antee on the lookup path length, the density of entries I@egproximately the same location, temporary inconsisten-
slice must increase exponentially as we get nearer to #{gS may arise in the address space. Also, as nodes fail and
node’sid. EpiChord estimates the number of slices frod¢ave the network unannounced, segments of the address
its & successors antl predecessors: it requires that th&Pace may become orphaned (i.e., none of the nodes know
successor and predecessor lists fall into the two adjacEMt they are responsible for them). We run a weak stabi-
slices closest to the reference node. This implies that W&tion protocol periodically to fix local inconsistensie
need to choosg andk such that: > 2j. in the address space and a strong stabilization protocol to

To estimatey, the probability that a given cache entrfletect and fix global inconsistencies.
is stale, each node tracks two variables: Definition 1: We say that the network is (i)

« n,, the number of nodes probed weakly stableif, for all nodes u, we have

« ny, the number of probed nodes that timed out predecessor (successor(u)) = u; (i) strongly
We estimatey with: stableif, in addition, for each node, there is no
nodew such thatu < v < successor(u); and
(iii) loopy if it is weakly but not strongly stable
(see [20]).
In addition, we multiplyn, andn; by d, periodically 1) Weak Stabilization Protocol:All messages contain
(i.e., when the cache is flushed) to obtain exponentialiige IP address, port number aitlof the sender. So un-
weighted moving averages for both estimates. We weidlte Chord, there is no longer a need for a node to explic-
the raw values instead of periodically computed ratios bigly notify its successor that it is the new predecessorr afte
cause huge errors can be introduced in the estimates whgoins the network. When it contacts the successor to ini-
the frequency of computation is high and insufficient sartiate a cache transfer, the successor would realize that the
ples are accumulated between computations. In our imew node has joined the network and update its predeces-
plementation, we sef, = 0.5 and we observe experi-sor pointer accordingly.

. Stabilization

N Tt
Y=
np

1)

In addition, nodes periodically probe their immediattoken along the ring will take a long time and is relatively
neighbors to check if they are still alive. When probednefficient, so instead, we implement a parallelized token-
a node will either (i) send a short reply message with ifgassing scheme.
current predecessor and successor or (i) send a complete
list of its immediate neighborhood: (predecessors arid
successors) if a change was detected wikthimops of the
probing node.

Each node is responsible for finding and maintaining its
own successor and predecessor. When a node hears from
another node whose id is closer than its current predeces-
sor and successor, the new node is automatically set as
the predecessor or successor accordingly. If a node learns
about a node that could possibly be its new predecessor or
successor indirectly from another node (or by observin , ,
lookup traffic), the node will probe this new node and sg 9. 5. An example of a loopy address space configuration. The

rows indicate the direction of the successor pointers.
it as the predecessor or successor only if it receives a pos-
itive response on the probe. Periodically, each node will As loopy configurations are expected to be rare, strong
probe its perceived successor and predecessor (which ratapilization needs to be performed only infrequently. The
not be correct) to learn about the nodes’ neighborhood®y idea in our strong stabilization protocol is to generate
In this way, a node is eventually guaranteed to discoverad pass tokens (which are simply messages) along the
better predecessor or successor in the vicinity ofdtsf ring using only the successor pointers. In our protocol,

one exists. immediately after a node sees a stabilization token (or im-
Theorem 1: The weak stabilization protocol mediately after it joins the network), it will pick a random
will eventually cause an EpiChord network to ~ Waiting period from the intervalt,in, tmax) after which
converge to aveakly stablestate. it will initiate strong stabilization. If a node sees a token

rQ,jflsfore its timer runs out, it will reset its timer and choose
again. In this way, we can control the number of concur-
rent tokens that are passed in the ring at any given instant

To prove this theorem, we observe that each node
only a finite number of possibilities (exactty — 1) for
its predecessor and successor. For a nedmich that = "~ o i
predecessor(successor(u)) # u, v would eventually n tlm_e _Ir_] a distributed faShlp_n')
probe its successor and both would update their predeces-l—_o initiate the strong stabilization process:
sor and successor pointers accordingly. Each predeces: & noder (with identifiern,) picksq nodes with iden-
sor/successor update event monotonically improves the tfiersni, ng,-- -, ng, distributed approximately uni-
consistency of the address space, i.e., a node only adopts a formly in the address space, from its cache, where
new predecessor or successor if it is strictly better tran it IS the degree of parallelization and < n; < ny <
previous successor. Therefore, the address space pointers ™" < "
will eventually converge to weakly stablestate, whichis ~ * © Sends node:, a token withn,. (itself) marked as
the only state where updates will no longer happen. the destination. _

2) Strong Stabilization Protocol: Although, it is in ~ * « then proceeds to send nodea token withn;;
generally highly improbable that a network will end up ~ Marked as the destination, for= ¢ —1,---,1in
loopy (except perhaps after a network partition), for com- ©rder. If a given node; is found to have failed,
pleteness, it is still desirable to have a scheme that will @nother node in its vicinity is chosen instead.
detect and fix global inconsistencies in the address spaces. finally, = generates a token with destination and
Our strong stabilization algorithm is based on a very sim- Passes It to its successor.
ple idea: to detect loops, all we need to do is to traverse this is illustrated in Figure 6.
entire ring and make sure that we come back to where weé/Vhen a node receives a token, it passes the token to its
started. Figure 5 shows graphical example of a loopy, B&Mccessor. A token is destroyed when it reaches a node
locally consistent address space. In this example, mod&vith an identifier greater or equal to its intended destina-
forwards a packet containing its identifier along the ringion (modulo the circular address space). When a token is
When the packet reaches nagem realizes thai exists destroyed, one of two possibilities can occur:
and initiates the weak stabilization protocol witho re- 1) the segment of the address space traversed by the
pair the address space. A naive scheme to pass a single token is not loopy, in which case, the token either

observing that each node has onlypossible choices for

its successor. Since each round of token-passing updates
at least one node, we know that it will take at moxt.?)
rounds to update the successor (and predecessor) pointers
to the correct values.

