
1

EpiChord: Parallelizing the Chord Lookup Algorithm with
Reactive Routing State Management

Technical Report MIT-LCS-TR-963

Ben Leong
benleong@mit.edu

Barbara Liskov
liskov@csail.mit.edu

Erik D. Demaine
edemaine@mit.edu

Abstract— EpiChord is a DHT lookup algorithm that
demonstrates that we can remove theO(log n)-state-per-
node restriction on existing DHT topologies to achieve sig-
nificantly better lookup performance and resilience using
a novel reactive routing state maintenance strategy that
amortizes network maintenance costs into existing lookups
and by issuing parallel queries. Our technique allows us to
design a new class of unlimited-state-per-node DHTs that is
able to adapt naturally to a wide range of lookup workloads.
EpiChord is able to achieveO(1)-hop lookup performance
under lookup-intensive workloads, and at leastO(log n)-
hop lookup performance under churn-intensive workloads
even in the worst case (though it is expected to perform bet-
ter on average).

Our reactive routing state maintenance strategy allows
us to maintain large amounts of routing state with only a
modest amount of bandwidth, while parallel queries serve
to reduce lookup latency and allow us to avoid costly lookup
timeouts. In general, EpiChord exploits the information
gleaned from observing lookup traffic to improve lookup
performance, and only sends network probes when nec-
essary. Nodes populate their caches mainly from observ-
ing network traffic, and cache entries are flushed from the
cache after a fixed lifetime.

Our simulations show that with our approach can reduce
both lookup latencies and path lengths by a factor of 3 by is-
suing only 3 queries asynchronously in parallel per lookup.
Furthermore, we show that we are able to achieve this result
with minimal additional communication overhead and the
number of messages generated per lookup is no more than
that for the corresponding sequential Chord lookup algo-
rithm over a range of lookup workloads. We also present a
novel token-passing stabilization scheme that automatically
detects and repairs global routing inconsistencies.

I. INTRODUCTION

In recent years, more than a dozen DHT lookup al-
gorithms and routing topologies have been proposed [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13] .
DHTs are important to distributed systems research be-
cause they offer a scalable and efficient routing and object
location platform for self-organizing peer-to-peer overlay
networks. DHTs are expected to become a fundamental

building block of future large-scale distributed systems.
While most of the initial DHT research was directed to-
wards minimizing the amount of routing state per node,
more recent research has demonstrated that it is reason-
able to attempt to store a global lookup table at every node
to achieve one-hop lookup, when network churn is rela-
tively low or if enough bandwidth is available, since local
storage is relatively cheap [13].

The DHT designs and the various DHT-related tech-
niques that have been proposed, e.g., proximity neighbor
selection [14], synthetic coordinates [15], [16], erasure
coding [17] and integrated P2P transport protocol [18],
essentially allow us to trade off different amounts of stor-
age and background maintenance bandwidth for better or
worse lookup performance in a variety of ways. In this pa-
per, we describe EpiChord, a DHT that demonstrates that
we can remove the state storage restriction onO(log n)-
state DHTs1 to achieve better lookup performance using
a novel reactive routing state maintenance strategy and by
issuing multiple queries asynchronously in parallel. Our
technique allows us to design a new class of unlimited-
state-per-node DHTs that is able to adapt naturally to
a wide range of lookup workloads. EpiChord is able
to achieveO(1)-hop lookup performance under lookup-
intensive workloads, and at leastO(log n)-hop lookup
performance under churn-intensive workloads even in the
worst case, though it is expected to perform better on av-
erage.

While existing DHTs tend to decouple the lookup pro-
cess from routing state maintenance and adopt a proactive
routing state management strategy where nodes probe all
(or at least most of) their routing entries periodically to en-
sure that they are alive, EpiChord employs areactiverout-
ing state management strategy where routing state main-
tenance costs are amortized into the lookup costs. Nodes
rely mainly on observing lookup traffic and on piggyback-

1It is known that limiting the amount of state stored per node to
O(log n) limits the average lookup path length to no better than
O(log n/ log log n) hops per lookup. Koorde [10] achieves this
O(log n/ log log n)-hop lower bound.

2

ing additional network information on query replies to
keep their routing state up-to-date under reasonable traf-
fic conditions. EpiChord only sends probes as a backup
mechanism if lookup traffic levels are too low to support
the desired level of performance.

Our reactive routing state maintenance strategy does
not keep routing state quite as up-to-date as a proactive
strategy, and therefore we use parallel lookups to amelio-
rate the costs of keeping outdated routing state. In par-
ticular, there is a synergistic relationship between large
(> O(log n)) state and parallel lookups in our approach:
while parallel queries allow us to avoid lookup timeouts
due to stale routing entries, we can afford to issue parallel
queries without generating excessive amounts of lookup
traffic only because our large routing state reduces the
number of hops per lookup and thereby the number of
lookup messages.

Although one might expect a parallel lookup algorithm
to generate significantly more lookup traffic and thereby
consume significantly more network bandwidth, we show
that we are able in practice to achieve significantly better
lookup performance on average (both in terms of lookup
path length and latency) than that for the correspond-
ing sequential Chord lookup algorithm with comparable
amounts of lookup traffic.

Our goal in this work is not to design the perfect DHT.
Rather, our main objective is to explore and quantify the
performance-cost trade-offs in moving from anO(log n)-
state-per-node DHT topology to an unlimited-state-per-
node architecture, by adopting a reactive routing state
management strategy and using parallel queries. Conse-
quently, we compare EpiChord to the optimal2 sequential
Chord lookup algorithm. Our parallel lookup algorithm is
simple and effective, and our reactive approach to routing
state maintenance allows our DHT to adapt naturally to a
range of lookup workloads.

II. OVERVIEW

Like Chord [2], EpiChord is organized as a one-
dimensional circular address space where each node is
assigned a unique node identifier (id). As shown in Fig-
ure 1, the node responsible for a key is the node whoseid

most closely follows the key, which we also call thesuc-
cessor3. We use the cryptographic hash function SHA-1

2By optimal, we mean that we ignore Chord maintenance costs and
assume that the finger tables of the Chord nodes have perfectly accu-
rate finger entries at all times regardless of node failures.The compet-
ing sequential lookup algorithm is thus a reasonably strongadversary
and not just a straw man.

3The choice of which node to be responsible for a key is somewhat
arbitrary. We could have decided to map a key to the node whoseid

[19] to determine the nodeid of a new node. SHA-1 en-
sures that with high probability, the nodeids do not col-
lide (when the address space is sufficiently large, i.e. 128
bits) and are uniformly distributed over the entire circular
id address space.

K12

K20

K27

K50

N28

N15

K2
N58

N55

N53

N60

N9

N5

N3N1N0

N49

N44

N47

N42
N39

N35 N32

N19

N17

Fig. 1. Circular identifier address space with twenty nodes and five
keys.

A. Basic Lookup Algorithm

To look up a givenid, nodex initiatesp queries in par-
allel to the node immediately succeedingid and to the
p − 1 nodes precedingid, within the set of nodes known
to it (see Figure 2). Probing the succeeding node gives us
a chance of locating the destination node in one hop.

x

id

1 entry
p− 1 entries

increasing
id cache entry

Fig. 2. Initial cache entries returned from cache for nodex for a
lookup ofid.

We adopt two simple policies to learn new routing en-
tries. (i) When a node first joins the network, it obtains a
full cache transfer from one of its two immediate neigh-
bors. (ii) Nodes gather information by observing lookup
traffic: a node updates its cache based on information re-
turned by queries and adds an entry to the cache each time
it is queried by a node not already in the cache.

When contacted, a probed node will respond tox as
follows:
• If it owns id, it will simply say so and respond with

the value associated withid (if one exists) and infor-
mation about its current immediate predecessor.

most closely precedes the key, i.e. thepredecessor, or the node that has
theid closest to the key [4], [6], and our algorithm can still be applied
with minor modifications.

3

• If it is a predecessor ofid relative tox, it will provide
information about its immediate successor and thel

“best” next hops to the destinationid from its cache4.
• If it is a successor ofid relative tox, it will provide

information about its immediate predecessor and the
l “best” next hops from its cache.

Here,l, like p, is a system parameter. We call an EpiChord
network where there are at mostp concurrent queries per
lookup ap-wayEpiChord.