To see that the token-passing algorithm will allow at
least one pair of nodes to detect an inconsistency, consider
a network that is weakly stable, i.e., if we followed the
successor pointers we would eventually end up where we
started. Suppose we choasaodes arbitrarily such; <
ng < --- < n,. Take a node, say, and follow the
successor pointers. Repeat this process for all nodes. If

ends up at its intended destination or its successfie network is not loopy, it is clear that the nads would

(if the destination node failed at the meantime) angicrease monotonically (modulo the address space) until
nothing happens. All the nodes in the path of thge reach node:,,; If the network is loopy, for at least
token would however have learned about the desgne nodmy’ we would eventually reach a node such
nation node. thatn, < ny+1 < n, (modulo the address space). The

2) the segment of the address space traversed by Kae is to recognize that the net effect of our secondary

token is loopy and the token does not end up at thgken generation mechanism is to choose thesedes
intended destination. Again, however, the nodes {acursively.

the path of the token would have learned about the |ntuitively, it is quite easy to see that if we choose a set
destination node and as a result, two of the nodgs » nodes in the ring and have them forward messages
on the alternate segment in the vicinity of the destip adjacent nodes in this set along the ring, we can detect
nation node would start to probe for the destinatioifconsistencies. What is interesting about our algorithm i
node because of weak stabilization and the loop withat we have demonstrated that we can choose this set of
eventually be eliminated. r nodes recursively in a distributed way and still preserve

If the network is large* is large and it will still take the correctness of this approach.

a long time (and many hops per token) to complete one
round of token-passing. To avoid this problem, nodes
generate secondary tokens. For example, npadeth
identifier n,, receives a token destined fat. Instead of
just passing the token to its successor, a node can alstf we assume a uniformly distributed workload, we can
chooseq nodes with identifiersy;, ny, - - -, n, such that show that the worst-case lookup performance &g n)

ny, < m < ng < -+ < ng < n,and generate the hops. In addition, the expected worst-case lookup path
corresponding; tokens. With this recursive process, eaclength is at most log,, n, wherea = 3; + J% Here,n
token-passing round can be completedifiog n) time. is the size of the network, andis the minimum number

of cache entries per slice (see Appendix B). Whena 1,

we get the same expected worst-case result as Chord does.

stabilization protocol will cause an EpiChord ~ However, forj > 2, we tend to do much better: fgr= 2,
network to converge to atrongly stablestate «a = 7.2 and the EpiChord expected lookup path lengths

1]
after at mosO(n?) rounds of token-passing. are at most onlyfl;’% = log, 2 ~ 3 of that for Chord.
5 «a

There are two key intuitions behind the correctness of tHur analysis implicitly assumes that the queries in each

theorem. First, if the network is loopy, the token-passingop are synchronized. Because our lookup algorithm is

algorithm will cause at least one pair of nodes to detegsynchronous, actual lookup path lengths will tend to be

an inconsistency. Next, whenever such an inconsisterglightly larger.

is detected, the pair of nodes that detect the inconsistency

will update each other and strictly improve the state of the Reduction in Background Probes

network. Since each node in the network has one correcEE . o . .

. .EpiChord exploits information gleaned from observing

successor and the only stable state is when the networ5< iS . .
ookup traffic to improve lookup performance, and only

no longer loopy, we conclude that the network must even-

tually become strongly stable. The bound is obtained froniThe expected lookup path length for Chordiog, n [20].

Fig. 6. Example on the generationpétabilization tokens.

[Il. ANALYSIS
A. Worst-Case Lookup Performance

Theorem 2: The combination of our recursive
parallel token-passing algorithm with the weak

sends network probes when necessary. To see the band-
width savings with our approach, we consider a network *’
with a steady state size of 20,000 nodes and nodes fa, |
have an median lifespan of 60 minuteZhis translates to"é I
a node failure rate of approximately 0.03% (or 5 nodeg) os .
per second. Assuming that the application-level lookdp
traffic received by a node is approximately uniformly dis
tributed (this is a reasonable assumption since n‘ﬁdeg ol |
are obtained using the SHA-1 hash [19] and are thus umi- [
formly distributed), the proportion of lookup traffic tha.é 02} 1
will help to satisfy the cache invariants for various vag A,""'
ues of lookup traffic ang is shown in Figure 7. With an& °tf n=2,000 —— |
amount of lookup traffic approximately equal to the re- ‘ ‘ ‘ ‘ ‘ ‘ (1000000
quired baCkground_ maintenance traf_fic (?ﬁ'; Lin Fig- Lo(cJ)kup tr(i;ffic relalltive tol'rsninimazl backgzj'?ound r31etwori5meim?1ce tra?f?c
ure_ 7), we can achleve a 35% reduction I_n the baCkgrc_)uEﬂ. 8. Effect of network sizer() on the proportion of lookup traffic
maintenance traffic. At larger network sizes, the savings: helps to satisfy cache invariant (foe 2).
in background maintenance traffic is reduced. However,
as shown in Figure 8, even at network sizes of 1,000,09Q4 each node makeg lookups uniformly over thed
nodes, we can still expect a reduction of more than 25§gdress space and sends pqueries in parallel for each
on average. lookup. Wherer is the number of live nodes that is known
to a node at time, we obtain the following relation:

04} p

0.6 T T T T T T T T

. . " tri nodes departed but
ncoming queries filshed not flushed

d N T al e
osr A_Ait:f;ii’f»/:;”'m 1 E‘r(t) = pQ(l - E) - fl' - (1 - f)T‘T (2)

04| e 1

We have assumed that new knowledge comes only from

Proportion of cache invariant satisfied

0sl | theincoming queries as a node would have to know about
a node in order to send an outgoing query to it. This is
02| / | conservative and will tend to under-estimate the increase
‘ in . We have also assumed that the probability that a
01l { cache entry is flushed is independent of the probability of
j‘g‘ e failure for the associated node. The steady state solution
x s s x s R toxis:
0 0.5 1 15 2 25 3 35 4 4.5
Lookup traffic relative to minimal background network maimance traffic
Fig. 7. Effect ofj on the proportion of lookup traffic that helps to lim z(t) = pd n (3)
satisfy cache invariant for 20,000-node network. t—o0 pPQ+(f+r—rfn

In addition, wherey is the number of stale cache entries

C. Cache Composition in the Steady State . . :
at timet, we have the following relation:

The proportion of live entri€sin the cache is an im-

portant system parameter because it determines the prob- _ stale entries discovered by
ability of a timeout occurring during a lookup. To obtain stale entries stale entries timeouts of outgoing queries
an estimate of the number of live entries in a cache in the —_—— ~~ —
steady state, we consider a network of sizguch that in %y(t) = (A=firz— fy - pQ(x T y) 4)

a fixed time interval, a fraction of the nodes in the net-

work leave, a fractionf of the cache entries are flushed o)
In a network with high churn, the proportion of stale en-

8These figures are representative of both the Napster ancelBnuttries in the cachey, is a key system parameter:
peer-to-peer file-sharing networks as reported in a meammestudy
by Saroiu et al. [21]. . Yy

9An entry islive if its associated node is still online. The set of cache v= tlggo Tty = 20 (1= f)re = fy] (5)
entries for a node will in general consist of some live estdad some ’
unexpired, stale entries.

If pQ > rnandf = 0, thenx ~ nandy = % ~ 0. This IV. SIMULATION RESULTS

implies that if the level of lookup traffic is high enough, To understand the trade-offs when we move from an
the performance of the system is somewhat independ@r(qog n)-state-per-node DHT to an unlimited-state-per-
of the cache maintenance protocol. This agrees with W§qe DHT with the same basic routing topology, we com-
intuition, since with a high level of lookup traffic, mostyare EpiChord to a corresponding optimal iterative Chord
nodes will know about a large number of other nodes aRgywork of the same size using our simulation built on
many stale cache entries would be discovered and elifjg ssfnet[22] simulation framework. We run the simu-
nated during the lookup process. lations on a 10,450-node network topology organized as
stel\;%)g’sg?econsmer the case whe) < rn. Inthe 55 5tonomous systems, each with 13 routers and 405
' end-hosts. The simulated network topology is represented
PQ graphically in Figure 9.

tlggox(t) ~ Er— (6)

By setting% = 0 in (4), we obtain:

fP+pQ+ (f—r+rflaly—(1— fira®> =0 7)

Substituting (6) yields:

2 2pr _ (1 B f)T 2
=y= < 1+ (1 —ff)r — 1) f—i—Z;iQ—rf (9) Fig. 9. Simulation Network Topology.
A=Fr The average roundtrip time (RTT) between nodes in the
— = lim y _V 1+-—=—-1 (10) topology is approximately 0.16 s. Hence, we set timeouts
t—oo T +y 14 =hr at 0.5 s for all simulations. The cumulative distribution

d of the RTTs in the simulation topology between any two

If cache entries are flushed at a rate that is at least as fzar's of nodes is shown in Figure 10. Since all query pack-

as the node failure rate, i.¢.~ r, then ets are UDP-based and packets may be lost, we retransmit
=71 . twice after a timeout and will decide that a node has failed
y=XY2 LS <1 = =0.292 (11) if we do not hear from it after 3 tries.
V2 f V2

Thus, our model predicts that even when the churn rate is ’
high pQ <« rn), at most 30% of the cache entries will be °°f 1
stale (and this result is independent of the level of lookup os | 1
traffic p@Q). This result was verified by our simulationsz |
To get a simpler close form for the expected proportion &f

stale entries, lef = cr, i.e., we flush entries at a rate thad °°f]
is ¢ times faster than the node failure rate. Next, assufieos |]
that f is small and} < 1, then <

E 04 7
3
1+ 40 g “l 1
Y= (12) oz A
14 4= or |]
1 T L 1 1 L 1
~ 1 + 5) 7 — 1 (13) 0 0 50 100 150 200 250 300
~ 1+ 1 r Latency (ms)
1 27 Fig. 10. Cumulative distribution of RTTs in simulation tdpgy.
= (14)
2c¢+1 Li et al. highlighted that the assumed workload will

affect the result of comparisons between DHTs signifi-

cantly [23]. They proposed two generic classes of workymmetric, we need only half the number of probes re-
loads —lookup-intensiveand churn-intensive Although quired by Chord and so with a mean cache entry TTL of
they did not propose exact definitions for these two classkE20 s> 2 x 60 s, the maximum background maintenance
of workloads, we do have a very natural way of defintraffic for the EpiChord networks (even in the absence of
ing these two classes of workloads for EpiChord based mokups) in our simulations are guaranteed not to exceed
our steady-state cache model. In particular, we considethat for the corresponding Chord network.
workload to be lookup-intensive jfQ) > rn, and churn- 1) Lookup Performance:The average latency and the
intensive ifpQ < rn. average hop count per lookup for successful lookups in
In our simulations, we first generate a sequence thfe steady state are shown in Figures 11 and 12 respec-
node joins/departures and queries according to a ptieely. From Figure 11, we see that having more paral-
determined set of network parameters. Subsequently, l@sm reduces the lookup latency. In Figure 12, the hop
run the same set of traces on the EpiChord networks adunt for EpiChord is defined as the minimum number
varying degrees of parallelism and on a correspondiing nodes that have to be contacted in the final (successful)
Chord network. This ensures that the results can be colaekup sequence. We see that the average steady-state hop
pared fairly across the two algorithms without bias in theount varies from 1.1 to 1.4. This means that at least 60%
choice of nodeds and lookupds. of the lookups succeed within the initial wave of lookup
queries. This result is actually not surprising since we
know from our analysis that the expected worst-case hop
_ _ _ _ count isi log, n = 1 log; 5 1,200= 1.80.
In our lookup-intensive workload simulation, node We consider a lookup to be successful if it locates the

lifespans are exponentially distributed with a mean %rrect node within 5 minutes. This means that it is oc-

600 S We experiment W'_th_ a range of network sizes k@élsionally possible for a lookup to time out while waiting
varying the rate of nqde joins fro33 to 2 nodes per for the response from some failed node, and then subse-
second. Each node in the network makes on averagﬁt?ently proceed to continue the lookup process with an-
lookups per second. In steady state, the network SIZ5ther node and succeed. The distribution of latencies is
range from 200 to 1,200 nodes and the overall systqp,q strongly bi-modal, with the majority of lookups suc-

query rate ranges from 400 to 2,400 lookups per Seco'&@'eding relatively quickly while a small fraction succeed-

The stabilization interval is 60 s (i.e., nodes probe thqigfg only after a timeout. These timeouts explain why the

s_ucce?sors arr:d prede_ces;grs once a rrr:mute) andthe g\fe'rage latency as reported in Figure 11 for the 1-way Epi-
time of-a cache entry Is 1) S- Slr_1c_e the expecte a%‘ﬁord network is about twice the average RTT instead of
gro_und maintenance traffic is negligible compared to ﬂl?)%ing approximately equal to the RTT even though the
active lookup rateq) ~ 2 andrn ranges from0.33 to 2. hop count is 1.4. The timeout probabilities are shown in

~ L ~ L) — . -
Also, 1 ~ a5, f & 155 (f > 1) andj = 2. Figure 14. The latencies for successful lookups that ex-

Since we are comparing EpiChord to Chord, we happerience timeouts is generally more than 10 times of that

to pick an appropriate cache entry TTL to ensure thah ,,1uns that do not time out, though fortunately, the
the maximal background maintenance traffic generatedila/mer occur much more infrequently than the latter

EpiChord does not exceed that for a corresponding ChordAS shown in Figure 13, the lookup failure rates are rela-

n_etwork. If we assume t'hat_ nodes_have exponentially d{ﬁiely low (< 0.1%). This is not surprising since under the
fmbuted (memorylgss) lifetimes W_'th mezﬁ whereX_ lookup-intensive workload, the large number of lookups
s the fa”‘?‘o”_‘ variable representing the time of fa'Iurﬁeep the routing state for most nodes mostly up-to-date.
P(X < t)is given by: Adding more parallelism (increasing reduces the proba-
bility of lookup failure significantly®. The lookup failure
probability falls by approximately an order of magnitude

Hence, if nodes have mean lifetimes of 600 s, cache é(y]henp is increased b}' Qne.

tries would have to be probed at least once every 60 s to?) Message Countitis clear that a parallel lookup al-
ensure that they have a 90% probability of being vali@®rithm will generate more lookup messages when there
It is thus reasonable to assume a periodic probe rate3 More paraliel queries per lookup. Figure 15 shows
at least 60 s for a Chord network. The minimal routh@t for our given parameter settings, the average number
ing set for an EpiChord network of comparable size withf duéry and reply messages that are required for a se-

J = 2 would have slightly less than 4 times as many en-1othe competing optimal Chord network has perfectly accuiiate
tries. However, since the cache slices for EpiChord ggrs at all times and thus lookups never fail.