When these replies are received, further queries will be
dispatched asynchronously in parallel ifx learns about
nodes that are closer to the targetid than the best suc-
cessor and predecessor nodes that have already responded.
An example of a lookup for the network shown in Figure 1
is given in Figure 3. In this example,p = 3, l = 3 and
nodeN32 makes a lookup for the keyK2. Note that when
the lookup terminates,N32 would have learned about all
the consecutive nodes in the range fromN60 to N9. The
simplified pseudocode for the lookup algorithm (which is
implemented with callbacks and continuations) is given in
Appendix A.

There are several reasons why queried nodes respond
with information about their successors or predecessors.
Firstly, this allows us to check for termination5. Secondly,
since successors and predecessors are probed relatively
more frequently than other cache entries, they are likely
to be alive and hence with high probability, the querying
node will make at least one step of progress towards the
targetid with each query. Lastly, even if nodes have an
outdated view of the segment of theid space that they are
responsible for, the querying node will be able to detect
such a situation and resolve a lookup correctly. For ex-
ample, an inconsistency can arise if the predecessor of a
given nodey is responsible for a queriedid and it fails
without informing y. Nodey would not know that it is
now responsible forid.

Our lookup algorithm is intrinsically iterative. The
main reason for this is that an iterative approach allows us
to avoid sending redundant queries. If we employ paral-
lel queries in a recursive lookup, nodes at the subsequent
hops would not know when other nodes respond to the
original node that issued the lookup, and hence which new
nodesnot to query. In general, such an approach is likely

4Correspondingly, thel “best” next hops are the node immediately
succeedingid and to thel − 1 nodes precedingid.

5In general, we can terminate aget() lookup operation and return
when the targetid falls between a responding node and its successor
or predecessor or whenever a node returns the requested object. How-
ever, if the node failure rate is high, we may choose to terminate a
put() lookup operation only after both the best predecessor and best
successor respond and we check that they are consistent (i.e., that think
that they are adjacent to each other in the address space).

to require2p × h messages (including both queries and
responses) per lookup, wherep is the number of parallel
queries per hop andh is the number of hops. With an it-
erative approach, we usually require only about2(p + h)
messages per lookup.

B. Reactive Cache Management

Each cache entry has an associated time. When a node
receives a query or reply, it adds an entry for the sender if
it is not already in the cache and sets (or resets) the time
of the entry associated with the sender to that of its local
clock. Query responses contain alifetime for each entry,
equal to the sender’s clock at the time of the send minus
the node entry’s time in the sender’s cache, and this in-
formation is used to set or reset the time in the receiver’s
cache for that node. Node entries are flushed if their asso-
ciated nodes do not respond to some number of queries or
when their lifetime exceeds some limit,τ .

x

increasing
id cache entry

Fig. 4. Division of address space into exponentially smaller slices
with respect to nodex.

Like Chord, the correctness of the lookup algorithm is
guaranteed because a query can always reach the destina-
tion id by moving sequentially down the successor lists.
In general,O(log n)-hop DHT routing schemes have a
predefined set ofO(log n) fingers and provide guarantees
on lookup performance by ensuring that a node knows
about some nodes in the vicinity of each finger. EpiChord
divides the address space into two symmetric6 sets of ex-
ponentially smaller slices as shown in Figure 4. For per-
formance guarantees, a node enforces the following in-
variant:

Cache Invariant: Every slice contains at least
j

1−γ̂
cache entries at all times.

whereγ̂ is a local estimate of the probability that a cache
entry is out-of-date (i.e., that the associated node had

6In contrast to the asymmetric Chord finger table, the division of the
address space into slices is symmetric by design. The key idea is that
when nodex responds to nodey, they will each know that each other is
alive, and if the node entry fory helpsx to satisfies its cache invariant
for a particular slice, we want the node entry forx to also be useful in
satisfying the invariant for a corresponding slice iny’s cache.

4

Node Initial cache contents
N32 · · · , N55, N60, N0, N9, N17, · · ·
N60 · · · , N0, N1, N3, N9, N15, · · ·
N0 · · · , N60, N1, N3, N8, N15 · · ·
N1 · · · , N0, N3, N8, N9, N15 · · ·
N3 · · · , N0, N1, N8, N9, N17 · · ·
N8 · · · , N0, N1, N3, N9, N15 · · ·
N9 · · · , N55, N1, N3, N8, N15 · · ·

Time Action by N32 Pending Best Best Comment
Queries Predecessor Successor

t = 0 Send queries toN60, N0, N9 N60, N0, N9 N32 N32 sendp queries
t = 1 Reply fromN60 – {N0, N1, N3} N0, N9 N60 N32
t = 2 Send query toN1 N0, N1, N9 N60 N32
t = 3 Reply fromN9 – {N8, N55, N1, N3} N0, N1 N60 N9 N55 ignored becauseN60 responded
t = 4 Send query toN3 N0, N1, N3 N60 N9
t = 5 Reply fromN0 – {N60, N1, N3} N1, N3 N0 N9
t = 6 Send query toN8 N1, N3, N8 N60 N9
t = 7 Reply fromN8 – {N0, N1, N3} N1, N3 N0 N8
t = 8 Reply fromN3 – found keyK2! N1 N0 N3 lookup returns
t = 9 Reply fromN1 – {N0, N1, N3} - N1 N3 lookup terminates

Fig. 3. Example of a lookup for the network shown in Figure 1. In this example,p = 3, l = 2 and nodeN32 makes a lookup for the keyK2.

failed). A node checks its cache slices periodically and
ensures that there are sufficient unexpired cache entries
in each slice. Should a slice be found not to have suffi-
cient unexpired cache entries, a node makes a lookup to
the midpoint of that slice. Sincej is small (e.g. 2), one
lookup is usually all it takes to satisfy the cache invariant.

The key idea is that to provide anO(log n)-hop guar-
antee on the lookup path length, the density of entries per
slice must increase exponentially as we get nearer to the
node’sid. EpiChord estimates the number of slices from
its k successors andk predecessors: it requires that the
successor and predecessor lists fall into the two adjacent
slices closest to the reference node. This implies that we
need to choosej andk such thatk ≥ 2j.

To estimateγ, the probability that a given cache entry
is stale, each node tracks two variables:
• np, the number of nodes probed
• nt, the number of probed nodes that timed out

We estimateγ with:

γ̂ =
nt

np

(1)

In addition, we multiplynp and nt by δγ periodically
(i.e., when the cache is flushed) to obtain exponentially
weighted moving averages for both estimates. We weight
the raw values instead of periodically computed ratios be-
cause huge errors can be introduced in the estimates when
the frequency of computation is high and insufficient sam-
ples are accumulated between computations. In our im-
plementation, we setδγ = 0.5 and we observe experi-

mentally that we can obtain relatively good estimates (to
within 25% of the true value) in the steady state with our
experimental parameters.

C. Stabilization

When multiple nodes attempt to join the Chord ring at
approximately the same location, temporary inconsisten-
cies may arise in the address space. Also, as nodes fail and
leave the network unannounced, segments of the address
space may become orphaned (i.e., none of the nodes know
that they are responsible for them). We run a weak stabi-
lization protocol periodically to fix local inconsistencies
in the address space and a strong stabilization protocol to
detect and fix global inconsistencies.

Definition 1: We say that the network is (i)
weakly stableif, for all nodes u, we have
predecessor(successor(u)) = u; (ii) strongly
stableif, in addition, for each nodeu, there is no
nodev such thatu < v < successor(u); and
(iii) loopy if it is weakly but not strongly stable
(see [20]).

1) Weak Stabilization Protocol:All messages contain
the IP address, port number andid of the sender. So un-
like Chord, there is no longer a need for a node to explic-
itly notify its successor that it is the new predecessor after
it joins the network. When it contacts the successor to ini-
tiate a cache transfer, the successor would realize that the
new node has joined the network and update its predeces-
sor pointer accordingly.

5

In addition, nodes periodically probe their immediate
neighbors to check if they are still alive. When probed,
a node will either (i) send a short reply message with its
current predecessor and successor or (ii) send a complete
list of its immediate neighborhood (k predecessors andk
successors) if a change was detected withink hops of the
probing node.

Each node is responsible for finding and maintaining its
own successor and predecessor. When a node hears from
another node whose id is closer than its current predeces-
sor and successor, the new node is automatically set as
the predecessor or successor accordingly. If a node learns
about a node that could possibly be its new predecessor or
successor indirectly from another node (or by observing
lookup traffic), the node will probe this new node and set
it as the predecessor or successor only if it receives a pos-
itive response on the probe. Periodically, each node will
probe its perceived successor and predecessor (which may
not be correct) to learn about the nodes’ neighborhoods.
In this way, a node is eventually guaranteed to discover a
better predecessor or successor in the vicinity of itsid, if
one exists.