A. Lookup-Intensive Workloag@ > rn)

PX<t)=eT (15)

10

0.9 T T T T T T T n 0.0012 T - T T T T T
Chord 1-way EpiChord
1-way EpiChord - 2-way EpiChord
08 I 2-way EpiChord i 3-way EpiChord
: 3-way EpiChord - 4-way EpiChord -
4-way EpiChord 0.001 | 5-way EpiChord -------]
—~ 5-way EpiChord ------- o : e
&L o7r T =
g =
9 8 g
T osf B o 0.0008 - ~
= = #
@ X
£ < P
Q o5 q o
3 : L
é © 0.0006 [g
O o4l | > p
[=
o)) %
© o3f 1 8 ooo0sa} 1
(7] ©
S =
< o
02 4 B
0.0002 |- «
01 1 T
! ! ! ! ! ! ! il 0 — =
200 300 800 1000 1200 1400 200 300 00 1000 1200 1400

400 X 600 400 X 600 8
Network Size (log scale) Network Size (log scale)

Fig. 11. Comparison of lookup latency between Chord anwday Fig. 13. Lookup failure rates fgs-way EpiChord networks under
EpiChord under lookup-intensive workload. lookup-intensive workload.

T T T T T T T
5k Chord
1-way EpiChord -
2-way EpiChord -
3-way EpiChord -
4-way EpiChord
5-way EpiChord -------

0.12

2-way EpiChord
0.11 - 3.way EpiChord
4-way EpiChord g

01 | B5wayEpiChord ------- e 4

O

wr e

oorf e

0.06 | A
0.05 | A

0.04 1

0.03 Bl

Average number of hops per lookup

0.02 4

Probability of timeout for successful lookup

0.01 1

200 300 400 600 800 1000 1200 1400 0 . i
NetWork Size |0 sca|e 200 300 400 i 600 800 1000 1200 1400
(log) Network Size (log scale)

Fig. 12. Comparison of lookup path length between Chordawdy . . . ' .
EpiChord under lookup-intensive workload. lFOI gl'(j;'_'intz:‘?s?\?ebuglrﬁgirgeoms fas-way EpiChord networks under

quential Chord network is approximately equal to that for i
a 3-way EpiChord network. As mentioned in Section III_n steady state, the network sizes range from 600 to 9,000

A, the main reason why the number of lookup messag%gdeS and the overall system query rate ranges from 40 to
does not increase in proportion wighis that with iterative /0 100kups per second. Including the minimal expected

lookups, the querying node can avoid sending duplicat@ckground maintenance traff@,zlo.OE) to 0'108 andrn
and redundant queries. ranges from 1to 15. As before~ o5, f =~ 155 (f > 1)
andj = 2.

1) Lookup Performance:The average latency and the
average hop count per lookup for all successful lookups

In our churn-intensive workload simulation, node lifeare shown in Figures 16 and 17 respectively. Again, we
spans are exponentially distributed with a mean of 600see from Figure 17 that adding more parallelism reduces
The stabilization interval is 60 s and the lifetime of a cachtbe lookup latency significantly. As shown in Figure 18,
entry is 120 s. We experiment with a range of networtkhe lookup failure probabilities under the churn-intessiv
sizes by varying the rate of node joins frdnto 15 nodes workload are higher than those under the lookup-intensive
per second. Each node in the network makes on avemrkload (which are< 0.1%). This is to be expected
age 0.01 lookups per second. Because the lookup ratsiiece the churn rate is higher and the information prop-
so low, most of the lookups captured in our results aegation rate is significantly lower. From Figure 18, we
lookups arising from node joins and cache maintenans®e that the failure rates for the 4- and 5-way EpiChord

B. Churn-Intensive Workloa®Q < rn)

11

20

T T T T T T T A 7 T T T T T T T T

5-way EpiChord ------- Chord

4-way EpiChord 1-way EpiChord

3-way EpiChord 2-way EpiChord

2-way EpiChord - 6 L 3-way EpiChord

1-way EpiChord ==----- 4-way EpiChord
Chord 5-way EpiChord -------

15

10

Average number of hops per lookup

Average number of messages per per lookup

! ! !

1 1 1 1 1 1 ! J 0 L ! L L !
200 300 800 1000 1200 1400 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

400 600 i
Network Size (log scale) Network Size (log scale)

Fig. 15. Comparison of lookup message count between Chatd dnig. 17. Comparison of lookup path length between Chordiawady
p-way EpiChord under lookup-intensive workload. EpiChord under churn-intensive workload.

1.3 1l-way EpiChord ------- j j T T T T T 4 0.03 T-way EpiChord R T T T T T T T
Chord 2-way EpiChord e
12 L 2-way EpiChord o4 3-way EpiChord -:-:-:-
iix% Eg:ggg[g YT T 4-way EpiChord .
o 1AL SwayERChod e] o 0025 S-way EpiChord ------- Pl
L |] =
9 : | -
5 09 | 1 g o2 T B
E 0.8 a X
o S
o

2 o7} [— =2 e o
o ———— S 0015 F e i
S o6} 1 > g
% 0.5 E
g | g |
5 oal | '8 0.01 |
<>: =

03 7 o

02 b i 0.005 | B

01 7 T

0500 1000 1500 2000_ 3000 4000 5000 6000 8000 10000 0500 1(;00 15‘00 2800 3600 4(;00 5(;00 5(;00 8(;00 10000
Network Size (log scale) Network Size (log scale)

Fig. 16. Comparison of lookup latency between Chord piwlly Fig. 18. Lookup failure rates fop-way EpiChord networks under
EpiChord under churn-intensive workload. churn-intensive workload.

networks are higher than that for the 3-way EpiChord netrork incurs approximately 50% more lookup traffic.
work, which is somewhat counter-intuitive. We discov-
ered that the cause of this phenomenon is that with a larger
p, each lookup invoked for cache maintenance satisfigs
the cache invariant for more nodes and so the 4- and 5Figures 21 and 23 show the average number of live and
way EpiChord networks generate fewer cache-refreshistale entries in the caches of the nodes for the EpiChord
lookups than a 3-way EpiChord network. This lowenetworks under a lookup-intensive workload and a churn-
rate of background maintenance traffic accounts for tirgensive workload respectively, while Figures 22 and 24
marginally higher failure rates for larger network sizeshow the fraction of stale entries in the respective caches.
As shown in Figure 19, withh > 2, successful lookups These results seem to support the conclusion from our
will almost never experience timeouts. analysis in Section II-C that the fraction of stale entries
2) Message CountAs shown in Figure 20, more mes-depends only on the node failure rate and the frequency at
sages are required to complete a lookup under a chuwhich entries are flushed from the cache.
intensive workload. However, the increase in messageAccording to our cache model for churn-intensive
count over the lookup-intensive workload is quite modworkloads,
est: a 1-way EpiChord network requires approximately