Theorem 1: The weak stabilization protocol
will eventually cause an EpiChord network to
converge to aweakly stablestate.

To prove this theorem, we observe that each node has
only a finite number of possibilities (exactlyn − 1) for
its predecessor and successor. For a nodeu such that
predecessor(successor(u)) 6= u, u would eventually
probe its successor and both would update their predeces-
sor and successor pointers accordingly. Each predeces-
sor/successor update event monotonically improves the
consistency of the address space, i.e., a node only adopts a
new predecessor or successor if it is strictly better than its
previous successor. Therefore, the address space pointers
will eventually converge to aweakly stablestate, which is
the only state where updates will no longer happen.

2) Strong Stabilization Protocol: Although, it is in
generally highly improbable that a network will end up
loopy (except perhaps after a network partition), for com-
pleteness, it is still desirable to have a scheme that will
detect and fix global inconsistencies in the address space.
Our strong stabilization algorithm is based on a very sim-
ple idea: to detect loops, all we need to do is to traverse the
entire ring and make sure that we come back to where we
started. Figure 5 shows graphical example of a loopy, but
locally consistent address space. In this example, noden

forwards a packet containing its identifier along the ring.
When the packet reaches nodem, m realizes thatn exists
and initiates the weak stabilization protocol withn to re-
pair the address space. A naive scheme to pass a single

token along the ring will take a long time and is relatively
inefficient, so instead, we implement a parallelized token-
passing scheme.

n

m

Fig. 5. An example of a loopy address space configuration. The
arrows indicate the direction of the successor pointers.

As loopy configurations are expected to be rare, strong
stabilization needs to be performed only infrequently. The
key idea in our strong stabilization protocol is to generate
and passq tokens (which are simply messages) along the
ring using only the successor pointers. In our protocol,
immediately after a node sees a stabilization token (or im-
mediately after it joins the network), it will pick a random
waiting period from the interval(tmin, tmax) after which
it will initiate strong stabilization. If a node sees a token
before its timer runs out, it will reset its timer and choose
again. In this way, we can control the number of concur-
rent tokens that are passed in the ring at any given instant
in time in a distributed fashion.

To initiate the strong stabilization process:

• a nodex (with identifiernx) picksq nodes with iden-
tifiers n1, n2, · · · , nq, distributed approximately uni-
formly in the address space, from its cache, whereq

is the degree of parallelization andnx < n1 < n2 <

· · · < nq.
• x sends nodenq a token withnx (itself) marked as

the destination.
• x then proceeds to send nodeni a token withni+1

marked as the destination, fori = q − 1, · · · , 1 in
order. If a given nodenj is found to have failed,
another node in its vicinity is chosen instead.

• finally, x generates a token with destinationn1 and
passes it to its successor.

This is illustrated in Figure 6.
When a node receives a token, it passes the token to its

successor. A token is destroyed when it reaches a node
with an identifier greater or equal to its intended destina-
tion (modulo the circular address space). When a token is
destroyed, one of two possibilities can occur:

1) the segment of the address space traversed by the
token is not loopy, in which case, the token either

6

nx

n1

n2

nq

nq−1

nq−2

1

2

3

q − 1

q − 2

q

Fig. 6. Example on the generation ofq stabilization tokens.

ends up at its intended destination or its successor
(if the destination node failed at the meantime) and
nothing happens. All the nodes in the path of the
token would however have learned about the desti-
nation node.

2) the segment of the address space traversed by the
token is loopy and the token does not end up at the
intended destination. Again, however, the nodes in
the path of the token would have learned about the
destination node and as a result, two of the nodes
on the alternate segment in the vicinity of the desti-
nation node would start to probe for the destination
node because of weak stabilization and the loop will
eventually be eliminated.

If the network is large,n
q

is large and it will still take
a long time (and many hops per token) to complete one
round of token-passing. To avoid this problem, nodes
generate secondary tokens. For example, nodey with
identifier ny receives a token destined fornz. Instead of
just passing the token to its successor, a node can also
chooseq nodes with identifiersn1, n2, · · · , nq such that
ny < n1 < n2 < · · · < nq < nz and generate the
correspondingq tokens. With this recursive process, each
token-passing round can be completed inO(log n) time.

Theorem 2: The combination of our recursive
parallel token-passing algorithm with the weak
stabilization protocol will cause an EpiChord
network to converge to astrongly stablestate
after at mostO(n2) rounds of token-passing.

There are two key intuitions behind the correctness of this
theorem. First, if the network is loopy, the token-passing
algorithm will cause at least one pair of nodes to detect
an inconsistency. Next, whenever such an inconsistency
is detected, the pair of nodes that detect the inconsistency
will update each other and strictly improve the state of the
network. Since each node in the network has one correct
successor and the only stable state is when the network is
no longer loopy, we conclude that the network must even-
tually become strongly stable. The bound is obtained from

observing that each node has onlyn possible choices for
its successor. Since each round of token-passing updates
at least one node, we know that it will take at mostO(n2)
rounds to update the successor (and predecessor) pointers
to the correct values.

To see that the token-passing algorithm will allow at
least one pair of nodes to detect an inconsistency, consider
a network that is weakly stable, i.e., if we followed the
successor pointers we would eventually end up where we
started. Suppose we chooser nodes arbitrarily suchn1 <

n2 < · · · < nr. Take a node, saynx and follow the
successor pointers. Repeat this process for all nodes. If
the network is not loopy, it is clear that the nodeids would
increase monotonically (modulo the address space) until
we reach nodenx+1; If the network is loopy, for at least
one nodeny, we would eventually reach a nodenz such
that ny < ny+1 < nz (modulo the address space). The
key is to recognize that the net effect of our secondary
token generation mechanism is to choose theser nodes
recursively.

Intuitively, it is quite easy to see that if we choose a set
of r nodes in the ring and have them forward messages
to adjacent nodes in this set along the ring, we can detect
inconsistencies. What is interesting about our algorithm is
that we have demonstrated that we can choose this set of
r nodes recursively in a distributed way and still preserve
the correctness of this approach.

III. A NALYSIS

A. Worst-Case Lookup Performance

If we assume a uniformly distributed workload, we can
show that the worst-case lookup performance isO(log n)
hops. In addition, the expected worst-case lookup path
length is at most12 logα n, whereα = 3j + 6

j+3 . Here,n
is the size of the network, andj is the minimum number
of cache entries per slice (see Appendix B). Whenj = 1,
we get the same expected worst-case result as Chord does.
However, forj ≥ 2, we tend to do much better: forj = 2,
α = 7.2 and the EpiChord expected lookup path lengths

are at most only
1

2
log2 n

1

2
logα n

= logα 2 ≈ 1
3 of that for Chord7.

Our analysis implicitly assumes that the queries in each
hop are synchronized. Because our lookup algorithm is
asynchronous, actual lookup path lengths will tend to be
slightly larger.

B. Reduction in Background Probes

EpiChord exploits information gleaned from observing
lookup traffic to improve lookup performance, and only

7The expected lookup path length for Chord is1

2
log2 n [20].

7

sends network probes when necessary. To see the band-
width savings with our approach, we consider a network
with a steady state size of 20,000 nodes and nodes that
have an median lifespan of 60 minutes8. This translates to
a node failure rate of approximately 0.03% (or 5 nodes)
per second. Assuming that the application-level lookup
traffic received by a node is approximately uniformly dis-
tributed (this is a reasonable assumption since nodeids
are obtained using the SHA-1 hash [19] and are thus uni-
formly distributed), the proportion of lookup traffic that
will help to satisfy the cache invariants for various val-
ues of lookup traffic andj is shown in Figure 7. With an
amount of lookup traffic approximately equal to the re-
quired background maintenance traffic (i.e.,x = 1 in Fig-
ure 7), we can achieve a 35% reduction in the background
maintenance traffic. At larger network sizes, the savings
in background maintenance traffic is reduced. However,
as shown in Figure 8, even at network sizes of 1,000,000
nodes, we can still expect a reduction of more than 25%
on average.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

j=4
j=3
j=2
j=1

P
ro

po
rt

io
n

of
ca

ch
e

in
va

ria
nt

sa
tis

fie
d

Lookup traffic relative to minimal background network maintenance traffic

Fig. 7. Effect ofj on the proportion of lookup traffic that helps to
satisfy cache invariant for 20,000-node network.

C. Cache Composition in the Steady State

The proportion of live entries9 in the cache is an im-
portant system parameter because it determines the prob-
ability of a timeout occurring during a lookup. To obtain
an estimate of the number of live entries in a cache in the
steady state, we consider a network of sizen such that in
a fixed time interval, a fractionr of the nodes in the net-
work leave, a fractionf of the cache entries are flushed

8These figures are representative of both the Napster and Gnutella
peer-to-peer file-sharing networks as reported in a measurement study
by Saroiu et al. [21].

9An entry islive if its associated node is still online. The set of cache
entries for a node will in general consist of some live entries and some
unexpired, stale entries.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

n=2,000
n=20,000

n=200,000
n=1,000,000

P
ro

po
rt

io
n

of
ca

ch
e

in
va

ria
nt

sa
tis

fie
d

Lookup traffic relative to minimal background network maintenance traffic

Fig. 8. Effect of network size (n) on the proportion of lookup traffic
that helps to satisfy cache invariant (forj = 2).

and each node makesQ lookups uniformly over theid
address space and sends outp queries in parallel for each
lookup. Wherex is the number of live nodes that is known
to a node at timet, we obtain the following relation:

d

dt
x(t) =

incoming queries
︷ ︸︸ ︷

pQ(1 − x

n
) −

entries
flushed
︷︸︸︷

fx −

nodes departed but
not flushed
︷ ︸︸ ︷

(1 − f)rx (2)

We have assumed that new knowledge comes only from
the incoming queries as a node would have to know about
a node in order to send an outgoing query to it. This is
conservative and will tend to under-estimate the increase
in x. We have also assumed that the probability that a
cache entry is flushed is independent of the probability of
failure for the associated node. The steady state solution
to x is:

lim
t→∞

x(t) =
pQ

pQ + (f + r − rf)n
n (3)

In addition, wherey is the number of stale cache entries
at timet, we have the following relation:

d

dt
y(t) =

stale entries
not flushed
︷ ︸︸ ︷

(1 − f)rx−

stale entries
flushed
︷︸︸︷

fy −

stale entries discovered by
timeouts of outgoing queries

︷ ︸︸ ︷

pQ(
y

x + y
) (4)

In a network with high churn, the proportion of stale en-
tries in the cache,γ, is a key system parameter:

γ = lim
t→∞

y

x + y
=

1

pQ
[(1 − f)rx − fy] (5)

8

If pQ ≫ rn andf = 0, thenx ≈ n andγ ≈ rn
pQ

≈ 0. This
implies that if the level of lookup traffic is high enough,
the performance of the system is somewhat independent
of the cache maintenance protocol. This agrees with our
intuition, since with a high level of lookup traffic, most
nodes will know about a large number of other nodes and
many stale cache entries would be discovered and elimi-
nated during the lookup process.

Next, we consider the case whenpQ ≪ rn. In the
steady state,

lim
t→∞

x(t) ≈ pQ

f + r − rf
(6)

By settingdy
dt

= 0 in (4), we obtain:

fy2 + [pQ + (f − r + rf)x]y − (1 − f)rx2 = 0 (7)

Substituting (6) yields:

fy2 +

[
2fpQ

f + r − rf

]

y − (1 − f)r

(f + r − rf)2
(pQ)2 = 0 (8)

⇒ y =

(√

1 +
(1 − f)r

f
− 1

)

pQ

f + r − rf
(9)

⇒ γ = lim
t→∞

y

x + y
=

√

1 + (1−f)r
f

− 1
√

1 + (1−f)r
f

(10)

If cache entries are flushed at a rate that is at least as fast
as the node failure rate, i.e.f ≈ r, then

γ =

√
2 − f − 1√

2 − f
≤ 1 − 1√

2
= 0.292 (11)

Thus, our model predicts that even when the churn rate is
high (pQ ≪ rn), at most 30% of the cache entries will be
stale (and this result is independent of the level of lookup
traffic pQ). This result was verified by our simulations.
To get a simpler close form for the expected proportion of
stale entries, letf = cr, i.e., we flush entries at a rate that
is c times faster than the node failure rate. Next, assume
thatf is small andr

f
< 1, then

γ =

√

1 + (1−f)r
f

− 1
√

1 + (1−f)r
f

(12)

≈
1 + 1

2 · r
f
− 1

1 + 1
2 · r

f

(13)

=
1

2c + 1
(14)

IV. SIMULATION RESULTS

To understand the trade-offs when we move from an
O(log n)-state-per-node DHT to an unlimited-state-per-
node DHT with the same basic routing topology, we com-
pare EpiChord to a corresponding optimal iterative Chord
network of the same size using our simulation built on
the ssfnet[22] simulation framework. We run the simu-
lations on a 10,450-node network topology organized as
25 autonomous systems, each with 13 routers and 405
end-hosts. The simulated network topology is represented
graphically in Figure 9.

Fig. 9. Simulation Network Topology.

The average roundtrip time (RTT) between nodes in the
topology is approximately 0.16 s. Hence, we set timeouts
at 0.5 s for all simulations. The cumulative distribution
of the RTTs in the simulation topology between any two
pairs of nodes is shown in Figure 10. Since all query pack-
ets are UDP-based and packets may be lost, we retransmit
twice after a timeout and will decide that a node has failed
if we do not hear from it after 3 tries.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Latency (ms)

Fig. 10. Cumulative distribution of RTTs in simulation topology.

Li et al. highlighted that the assumed workload will
affect the result of comparisons between DHTs signifi-

9

cantly [23]. They proposed two generic classes of work-
loads –lookup-intensiveand churn-intensive. Although
they did not propose exact definitions for these two classes
of workloads, we do have a very natural way of defin-
ing these two classes of workloads for EpiChord based on
our steady-state cache model. In particular, we consider a
workload to be lookup-intensive ifpQ ≫ rn, and churn-
intensive ifpQ ≪ rn.

In our simulations, we first generate a sequence of
node joins/departures and queries according to a pre-
determined set of network parameters. Subsequently, we
run the same set of traces on the EpiChord networks of
varying degrees of parallelism and on a corresponding
Chord network. This ensures that the results can be com-
pared fairly across the two algorithms without bias in the
choice of nodeids and lookupids.

A. Lookup-Intensive Workload (pQ ≫ rn)

In our lookup-intensive workload simulation, node
lifespans are exponentially distributed with a mean of
600 s. We experiment with a range of network sizes by
varying the rate of node joins from0.33 to 2 nodes per
second. Each node in the network makes on average 2
lookups per second. In steady state, the network sizes
range from 200 to 1,200 nodes and the overall system
query rate ranges from 400 to 2,400 lookups per second.
The stabilization interval is 60 s (i.e., nodes probe their
successors and predecessors once a minute) and the life-
time of a cache entry is 120 s. Since the expected back-
ground maintenance traffic is negligible compared to the
active lookup rate,Q ≈ 2 andrn ranges from0.33 to 2.
Also, r ≈ 1

600 , f ≈ 1
120 (f > r) andj = 2.

Since we are comparing EpiChord to Chord, we had
to pick an appropriate cache entry TTL to ensure that
the maximal background maintenance traffic generated by
EpiChord does not exceed that for a corresponding Chord
network. If we assume that nodes have exponentially dis-
tributed (memoryless) lifetimes with meanT , whereX

is the random variable representing the time of failure,
P (X ≤ t) is given by:

P (X ≤ t) = e−
t
T (15)

Hence, if nodes have mean lifetimes of 600 s, cache en-
tries would have to be probed at least once every 60 s to
ensure that they have a 90% probability of being valid.
It is thus reasonable to assume a periodic probe rate of
at least 60 s for a Chord network. The minimal rout-
ing set for an EpiChord network of comparable size with
j = 2 would have slightly less than 4 times as many en-
tries. However, since the cache slices for EpiChord is

symmetric, we need only half the number of probes re-
quired by Chord and so with a mean cache entry TTL of
120 s> 2 × 60 s, the maximum background maintenance
traffic for the EpiChord networks (even in the absence of
lookups) in our simulations are guaranteed not to exceed
that for the corresponding Chord network.

1) Lookup Performance:The average latency and the
average hop count per lookup for successful lookups in
the steady state are shown in Figures 11 and 12 respec-
tively. From Figure 11, we see that having more paral-
lelism reduces the lookup latency. In Figure 12, the hop
count for EpiChord is defined as the minimum number
of nodes that have to be contacted in the final (successful)
lookup sequence. We see that the average steady-state hop
count varies from 1.1 to 1.4. This means that at least 60%
of the lookups succeed within the initial wave of lookup
queries. This result is actually not surprising since we
know from our analysis that the expected worst-case hop
count is1

2 logα n = 1
2 log7.2 1,200= 1.80.