Cache Composition

the same number of messages per lookup as the corre- v 1 o= i ~ zéo _5
sponding Chord network, while a 3-way EpiChord net- 2c+ 1’ T s

12

Q.
3 o5 — . 900 : - : : : :
< 1-way EpiChord -------) 5-way EpiChord - live entries -------
8 2-way EpiChord < 3-way EpiChord - live entries ===~
= 3-way EpiChord ------ G goo L 1-way EpiChord - live entries ------- i
=] 4-way EpiChord — e [} 5-way EpiChord - stale entries
= S-way EpiChord ——--——- e o 3-way EpiChord - stale entries
8 04t e 4 c 1-way EpiChord - stale entries L Pt
T o 700 T B
o . Q g -
> =
] 600 [—
E (]
03 -

< S

s~ 500 ~
3 @
2 €
é S 400 | 4
B o2} p =
o)
2 D 300]
= 5
S > .
Qo olr R L 200 |, i
<) .
o

100 —
o L T i
500 1000 1500 2000 3000 4000 5000 6000 8000 10000 0 L L L L L
Network Size (log scale 200 400 600 i 800 1000 1200
(log) Network Size

Fig. 19. Probability of timeouts fgs-way EpiChord networks under Fig. 21.

. ' Cache composition fgr-way EpiChord networks under
churn-intensive workload.

lookup-intensive workload.

5-way EpiChord
30 - 4-way EpiChord
3-way EpiChord
2-way EpiChord
1-way EpiChord

Chord

0.2

T
1-way EpiChord -------
2-way EpiChord
0.18 | 3-way EpiChord
4-way EpiChord
5-way EpiChord -------

0.14 q
20 - ——

0.12

15

Average number of messages per per lookup
Fraction of stale cache entries

01 [4
0.08 4
10 | 1
0.06 i 1
51 1 0.04 B
0.02 - 1
Osoo 1&;00 1é00 zéoo_ 3800 4600 sr;oo et;oo 8[;00 10000 0 L L L L L L L
Network Size (log scale) 200 300 400] 600 800 1000 1200 1400
Fig. 20. Comparison of lookup message count between Chatd an) Netwo.rk Size (log sceﬂe)
p-way EpiChord under churn-intensive workload. Fig. 22. Fraction of stale entries fprway EpiChord networks under
lookup-intensive workload.
L oy
= = 0 H H
2% 5+ 1 2.0 per second for a range of networks with sizes from

600 to 1,200 nodes. As shown in Figures 25, 26 and 27,
This means that the predicted fraction of stale cache &Acreasing the amount of lookup traffic reduces the lookup
tries in the steady state is approximately 9% for the exath length, lookup latency, and the number of messages
pected node lifespans and cache flush rates in our expgint per lookup. There are however decreasing marginal
iments. From Figures 23 and 24, we see that our eséturns with increasing traffic and the EpiChord lookup
mate of 9% is somewhat smaller than the actual valdg@orithm achieves close to optimal performance with a

(~ 12.5%). This is likely due to the neglected terms in oUfeasonably small amount of lookup traffic (i.€.,= 0.5).
approximation and also to the fact thatis smaller than

1—50 in practice, i.e., although cache entries are flushed G‘é/

ery 120 s, the probably of a cache entry being flushed out . _
every second is smaller thads. To investigate the effect of the number of “best entries”

returned per responsg,on lookup performance, we hold
] p constant at 3 and the amount of lookup trafficonstant
D. Effect of Lookup Traffic at 0.01 per node per second (to minimizelthakup-traffic
To investigate the effect of lookup traffic on lookup pereffec} and varyl between 2 and 4 for a set of network with
formance, we hold» and ! constant at 3 and vary thesizes from 600 to 1,200 nodes. As demonstrated by our
amount of lookup traffic per nod€® between 0.01 and results shown in Figures 28, 29 and 3bGas a negligible

Effect of Number of Entries Returned Per Query

13

140 T T
5-way EpiChord - live entries

=1

o
oz

d
3-way EpiChord - live entries - Q .01
1-way EpiChord - live entries - 1F Q=01 - 4
120 5-way EpiChord - stale entries i Q=02
3-way EpiChord - stale entries e Q=05 ——
1-way EpiChord - stale entries T 09F Q=10 —-— =
- Q=20

\

100 F p 0.8 -

_____ 07 | g

80 | //_,/"’/ e -

Average number of entries in cache

Average lookup latency (s)

______________ 06 [E
I R | 05 b
------ 04 F b

40]
03 F]
20 | | 02]
01]

0 P .
500 1000 1500 2000 3000 4000 5000 6000 8000 10000 0 L L L L . . .
Network Size (log scale) 600 700 800 900 1000 1100 1200

Network Size
Comparison of lookup latency between Chord aswaay
EpiChord under varying amounts of traffic.

Fig. 23. Cache composition fgr-way EpiChord networks under Fig. 25
churn-intensive workload. s

0.135 T T T T T

T T
1-way EpiChort T T r
2-way EpiChord - Chord
3-way EpiChord - Q=0.01 -------
4-way EpiChord 6 Q=0.1"-)
5-way EpiChord - - Q=02
Q=05
Q=10 -------
013 | 1 51 Q=20

\

0.125 |-

Fraction of stale cache entries

012 | - T A

Average number of hops per lookup

0.115 L L L L L L L L
500

1000 1500 2000 3000 4000 5000 6000 8000 10000
Network SiZe (Iog scale) 0 6:)0 7:)0 8100 9100 X 1[;00 liOO 12100
Fig. 24. Fraction of stale cache entries feway EpiChord networks Network Size
under churn-intensive workload. Fig. 26. Comparison of lookup path length between Chord3awdy

EpiChord under varying amounts of traffic.

effect on the lookup path length, lookup latency and the
number of messages sent per lookup. We thus conclutde-off because lookup latency is the principal measure
that we can keepsmall and set = 3. of lookup performance.

Our new algorithm yields substantial savings in terms
of setup time and the number of messages sent when a
node first joins the network, compared to Chord and many

Our analysis and simulations have shown that by ugther DHTs. To join the network, a node need only per-
ing parallel lookups and by amortizing the network mairform one lookup, contact its successor and predecessor,
tenance costs into the lookup costs, our approach offéd perform an initial cache transfér Although perfor-
significantly better lookup path lengths and latencies withance is better with a full initial cache transfer, a min-
little additional costs in terms of bandwidth consumptiorimal transfer ofO(logn) entries is sufficient to guaran-
Our simulations have also shown that even though mige worst-casé (log n)-hop lookup performance. In con-
tiple messages are sent per lookup step, the lookup trsgst,0(log n) lookups O (log? n) messages) are required
fic generated is not significantly larger than that for a se-
quential lookup algorithm because the lookup path |ength§1Adjacent nodes in an EpiChord network usually have a similar

- - et of address space slices for their cache invariants. maans that
are significantly shorter. In fact, the lookup traffic geneIai_fter a node completes a cache transfer from either its ssocer

ated by a 3-way EpiChord network is comparable to thglegecessor, it will generally have a cache that alreadgfigat the
for a corresponding Chord network. This is a desirablevariant.