We consider a lookup to be successful if it locates the
correct node within 5 minutes. This means that it is oc-
casionally possible for a lookup to time out while waiting
for the response from some failed node, and then subse-
quently proceed to continue the lookup process with an-
other node and succeed. The distribution of latencies is
thus strongly bi-modal, with the majority of lookups suc-
ceeding relatively quickly while a small fraction succeed-
ing only after a timeout. These timeouts explain why the
average latency as reported in Figure 11 for the 1-way Epi-
Chord network is about twice the average RTT instead of
being approximately equal to the RTT even though the
hop count is 1.4. The timeout probabilities are shown in
Figure 14. The latencies for successful lookups that ex-
perience timeouts is generally more than 10 times of that
for lookups that do not time out, though fortunately, the
former occur much more infrequently than the latter.

As shown in Figure 13, the lookup failure rates are rela-
tively low (< 0.1%). This is not surprising since under the
lookup-intensive workload, the large number of lookups
keep the routing state for most nodes mostly up-to-date.
Adding more parallelism (increasingp) reduces the proba-
bility of lookup failure significantly10. The lookup failure
probability falls by approximately an order of magnitude
whenp is increased by one.

2) Message Count:It is clear that a parallel lookup al-
gorithm will generate more lookup messages when there
are more parallel queries per lookup. Figure 15 shows
that for our given parameter settings, the average number
of query and reply messages that are required for a se-

10The competing optimal Chord network has perfectly accuratefin-
gers at all times and thus lookups never fail.

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 200 300 400 600 800 1000 1200 1400

Chord
1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

A
ve

ra
ge

lo
ok

up
la

te
nc

y
(s

)

Network Size (log scale)

Fig. 11. Comparison of lookup latency between Chord andp-way
EpiChord under lookup-intensive workload.

 0

 1

 2

 3

 4

 5

 200 300 400 600 800 1000 1200 1400

Chord
1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

A
ve

ra
ge

nu
m

be
r

of
ho

ps
pe

r
lo

ok
up

Network Size (log scale)

Fig. 12. Comparison of lookup path length between Chord andp-way
EpiChord under lookup-intensive workload.

quential Chord network is approximately equal to that for
a 3-way EpiChord network. As mentioned in Section II-
A, the main reason why the number of lookup messages
does not increase in proportion withp is that with iterative
lookups, the querying node can avoid sending duplicate
and redundant queries.

B. Churn-Intensive Workload (pQ ≪ rn)

In our churn-intensive workload simulation, node life-
spans are exponentially distributed with a mean of 600 s.
The stabilization interval is 60 s and the lifetime of a cache
entry is 120 s. We experiment with a range of network
sizes by varying the rate of node joins from1 to 15 nodes
per second. Each node in the network makes on aver-
age 0.01 lookups per second. Because the lookup rate is
so low, most of the lookups captured in our results are
lookups arising from node joins and cache maintenance.

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 200 300 400 600 800 1000 1200 1400

1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

Network Size (log scale)

P
ro

ba
bi

lit
y

of
lo

ok
up

fa
ilu

re

Fig. 13. Lookup failure rates forp-way EpiChord networks under
lookup-intensive workload.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 200 300 400 600 800 1000 1200 1400

1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

Network Size (log scale)

P
ro

ba
bi

lit
y

of
tim

eo
ut

fo
r

su
cc

es
sf

ul
lo

ok
up

Fig. 14. Probability of timeouts forp-way EpiChord networks under
lookup-intensive workload.

In steady state, the network sizes range from 600 to 9,000
nodes and the overall system query rate ranges from 40 to
700 lookups per second. Including the minimal expected
background maintenance traffic,Q ≈ 0.05 to 0.08 andrn

ranges from 1 to 15. As before,r ≈ 1
600 , f ≈ 1

120 (f > r)
andj = 2.

1) Lookup Performance:The average latency and the
average hop count per lookup for all successful lookups
are shown in Figures 16 and 17 respectively. Again, we
see from Figure 17 that adding more parallelism reduces
the lookup latency significantly. As shown in Figure 18,
the lookup failure probabilities under the churn-intensive
workload are higher than those under the lookup-intensive
workload (which are≤ 0.1%). This is to be expected
since the churn rate is higher and the information prop-
agation rate is significantly lower. From Figure 18, we
see that the failure rates for the 4- and 5-way EpiChord

11

 0

 5

 10

 15

 20

 200 300 400 600 800 1000 1200 1400

5-way EpiChord
4-way EpiChord
3-way EpiChord
2-way EpiChord
1-way EpiChord

Chord

A
ve

ra
ge

nu
m

be
r

of
m

es
sa

ge
s

pe
r

pe
r

lo
ok

up

Network Size (log scale)

Fig. 15. Comparison of lookup message count between Chord and
p-way EpiChord under lookup-intensive workload.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

1-way EpiChord
Chord

2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

A
ve

ra
ge

lo
ok

up
la

te
nc

y
(s

)

Network Size (log scale)

Fig. 16. Comparison of lookup latency between Chord andp-way
EpiChord under churn-intensive workload.

networks are higher than that for the 3-way EpiChord net-
work, which is somewhat counter-intuitive. We discov-
ered that the cause of this phenomenon is that with a larger
p, each lookup invoked for cache maintenance satisfies
the cache invariant for more nodes and so the 4- and 5-
way EpiChord networks generate fewer cache-refreshing
lookups than a 3-way EpiChord network. This lower
rate of background maintenance traffic accounts for the
marginally higher failure rates for larger network sizes.
As shown in Figure 19, withp ≥ 2, successful lookups
will almost never experience timeouts.

2) Message Count:As shown in Figure 20, more mes-
sages are required to complete a lookup under a churn-
intensive workload. However, the increase in message
count over the lookup-intensive workload is quite mod-
est: a 1-way EpiChord network requires approximately
the same number of messages per lookup as the corre-
sponding Chord network, while a 3-way EpiChord net-

 0

 1

 2

 3

 4

 5

 6

 7

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

Chord
1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

A
ve

ra
ge

nu
m

be
r

of
ho

ps
pe

r
lo

ok
up

Network Size (log scale)

Fig. 17. Comparison of lookup path length between Chord andp-way
EpiChord under churn-intensive workload.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

Network Size (log scale)

P
ro

ba
bi

lit
y

of
lo

ok
up

fa
ilu

re

Fig. 18. Lookup failure rates forp-way EpiChord networks under
churn-intensive workload.

work incurs approximately 50% more lookup traffic.

C. Cache Composition

Figures 21 and 23 show the average number of live and
stale entries in the caches of the nodes for the EpiChord
networks under a lookup-intensive workload and a churn-
intensive workload respectively, while Figures 22 and 24
show the fraction of stale entries in the respective caches.
These results seem to support the conclusion from our
analysis in Section III-C that the fraction of stale entries
depends only on the node failure rate and the frequency at
which entries are flushed from the cache.

According to our cache model for churn-intensive
workloads,

γ ≈ 1

2c + 1
, c =

f

r
≈

1
120
1

600

= 5

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

Network Size (log scale)

P
ro

ba
bi

lit
y

of
tim

eo
ut

fo
r

su
cc

es
sf

ul
lo

ok
up

Fig. 19. Probability of timeouts forp-way EpiChord networks under
churn-intensive workload.

 0

 5

 10

 15

 20

 25

 30

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

5-way EpiChord
4-way EpiChord
3-way EpiChord
2-way EpiChord
1-way EpiChord

Chord

A
ve

ra
ge

nu
m

be
r

of
m

es
sa

ge
s

pe
r

pe
r

lo
ok

up

Network Size (log scale)

Fig. 20. Comparison of lookup message count between Chord and
p-way EpiChord under churn-intensive workload.

=
1

2 × 5 + 1
= 9%

This means that the predicted fraction of stale cache en-
tries in the steady state is approximately 9% for the ex-
pected node lifespans and cache flush rates in our exper-
iments. From Figures 23 and 24, we see that our esti-
mate of 9% is somewhat smaller than the actual value
(≈ 12.5%). This is likely due to the neglected terms in our
approximation and also to the fact thatf is smaller than
1

120 in practice, i.e., although cache entries are flushed ev-
ery 120 s, the probably of a cache entry being flushed out
every second is smaller than1120 .