V. DISCUSSION

18

16

14

12 |

10 -

Average number of messages per per lookup

! ! ! ! !

o
© 0000

!

o

odouivikRk
'

n=unn Ho
NETRIE

14

oo
N w AT

26

255

25

245 -

Average number of hops per lookup

2.4 ! ! ! ! !

!

!

600 700 800 900 1000 1100 1200 600 700 800 900 1000 1100 1200
Network Size Network Size
Fig. 27. Comparison of lookup message count between Chatd &ig. 29. Effect ofl on lookup path length for a 3-way EpiChord

3-way EpiChord under varying amounts of traffic.

network.

0.48

18 T T T T T T T

0.475 -

0.47 -

0.465 -

0.46 |

0.455 -

17 +

0.45 |-

0.445 -

Average lookup latency (s)

; 65 R
044 g

Average number of messages per per lookup

0.435 - b

. 124 -oeeees
043 600 700 800 900 1000 1100 1200 16 00 -~ 200 500 1000 100 1200
Network Size Network Size
Fig. 28. Effect off on lookup latency for a 3-way EpiChord network.gig. 30. Effect ofl on lookup message count for a 3-way EpiChord
network.

for a Chord node to fully initialize its finger table.

Although our reply messages will tend to be larger than [jke EpiChord, Kademlia [6] gathers routing infor-
those of traditional sequential lookup algorithms, sihcemation from observing lookup traffic and uses parallel
“best” entries are returned, even with the increase in Siléokups to improve lookup resilience. The organization of
the reply messages are only about 100 bytes in size (i& routing entries is also somewhat analogous to that for
cluding the 28-byte UDP/IP header) at a reasonable sghichord, albeit in a different address space. One key dif-
ting of | = 3. Hence, the increased size of the responsggence between Kademlia and EpiChord is that Kademlia
is not an issue even for nodes behind a 56k modem lifgts the amount of routing state 1©(log n) while Epi-
since the packets are relatively small. Chord does not. By limiting its routing state @log n),

Kademlia lookups take on averagglogn) hops while
VI. RELATED WORK EpiChord can often achieve one- or two-hop lookup per-

Our parallelized lookup algorithm and reactive cacH@rmance with its large routing state. While Kademlia
management strategy can be applied to any of the exist#i@ploys parallel lookups mainly to improve lookup per-
DHT routing topologies that have some flexibility in thdormance, EpiChord actuallequiresparallel lookups to
choice of neighbors (i.e., ring, tree or xor) [14]. We choseope with possible timeouts arising from maintaining a
to implement our proof-of-concept DHT using the Chortrge amount of routing state.
ring [2] as the underlying routing topology because of its The MIT Chord [20] implementation includeslaca-
simplicity. tion cache i.e., nodes remember the |IP address aixd

15

of nodes that recently contacted them and use this infais node cache. Of course, there is a trade-off of increased
mation in their lookup. Zhuang and Zhou showed that theokup traffic.
Chord location cache is able to reduce lookup path lengthConceptually,¥ can be used to adaptively adjust the
by 1/2 of the logarithm of the cache size, but it does noache entry expiration period. We can choose a tayget
scale to more than 2,000 nodes in a typical network setrd the cache entry expiration period is incrementally de-
ting because of stale cache entries, which cause timeatrsased whey > 4, until 4 < ~,. We have not im-
and redundant hops [24]. plemented such a scheme, but it is straightforward to do

In addition to proximity neighbor selection [14], Dabelso.
et al. recently investigated the effectiveness of a com-EpiChord is currently not fully optimized. There is still
bination of techniques in improving lookup latency fosignificant flexibility for nodes to adopt individual poli-
DHash++ [18] (arO(log n)-state DHT based on Chord),cies to further enhance and optimize their individual (and
including synthetic coordinates [15], erasure coding [1&hereby global) lookup performance, if so desired. For ex-
integration of key lookups and data fetches and an in@mple, a node that discovers a high rate of node failures
grated transport protocol (STP). EpiChord is certainly natithin the network (i.e., from the fact that many queries
as sophisticated, but we are not seeking to be. Most of tiee unacknowledged) can adaptively increase the number
techniques in DHash++ are orthogonal to our lookup alf parallel queries per lookup as well as be more aggres-
gorithm and can be integrated into EpiChord if so desiresive in flushing old entries from its cache. One can also

Gupta et al. proposed one- and two-hop schemes timaagine improving the dissemination of routing state by
disseminate global network membership changes usingiggybacking additional random node entries on requests
background broadcast process that scales up to a millmmresponses. If the system lookup rate is low or a higher
nodes [13]. Other two-hop schemes that have been pl®sel of background traffic can be tolerated, EpiChord
posed include Kelips [9] and Structured Superpeers [12hn generate additional queries, or employ a hierarchical
The major drawbacks of these schemes are that they eitheyadcast scheme [13] or a provably efficient epidemic
impose a fixed (and relatively high) amount of constaimfche exchange mechanism [25], to proactively increase
background traffic on all nodes (even ones that are rethe number of cached entries per node. Finally, it might
tively inactive), and/or impose significant asymmetry iperhaps be possible to formulate the performance opti-
the bandwidth consumption across nodes in the networkization problem as a learning problem and apply some
In return, they are in general able to achieve somewtatisting Al technique to optimize overall system perfor-
better one- and two-hop lookup performance than Epiance by tuning system parameters at runtime depending
Chord, which also often achievé3(1)-hop lookups, but on the operating conditions and constraints (i.e., amount
only in an incidental andaissez fairemanner and at a of lookup traffic and available background bandwidth).
somewhat lower cost.

To the best of our knowledge, only Chord [20] has a VIIl. CONCLUSION
strong stabilization algorithm that will provably fix loopy

. : . . : Our goal in this work is not to design the perfect DHT.
network configurations and their stabilization algonthrp 9 o R 9 P)
. . . . nstead, our objectives are: (i) to explore the effectigsne
is specific to their lookup algorithm and cannot be ap-

: . : of our new technique, where we combine parallel queries
plied generally to other DHT routing algorithms. Our . . q para’iel querl

. o . . Wwith a reactive cache management strategy, in allowing
token-passingtabilization mechanism can be applied to

any DHT that has a circular address space. Us to move f_ror_n ar(log n) —state—per—n(_)de DH_T topo_l_—
ogy to an unlimited-state-per-node architecture; anddii)

understand the trade-offs within the unlimited-state-per
VII. FUTURE WORK node DHT design space.