D. Effect of Lookup Traffic

To investigate the effect of lookup traffic on lookup per-
formance, we holdp and l constant at 3 and vary the
amount of lookup traffic per nodeQ between 0.01 and

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 200 400 600 800 1000 1200

5-way EpiChord - live entries
3-way EpiChord - live entries
1-way EpiChord - live entries

5-way EpiChord - stale entries
3-way EpiChord - stale entries
1-way EpiChord - stale entries

A
ve

ra
ge

nu
m

be
r

of
en

tr
ie

s
in

ca
ch

e

Network Size

Fig. 21. Cache composition forp-way EpiChord networks under
lookup-intensive workload.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 200 300 400 600 800 1000 1200 1400

1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

F
ra

ct
io

n
of

st
al

e
ca

ch
e

en
tr

ie
s

Network Size (log scale)

Fig. 22. Fraction of stale entries forp-way EpiChord networks under
lookup-intensive workload.

2.0 per second for a range of networks with sizes from
600 to 1,200 nodes. As shown in Figures 25, 26 and 27,
increasing the amount of lookup traffic reduces the lookup
path length, lookup latency, and the number of messages
sent per lookup. There are however decreasing marginal
returns with increasing traffic and the EpiChord lookup
algorithm achieves close to optimal performance with a
reasonably small amount of lookup traffic (i.e.,Q = 0.5).

E. Effect of Number of Entries Returned Per Query

To investigate the effect of the number of “best entries”
returned per response,l, on lookup performance, we hold
p constant at 3 and the amount of lookup trafficQ constant
at 0.01 per node per second (to minimize thelookup-traffic
effect) and varyl between 2 and 4 for a set of network with
sizes from 600 to 1,200 nodes. As demonstrated by our
results shown in Figures 28, 29 and 30,l has a negligible

13

 0

 20

 40

 60

 80

 100

 120

 140

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

5-way EpiChord - live entries
3-way EpiChord - live entries
1-way EpiChord - live entries

5-way EpiChord - stale entries
3-way EpiChord - stale entries
1-way EpiChord - stale entries

A
ve

ra
ge

nu
m

be
r

of
en

tr
ie

s
in

ca
ch

e

Network Size (log scale)

Fig. 23. Cache composition forp-way EpiChord networks under
churn-intensive workload.

 0.115

 0.12

 0.125

 0.13

 0.135

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

F
ra

ct
io

n
of

st
al

e
ca

ch
e

en
tr

ie
s

Network Size (log scale)

Fig. 24. Fraction of stale cache entries forp-way EpiChord networks
under churn-intensive workload.

effect on the lookup path length, lookup latency and the
number of messages sent per lookup. We thus conclude
that we can keepl small and setl = 3.

V. D ISCUSSION

Our analysis and simulations have shown that by us-
ing parallel lookups and by amortizing the network main-
tenance costs into the lookup costs, our approach offers
significantly better lookup path lengths and latencies with
little additional costs in terms of bandwidth consumption.
Our simulations have also shown that even though mul-
tiple messages are sent per lookup step, the lookup traf-
fic generated is not significantly larger than that for a se-
quential lookup algorithm because the lookup path lengths
are significantly shorter. In fact, the lookup traffic gener-
ated by a 3-way EpiChord network is comparable to that
for a corresponding Chord network. This is a desirable

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 600 700 800 900 1000 1100 1200

Chord
Q = 0.01
Q = 0.1
Q = 0.2
Q = 0.5
Q = 1.0
Q = 2.0

A
ve

ra
ge

lo
ok

up
la

te
nc

y
(s

)

Network Size

Fig. 25. Comparison of lookup latency between Chord and3-way
EpiChord under varying amounts of traffic.

 0

 1

 2

 3

 4

 5

 6

 600 700 800 900 1000 1100 1200

Chord
Q = 0.01

Q = 0.1
Q = 0.2
Q = 0.5
Q = 1.0
Q = 2.0

A
ve

ra
ge

nu
m

be
r

of
ho

ps
pe

r
lo

ok
up

Network Size

Fig. 26. Comparison of lookup path length between Chord and3-way
EpiChord under varying amounts of traffic.

trade-off because lookup latency is the principal measure
of lookup performance.

Our new algorithm yields substantial savings in terms
of setup time and the number of messages sent when a
node first joins the network, compared to Chord and many
other DHTs. To join the network, a node need only per-
form one lookup, contact its successor and predecessor,
and perform an initial cache transfer11. Although perfor-
mance is better with a full initial cache transfer, a min-
imal transfer ofO(log n) entries is sufficient to guaran-
tee worst-caseO(log n)-hop lookup performance. In con-
trast,O(log n) lookups (O(log2 n) messages) are required

11Adjacent nodes in an EpiChord network usually have a similar
set of address space slices for their cache invariants. Thismeans that
after a node completes a cache transfer from either its successor or
predecessor, it will generally have a cache that already satisfies the
invariant.

14

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 600 700 800 900 1000 1100 1200

Q = 0.01
Q = 0.1
Q = 0.2
Q = 0.5
Q = 1.0

Chord
Q = 2.0

A
ve

ra
ge

nu
m

be
r

of
m

es
sa

ge
s

pe
r

pe
r

lo
ok

up

Network Size

Fig. 27. Comparison of lookup message count between Chord and
3-way EpiChord under varying amounts of traffic.

 0.43

 0.435

 0.44

 0.445

 0.45

 0.455

 0.46

 0.465

 0.47

 0.475

 0.48

 600 700 800 900 1000 1100 1200

l = 4
l = 3
l = 2

A
ve

ra
ge

lo
ok

up
la

te
nc

y
(s

)

Network Size

Fig. 28. Effect ofl on lookup latency for a 3-way EpiChord network.

for a Chord node to fully initialize its finger table.
Although our reply messages will tend to be larger than

those of traditional sequential lookup algorithms, sincel

“best” entries are returned, even with the increase in size,
the reply messages are only about 100 bytes in size (in-
cluding the 28-byte UDP/IP header) at a reasonable set-
ting of l = 3. Hence, the increased size of the responses
is not an issue even for nodes behind a 56k modem line
since the packets are relatively small.

VI. RELATED WORK

Our parallelized lookup algorithm and reactive cache
management strategy can be applied to any of the existing
DHT routing topologies that have some flexibility in the
choice of neighbors (i.e., ring, tree or xor) [14]. We chose
to implement our proof-of-concept DHT using the Chord
ring [2] as the underlying routing topology because of its
simplicity.

 2.4

 2.45

 2.5

 2.55

 2.6

 2.65

 600 700 800 900 1000 1100 1200

l = 4
l = 3
l = 2

A
ve

ra
ge

nu
m

be
r

of
ho

ps
pe

r
lo

ok
up

Network Size

Fig. 29. Effect ofl on lookup path length for a 3-way EpiChord
network.

 16

 16.5

 17

 17.5

 18

 600 700 800 900 1000 1100 1200

l = 2
l = 3
l = 4

A
ve

ra
ge

nu
m

be
r

of
m

es
sa

ge
s

pe
r

pe
r

lo
ok

up

Network Size

Fig. 30. Effect ofl on lookup message count for a 3-way EpiChord
network.

Like EpiChord, Kademlia [6] gathers routing infor-
mation from observing lookup traffic and uses parallel
lookups to improve lookup resilience. The organization of
its routing entries is also somewhat analogous to that for
EpiChord, albeit in a different address space. One key dif-
ference between Kademlia and EpiChord is that Kademlia
limits the amount of routing state toO(log n) while Epi-
Chord does not. By limiting its routing state toO(log n),
Kademlia lookups take on averageO(log n) hops while
EpiChord can often achieve one- or two-hop lookup per-
formance with its large routing state. While Kademlia
employs parallel lookups mainly to improve lookup per-
formance, EpiChord actuallyrequiresparallel lookups to
cope with possible timeouts arising from maintaining a
large amount of routing state.

The MIT Chord [20] implementation includes aloca-
tion cache, i.e., nodes remember the IP address andids

15

of nodes that recently contacted them and use this infor-
mation in their lookup. Zhuang and Zhou showed that the
Chord location cache is able to reduce lookup path length
by 1/2 of the logarithm of the cache size, but it does not
scale to more than 2,000 nodes in a typical network set-
ting because of stale cache entries, which cause timeouts
and redundant hops [24].

In addition to proximity neighbor selection [14], Dabek
et al. recently investigated the effectiveness of a com-
bination of techniques in improving lookup latency for
DHash++ [18] (anO(log n)-state DHT based on Chord),
including synthetic coordinates [15], erasure coding [17],
integration of key lookups and data fetches and an inte-
grated transport protocol (STP). EpiChord is certainly not
as sophisticated, but we are not seeking to be. Most of the
techniques in DHash++ are orthogonal to our lookup al-
gorithm and can be integrated into EpiChord if so desired.

Gupta et al. proposed one- and two-hop schemes that
disseminate global network membership changes using a
background broadcast process that scales up to a million
nodes [13]. Other two-hop schemes that have been pro-
posed include Kelips [9] and Structured Superpeers [12].
The major drawbacks of these schemes are that they either
impose a fixed (and relatively high) amount of constant
background traffic on all nodes (even ones that are rela-
tively inactive), and/or impose significant asymmetry in
the bandwidth consumption across nodes in the network.
In return, they are in general able to achieve somewhat
better one- and two-hop lookup performance than Epi-
Chord, which also often achievesO(1)-hop lookups, but
only in an incidental andlaissez fairemanner and at a
somewhat lower cost.

To the best of our knowledge, only Chord [20] has a
strong stabilization algorithm that will provably fix loopy
network configurations and their stabilization algorithm
is specific to their lookup algorithm and cannot be ap-
plied generally to other DHT routing algorithms. Our
token-passingstabilization mechanism can be applied to
any DHT that has a circular address space.

VII. F UTURE WORK

Instead of limiting the number of concurrent queries
that we allow a lookup to have in parallel at any instant in
time top, it might be desirable to let the number of concur-
rent queries bepmax(> p) if the number of nodes in the
network is large and the node caches are relatively sparse,
since under such circumstances, the initialp nodes are
separated from the node corresponding toid by many in-
termediate nodes. Having more concurrent queriespmax

improves lookup latency and allows the querying node to
learn about more nodes, thereby improving the quality of

its node cache. Of course, there is a trade-off of increased
lookup traffic.

Conceptually,γ̂ can be used to adaptively adjust the
cache entry expiration period. We can choose a targetγt

and the cache entry expiration period is incrementally de-
creased when̂γ > γt, until γ̂ ≤ γt. We have not im-
plemented such a scheme, but it is straightforward to do
so.

EpiChord is currently not fully optimized. There is still
significant flexibility for nodes to adopt individual poli-
cies to further enhance and optimize their individual (and
thereby global) lookup performance, if so desired. For ex-
ample, a node that discovers a high rate of node failures
within the network (i.e., from the fact that many queries
are unacknowledged) can adaptively increase the number
of parallel queries per lookup as well as be more aggres-
sive in flushing old entries from its cache. One can also
imagine improving the dissemination of routing state by
piggybacking additional random node entries on requests
or responses. If the system lookup rate is low or a higher
level of background traffic can be tolerated, EpiChord
can generate additional queries, or employ a hierarchical
broadcast scheme [13] or a provably efficient epidemic
cache exchange mechanism [25], to proactively increase
the number of cached entries per node. Finally, it might
perhaps be possible to formulate the performance opti-
mization problem as a learning problem and apply some
existing AI technique to optimize overall system perfor-
mance by tuning system parameters at runtime depending
on the operating conditions and constraints (i.e., amount
of lookup traffic and available background bandwidth).

VIII. C ONCLUSION

Our goal in this work is not to design the perfect DHT.
Instead, our objectives are: (i) to explore the effectiveness
of our new technique, where we combine parallel queries
with a reactive cache management strategy, in allowing
us to move from anO(log n)-state-per-node DHT topol-
ogy to an unlimited-state-per-node architecture; and (ii)to
understand the trade-offs within the unlimited-state-per-
node DHT design space.

Proximity routing has been shown to be effective in re-
ducing DHT routing latency [14]. Although we do not
track latency information or actively decide on which
nodes to query based on proximity, our parallel asyn-
chronous lookup approach in fact exploits proximity indi-
rectly. The key observation here is that the final sequence
of lookups that returns the correct answer first in our
asynchronous parallel lookup algorithm is approximately
equivalent to a proximity-optimized lookup sequence for
the corresponding sequential lookup algorithm.

16

Our parallel lookup algorithm is simple and effective,
and our reactive approach to routing state maintenance
allows our DHT to adapt naturally to a range of lookup
workloads. We have quantified the performance-cost
trade-offs for our lookup algorithm and showed that we
can reduce both lookup latencies and path lengths by a
factor of 3 by issuing only 3 queries asynchronously in
parallel per lookup and that the number of messages thus
generated is in general no more than that for the corre-
sponding sequential Chord lookup algorithm, and at most
up to 50% more under high churn rates.

ACKNOWLEDGMENTS

The authors wish to thank Dina Katabi and John Wro-
clawski for useful discussions in the early stages of this
work and Steve Bauer for his helpful comments on the
initial draft of this paper. This research was supported by
the NSF under Grant No. ANI-0082503 and Cooperative
Agreement ANI-0225660.

REFERENCES

[1] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Shenker, “A scalable content-addressable network,” in
Proceedings of the 2001 ACM SIGCOMM Conference, August
2001.

[2] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and
Hari Balakrishnan, “Chord: A scalable Peer-To-Peer lookupser-
vice for internet applications,” inProceedings of the 2001 ACM
SIGCOMM Conference, August 2001, pp. 149–160.

[3] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An
infrastructure for fault-tolerant wide-area location androuting,”
Tech. Rep. UCB/CSD-01-1141, UC Berkeley, April 2001.

[4] Antony Rowstron and Peter Druschel, “Pastry: Scalable,
distributed object location and routing for large-scale peer-to-
peer systems,” inProceedings of the 18th IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Middle-
ware 2001), November 2001.

[5] Dahlia Malkhi, Moni Naor, and David Ratajczak, “Viceroy: A
scalable and dynamic emulation of the butterfly,” inProceedings
of 21st ACM Symposium on Principles of Distributed Computing
(PODC’02), July 2002.

[6] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer
information system based on the xor metric,” inProceedings of
the 1st International Workshop on Peer-to-Peer Systems (IPTPS
’02), March 2002.

[7] Gurmeet Manku, Mayank Bawa, and Prabhakar Raghavan,
“Symphony: Distributed hashing in a small world,” inProceed-
ings of 4th USENIX Symposium on Internet Technologies and
Systems, March 2003.

[8] Gurmeet Singh Manku, “Routing networks for distributedhash
tables,” inProceedings of the 22nd ACM Symposium on Prin-
ciples of Distributed Computing (PODC 2003), Boston, Mas-
sachusetts, July 2003, ACM.

[9] Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and
Robbert van Renesse, “Kelips: Building an efficient and stable
P2P DHT through increased memory and background overhead,”
in Proceedings of the 2nd International Workshop on Peer-to-
Peer Systems (IPTPS ’03), February 2003.

[10] Frans Kaashoek and David Karger, “Koorde: A simple degree-
optimal distributed hash table,” inProceedings of the 2nd Inter-
national Workshop on Peer-to-Peer Systems (IPTPS ’03), Febru-
ary 2003.

[11] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu,Marvin
Theimer, and Alec Wolman, “Skipnet: A scalable overlay net-
work with practical locality properties,” inProceedings of the
Fourth USENIX Symposium on Internet Technologies and Sys-
tems (USITS ’03), March 2003.

[12] Alper Mizrak, Yuchung Cheng, Vineet Kumar, and Stefan Sav-
age, “Structured superpeers: Leveraging heterogeneity topro-
vide constant-time lookup,” inProceedings of the 4th IEEE
Workshop on Internet Applications, June 2003.

[13] Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues, “Effi-
cient routing for peer-to-peer overlays,” inProceedings of the
1st Symposium on Networked Systems Design and Implementa-
tion (NSDI 2004), March 2004, pp. 113–126.

[14] K. Gummadi, G. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica, “The impact of DHT routing geom-
etry on resilience and proximity,” inProceedings of the 2003
ACM SIGCOMM Conference, 2003, pp. 381–394.

[15] Russ Cox, Frank Dabek, Frans Kaashoek, Jinyang Li, and Robert
Morris, “Practical, distributed network coordinates,” inPro-
ceedings of the Second Workshop on Hot Topics in Networks
(HotNets-II), Cambridge, Massachusetts, November 2003, ACM
SIGCOMM.

[16] T. Ng and H. Zhang, “Towards global network positioning,” in
Proceedings of IEEE Infocom ’02, June 2002.