Instead of limiting the number of concurrent queries Proximity routing has been shown to be effective in re-
that we allow a lookup to have in parallel at any instant iducing DHT routing latency [14]. Although we do not
time top, it might be desirable to let the number of concurtrack latency information or actively decide on which
rent queries be,,..(> p) if the number of nodes in the nodes to query based on proximity, our parallel asyn-
network is large and the node caches are relatively sparseronous lookup approach in fact exploits proximity indi-
since under such circumstances, the iniiahodes are rectly. The key observation here is that the final sequence
separated from the node correspondingatdy many in- of lookups that returns the correct answer first in our
termediate nodes. Having more concurrent quesijgs, asynchronous parallel lookup algorithm is approximately
improves lookup latency and allows the querying node &muivalent to a proximity-optimized lookup sequence for
learn about more nodes, thereby improving the quality tife corresponding sequential lookup algorithm.

16

Our parallel lookup algorithm is simple and effective[10] Frans Kaashoek and David Karger, “Koorde: A simple degr
and our reactive approach to routing state maintenance optimal distributed hash table,” Rroceedings of the 2nd Inter-
allows our DHT to adapt naturally to a range of lookup
workloads. We have quantified the pen‘ormance—co&tl

)]
trade-offs for our lookup algorithm and showed that we
can reduce both lookup latencies and path lengths by a
factor of 3 by issuing only 3 queries asynchronously in
parallel per lookup and that the number of messages thus

.. I[12]
generated is in general no more than that for the corré-
sponding sequential Chord lookup algorithm, and at most
up to 50% more under high churn rates.

(13]
ACKNOWLEDGMENTS

The authors wish to thank Dina Katabi and John Wro-
clawski for useful discussions in the early stages of this]
work and Steve Bauer for his helpful comments on the
initial draft of this paper. This research was supported by
the NSF under Grant No. ANI-0082503 and Cooperati\f%]
Agreement ANI-0225660.

(1]

(2]

(3]

[4] Antony Rowstron and Peter Druschel,

[5]

[6]

[7]

(8]

9]

REFERENCES

Sylvia Ratnasamy, Paul Francis, Mark Handley, RichastK
and Scott Shenker, “A scalable content-addressable nletwor
Proceedings of the 2001 ACM SIGCOMM Conferensegust
2001.

lon Stoica, Robert Morris, David Karger, Frans Kaashashd
Hari Balakrishnan, “Chord: A scalable Peer-To-Peer looseip
vice for internet applications,” iProceedings of the 2001 ACM
SIGCOMM ConferenceAugust 2001, pp. 149-160.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestiy
infrastructure for fault-tolerant wide-area location aodting,”
Tech. Rep. UCB/CSD-01-1141, UC Berkeley, April 2001.
“Pastry: Scalable,
distributed object location and routing for large-scalergte-

peer systems,” irProceedings of the 18th IFIP/ACM Inter- [19]
national Conference on Distributed Systems Platforms ¢i\éid
ware 2001) November 2001.

Dahlia Malkhi, Moni Naor, and David Ratajczak, “Vicerop
scalable and dynamic emulation of the butterfly,Piroceedings
of 21st ACM Symposium on Principles of Distributed Computin
(PODC’02), July 2002. [21]
P. Maymounkov and D. Mazieres, “Kademlia: A peer-toipee
information system based on the xor metric,”Rroceedings of

the 1st International Workshop on Peer-to-Peer SystemBR&

'02), March 2002. 22]
Gurmeet Manku, Mayank Bawa, and Prabhakar Raghava[n,
“Symphony: Distributed hashing in a small world,” Broceed-

ings of 4th USENIX Symposium on Internet Technologies a[%%]
SystemsMarch 2003.

Gurmeet Singh Manku, “Routing networks for distributeash
tables,” inProceedings of the 22nd ACM Symposium on Prin-
ciples of Distributed Computing (PODC 2003oston, Mas- [24]
sachusetts, July 2003, ACM.

Indranil Gupta, Ken Birman, Prakash Linga, Al Demersdan
Robbert van Renesse, “Kelips: Building an efficient and lstab[25]
P2P DHT through increased memory and background overhead,”
in Proceedings of the 2nd International Workshop on Peer-to-
Peer Systems (IPTPS 'Q3)ebruary 2003.

(16]

(17]

(18]

(20]

national Workshop on Peer-to-Peer Systems (IPTPS ©&)ru-
ary 2003.

Nicholas J. A. Harvey, Michael B. Jones, Stefan Sarblarvin
Theimer, and Alec Wolman, “Skipnet: A scalable overlay net-
work with practical locality properties,” ifProceedings of the
Fourth USENIX Symposium on Internet Technologies and Sys-
tems (USITS '03)March 2003.

Alper Mizrak, Yuchung Cheng, Vineet Kumar, and StefavS

age, “Structured superpeers: Leveraging heterogeneipydo

vide constant-time lookup,” ifProceedings of the 4th IEEE
Workshop on Internet Applicationdune 2003.

Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigueskffi-

cient routing for peer-to-peer overlays,” Rroceedings of the

1st Symposium on Networked Systems Design and Implementa-
tion (NSDI 2004) March 2004, pp. 113-126.

K. Gummadi, G. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica, “The impact of DHT routing geom-
etry on resilience and proximity,” iProceedings of the 2003
ACM SIGCOMM Conferenc@003, pp. 381-394.

Russ Cox, Frank Dabek, Frans Kaashoek, Jinyang Li, aieR
Morris, “Practical, distributed network coordinates,” Rro-
ceedings of the Second Workshop on Hot Topics in Networks
(HotNets-IlI) Cambridge, Massachusetts, November 2003, ACM
SIGCOMM.

T. Ng and H. Zhang, “Towards global network positionfng
Proceedings of IEEE Infocom '0dune 2002.

John Kubiatowicz, David Bindel, Yan Chen, Patrick Bgtben-

nis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-
erspoon, Westly Weimer, Christopher Wells, and Ben Zhao,
“Oceanstore: An architecture for global-scale persisttorage,”

in Proceedings of ACM ASPLOACM, November 2000.

Frank Dabek, Jinyang Li, Emil Sit, James Robertson, k&ng
Kaashoek, and Robert Morris, “Designing a DHT for low la-
tency and high throughput,” iRroceedings of the 1st Symposium
on Networked Systems Design and Implementation (NSDI 2004)
March 2004, pp. 85-98.

FIPS 180-1, “Secure hash standard,” Tech. Rep., US ifrapat

of Commerce/NIST, April 1995.

lon Stoica, Robert Morris, David Liben-Nowell, Davidakger,

M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for intémaqe
plications,” Tech. Rep., MIT LCS, 2002.

Stefan Saroiu, P. Krishna Gummadi, and Steven D. GeibtA
measurement study of peer-to-peer file sharing systems,” in
Proceedings of Multimedia Computing and Networking 2002
(MMCN ’'02), San Jose, CA, USA, January 2002.
ssfnet.org, “Scalable simulation
http://www.ssfnet.org.

Jinyang Li, Jeremy Stribling, Robert Morris, M. Frana&shoek,
and Thomer M. Gil, “DHT routing tradeoffs in network with
churn,” in Proceedings of the 3rd International Workshop on
Peer-to-Peer Systems (IPTPS '0Bgbruary 2004.