[17] John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Den-
nis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-
erspoon, Westly Weimer, Christopher Wells, and Ben Zhao,
“Oceanstore: An architecture for global-scale persistentstorage,”
in Proceedings of ACM ASPLOS. ACM, November 2000.

[18] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans
Kaashoek, and Robert Morris, “Designing a DHT for low la-
tency and high throughput,” inProceedings of the 1st Symposium
on Networked Systems Design and Implementation (NSDI 2004),
March 2004, pp. 85–98.

[19] FIPS 180-1, “Secure hash standard,” Tech. Rep., US Department
of Commerce/NIST, April 1995.

[20] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger,
M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet ap-
plications,” Tech. Rep., MIT LCS, 2002.

[21] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble, “A
measurement study of peer-to-peer file sharing systems,” in
Proceedings of Multimedia Computing and Networking 2002
(MMCN ’02), San Jose, CA, USA, January 2002.

[22] ssfnet.org, “Scalable simulation framework,”
http://www.ssfnet.org.

[23] Jinyang Li, Jeremy Stribling, Robert Morris, M. Frans Kaashoek,
and Thomer M. Gil, “DHT routing tradeoffs in network with
churn,” in Proceedings of the 3rd International Workshop on
Peer-to-Peer Systems (IPTPS ’04), February 2004.

[24] Li Zhuang and Feng Zhou, “Understanding Chord perfor-
mance and topology-aware overlay construction for Chord,”
2003, http://www.cs.berkeley.edu/˜zf/papers/chordperf.pdf.

[25] Mor Harchol-Balter, Tom Leighton, and Daniel Lewin, “Re-
source discovery in distributed networks,” inProceedings of the
18th annual ACM Symposium on Principles of Distributed Com-
puting (PODC 1999). 1999, pp. 229–237, ACM Press.

17

APPENDIX

A. Pseudocode for Basic Lookup Algorithm
Let tried set= set of nodes that have already been probed (initially empty)

pending set= set of queries that are currently pending (initially empty)
answer= final answer for this query (initiallynull)
best predecessor= best known predecessor ofid probed
best successor= best successor heard from forid probed

// To start the successor node for the identifierid.
findSuccessor(id)

// Gets from cache the best known successor ofid,
// excluding entries already found intried set.
try entry ← cache.getNext(id, tried set);
sendQuery(id, try entry);
for i ← 0 upto p− 1

// Gets from cache the best known predecessor ofid,
// excluding entries already found intried set.
try entry ← cache.getPrev(id, tried set);
if try entry 6= null

sendQuery(id, try entry);

// To send a query to noden to look up identifierid.
sendQuery(id, n)

// Sends a UDP packet to noden to lookup identifierid,
// with information on the nodes currently being probed.
sendLookupMessage(id, n, pending set)
// Sets a timeout for noden.
setTimeout(n)
tried set.add(n)
pending set.add(n)

// This function is called when noden receives a reply.
receiveReply(n, success, reply set)

// Add all the entries received fromn to the cache.
cache.addEntries(reply set)
pending set.remove(n)
if n.id ∈ (owner.id,best successor)

best successor ← n

if success = true

answer ← reply set.getAnswer();
// return answer to the query.
lookup success(answer);

else
sendMoreQueries();

// This function is called if a timeout occurs for the query tonoden.
timeout(n)

pending set.remove(n)
sendMoreQueries();

// This function is called to send out more concurrent queries, if necessary.
sendMoreQueries();

// Gets from cache the nodetry entry which closest toid
// such thattry entry.id ∈ (best predecessor,best successor),
// excluding entries already found intried set.
while (|pending set| < pmax)

∧
(try entry 6= null)

if try entry.id ∈ (owner.id, id)
best predecessor ← try entry

sendQuery(id, try entry)
try entry ← cache.getBestEntry(id, tried set);

if |pending set| = 0
// return lookup failure.
lookup failure ();

B. Analysis of Expected Worst-Case Lookup Performance

To analyze the expected worst-case lookup perfor-
mance, we consider the following scenario. Suppose we
are at a node withid x and we are trying to resolve anid

y, s.t.y ∈ (x+2i, x+2i+1). The range(x+2i, x+2i+1)
is the size of one bucket inx’s cache. This means that
we have at leastj entries in the bucket and hence we can
certainly find nodez s.t.z ∈ (x + 2i, x + 2i+1).

yz

x

x + 1

x + 2

x + 22

x + 2i

x + 2i+1

j entries
︷ ︸︸ ︷

Fig. 31. Analysis of expected worst-case lookup performance.

Sincey ∈ (x+2i, x+2i+1), so we know that|x−y| ≤
2i+1, but becausez ∈ (x + 2i, x + 2i+1), we know that
|z−y| ≤ 2i. Hence, in each lookup step, even if the actual
distance to the destinationid is not reduced, the maximum
possible distance is steadily reduced by at least a factor of
two even in the worst case. This implies that lookups can
be made inO(log n) hops in the worst case.

The bound derived from the above analysis is very loose
because it is based only on the assumption that there is at
least one other entry in the same bucket as the destination
node. Since we have at leastj entries in the bucket, we
can clearly do significantly better. Under the assumption
thatx, y and allj entries in the(x + 2i, x + 2i+1) bucket
are independent and uniformly distributed, we can show
with some elementary probability that:

E(|x − y|)
E(|z − y|) = 3j +

6

j + 3

Proof:

Pr(min ≥ y|x) =







(1 − x − y)j if x < y

(1 − 2y)j if y < x < 1 − y

(x − y)j if 1 − y < x

If x is uniformly distributed,

Pr(min ≥ y) =

∫ 1

0

Pr(min ≥ y|x)p(x)dx

=

∫ 1

0

Pr(min ≥ y|x)dx, sincep(x) = 1

If y < 0.5,

Pr(min ≥ y) =

∫ y

0

(1 − x − y)jdx +

∫ 1−y

y

(1 − 2y)jdx

+

∫ 1

1−y

(x − y)jdx

=

[−1

j + 1
(1 − x − y)j+1

]y

0

+
[
x(1 − 2y)j

]1−y

y

+

[
1

j + 1
(x − y)j+1

]1

1−y

18

=
−1

j + 1

[
(1 − 2y)j+1 − (1 − y)j+1

]

+((1 − y) − y)(1 − 2y)j

+
1

j + 1

[
(1 − y)j+1 − (1 − 2y)j+1

]

=
2

j + 1

[
(1 − y)j+1 − (1 − 2y)j+1

]

+(1 − 2y)j+1

=
2

j + 1
(1 − y)j+1 +

j − 1

j + 1
(1 − 2y)j+1

If y > 0.5,

Pr(min ≥ y) =

∫ 1−y

0

(1 − x − y)jdx +

∫ 1

y

(x − y)jdx

=

[−1

j + 1
(1 − x − y)j+1

]1−y

0

+

[
1

j + 1
(x − y)j+1

]1

y

=
2

j + 1
(1 − y)j+1

Pr(min ≤ y) = 1 − Pr(min ≥ y)

⇒ p(min) =







2(1 − y)j

+2(j − 1)(1 − 2y)j , if y < 0.5
2(1 − y)j , if y > 0.5

E(min) =

∫ 1

0

yp(y)dy

=

∫ 1

0

2y(1 − y)jdy

+

∫ 0.5

0

2(j − 1)y(1 − 2y)jdy

=

[

− 2

j + 1
y(1 − y)j+1

]1

0

+

∫ 1

0

2

j + 1
(1 − y)j+1dy

−
[
j − 1

j + 1
y(1 − 2y)j+1

]0.5

0

+

∫ 0.5

0

j − 1

j + 1
(1 − 2y)j+1dy

=

[

− 2

(j + 1)(j + 2)
(1 − y)j+2

]1

0

−
[

j − 1

2(j + 1)(j + 2)
(1 − 2y)j+2

]0.5

0

=
2

(j + 1)(j + 2)
+

j − 1

2(j + 1)(j + 2)

=
j + 3

2(j + 1)(j + 2)

If we now consider the original scenario, wherey, z ∈

(x + 2i, x + 2i+1), by the fact that the nodeids are uni-
formly distributed,

E(|x − y|) =
2i + 2i+1

2

= 2i−1 + 2i

E(|z − y|) =
j + 3

2(j + 1)(j + 2)
2i

E(|x − y|)
E(|z − y|) =

3(j + 1)(j + 2)

j + 3

= 3j +
6

j + 3