Li Zhuang and Feng Zhou, “Understanding Chord perfor-
mance and topology-aware overlay construction for Chord,”
2003, http://www.cs.berkeley.edu/"zf/papers/chpedf.pdf.

Mor Harchol-Balter, Tom Leighton, and Daniel Lewin, &R
source discovery in distributed networks,” Pmoceedings of the
18th annual ACM Symposium on Principles of Distributed Com-
puting (PODC 1999)1999, pp. 229-237, ACM Press.

framework,”

17

APPENDIX y, Sty € (z+2% 2+ 211, The rangdx +2¢, x + 2¢1)
A. Pseudocode for Basic Lookup Algorithm is the size of one bucket in's cache. This means that
Let tried_set= set of nodes that have already been probed (initially e)nﬁ{\{/e have at Ieasj entries in the bucket and hence we can

pending_set= set of queries that are currently pending (initially empgertainly find node: s.t.z € (x + 2i, T + 2”‘1).
answer= final answer for this query (initially.ul1)

best_predecessor= best known predecessor @f probed J entries
best_successor= best successor heard from farprobed " 42 x4 28
L | | | - = | . .
/I To start the successor node for the identifiér e ‘ 5 ‘ T ‘ il
findSuccessotid) z+1 T +2 z+2
/I Gets from cache the best known successaéd of =Y
Il excluding entries already found tmied_set. . .
try_entry < cachegetNex(id, tried_set); Fig. 31. Analysis of expected worst-case lookup perforreanc
sendQuery(id, try_entry); . . .
for ¢ — Ouptop— 1 Sincey € (z+2°, 2 +21), so we know thafr — y| <
Z Gets Lf_om Catche thle b?f Fno‘/‘é”ﬁ:?fzdeiessmm 27t1 but because € (z + 2°,z + 271), we know that
excluaing entries alrea oun ed_set. . . .
try_entry 3 Cachegetpre\éd, t,ied_éet); |z—y| < 2°. Hence, in each lookup step, even if the actual
if try_entry# null distance to the destinatiad is not reduced, the maximum
sendQueryid, try-entry); possible distance is steadily reduced by at least a factor of
/1 To send a query to nodeto look up identifierid. two even in the worst case. This implies that lookups can
Send/?gg:\)((jlsd’andDP packet to nodeto lookup identifierid, be made irO(log n) hOpS in the worst case.
// with information on the nodes currently being probed. The bound derived from the above analysis is very loose
/S/esndt'-OOEUPMetS?aGQddgy pending_set) because it is based only on the assumption that there is at
els a timeout 1or node. . . .
setTimeou(n) least one other entry in the same bucket as the destination
tried set.add(n) node. Since we have at legsentries in the bucket, we
pending_set.add(n) can clearly do significantly better. Under the assumption
/I This function is called when nodereceives a reply. thatz, y and allj entries in thegz + 2¢, z + 2+1) bucket
receiveReply(n, success, reply_set) ; ; fotr
1 Add 2l the entrios recened fromto the cache. ar_e independent and unlforml_y_ distributed, we can show
cacheaddEntries(reply_set) with some elementary probability that:
pending_set.remove(n)
if n.id € (owner.id,best_successor) E(|l’ _ y|)
best_successor < n - 77 =] 4+ —
if success = true E(Iz—y|) J +3
answer « reply_set.getAnswer();
/I return answer to the query. Proof:
lookup_succes&nswer);
else (1 e —y) i
. y)y fx<y
dM ; . : .
sendMoreQueries) Pr(min > ylz) = (1 —2y) fy<z<l-—y
/I This function is called if a timeout occurs for the quenntaen. (a: - y)J ifl—y<uzx
timeout(n)
pending_set.remove(n) If 2 is uniformly distributed,
sendMoreQuerieg);

1
/I This function is called to send out more concurrent rienecessary. . .
sendMoreQuerieg); " g Pr(min > y) = / Pr(min > y|z)p(z)dz
/I Gets from cache the nodey_entry which closest tad 0
/' such thattry_entry.id € (best_predecessor,best_successor),
/I excluding entries already found tmied_set.
while (|pending_set| < pmaz) /\ (try_entry## null)
if try_entry.id € (owner.id, id)
best_predecessor < try_entry
sendQuery(id, try_entry) If y< 0.5,
try_entry « cachegetBestEntry(id, tried_set);

1
/ Pr(min > y|x)dz, sincep(z) =1
0

if |pending_set| = 0 . Y) 1—-y)
Il return lookup failure. Pr(min >y) = / (1—-2z—y)dzx+ / (1-2y)dz
lookup_failure (); 0 . y
+ / (x —y)dx
1—y
B. Analysis of Expected Worst-Case Lookup Performance _ [._1 1 y)j+1:| Y + [— 2] 1-y
To analyze the expected worst-case lookup perfor- j+1 0 Y

mance, we consider the following scenario. Suppose we n 1 (2 —) !
are at a node witlid x and we are trying to resolve &ad j+1 Y 1y

-1 , .
= jF1 (1= 2y)"*" = (1 = y)]
+H(1—y) —y) (1 —2y)
1 ; .
—— [(1 —y)ITt — (1 —29)7 Tt
o [(1-y) (1-2y)"]
2))
= 71 (1 =yl ™ — (1 —2y) "]
+(1 = 2y)7 Tt
2 R .
= ——(1—y)tt (1 —2y)t
j+1(y) +j+1(y)
If y > 0.5,
1—y] 1
Pr(min >vy) = / (1—x—y)‘7dar—|—/ (x —y)dx
0 y
-1 11 1=y
— _ _ _ J
[jJrl(l z—y) L
1 1
_ o)Jt1
i [j+1(x 2 L
2 _
= jﬁ(l—y)ﬁl
Pr(min <y) = 1— Pr(min>y)
2(1 —y)
= p(min) = +2(j —1)(1—2y)/, ify<05
2(1 —)7, if y > 0.5
1
E(min) = /0 yp(y)dy

1
= / 2y(1 —y)’dy
0

0.5
+A 2(j — 1)y(1 - 29)dy

2 "k
- -]
{J+1 0

+ ._1_]+d
/oJ+1(y) " dy

j—1 705
— |5y - 2y>3+1}
[J +1 0

0.5 -
-1 ‘
+ / 1= (1 -2y tiay
0

7+1
_ 2 B 2]’
- {<j+1><j+2)(1 WL
_[g1 (1_2)‘j+2}0.5
2+ 0G+2) 7,

2 A

G+DE+2) 20+ +2)
j+3

20 +1)(+2)

If we now consider the original scenario, wheye: €

18

(z + 28, 2 + 2iT1), by the fact that the nodgls are uni-

formly distributed,

E(jz —yl)

E(|z —yl)
E(x —yl)

9i 4 i+l
2
9i-1 4 gi
J+3 i
20 +1)(+2)
3+ 1) +2)

E(lz—yl)

Jj+3

6
35+ ——
I iEs

