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Abstract

As wireless sensor networks continue to grow in size, we are faced with the prospect of emerging wireless
networks with hundreds or thousands of nodes. Geographic routing algorithms are a promising alternative
to tradition ad hoc routing algorithms in this new domain for point-to-point routing, but deployments of such
algorithms are currently uncommon because of some practical difficulties.

This dissertation explores techniques that address two major issues in the deployment of geographic routing
algorithms: (i) the costs associated with distributed planarization and (ii) the unavailability of location infor-
mation. We present and evaluate two new algorithms for geographic routing: Greedy Distributed Spanning
Tree Routing (GDSTR) and Greedy Embedding Spring Coordinates (GSpring).

Unlike previous geographic routing algorithms which require the planarization of the network connectivity
graph, GDSTR switches to routing on a spanning tree instead of a planar graph when packets end up at
dead ends during greedy forwarding. To choose a direction on the tree that is most likely to make progress
towards the destination, each GDSTR node maintains a summary of the area covered by the subtree below
each of its tree neighbors using convex hulls. This distributed data structure is called a hull tree. GDSTR
not only requires an order of magnitude less bandwidth to maintain these hull trees than CLDP, the only
distributed planarization algorithm that is known to work with practical radio networks, it often achieves
better routing performance than previous planarization-based geographic routing algorithms.

GSpring is a new virtual coordinate assignment algorithm that derives good coordinates for geographic
routing when location information is not available. Starting from a set of initial coordinates for a set of
elected perimeter nodes, GSpring uses a modified spring relaxation algorithm to incrementally adjust virtual
coordinates to increase the convexity of voids in the virtual routing topology. This reduces the probability
that packets will end up in dead ends during greedy forwarding, and improves the routing performance of
existing geographic routing algorithms.

The coordinates derived by GSpring yield comparable routing performance to that for actual physical co-
ordinates and significantly better performance than that for NoGeo, the best existing algorithm for deriving
virtual coordinates for geographic routing. Furthermore, GSpring is the first known algorithm that is able to
derive coordinates that achieve better geographic routing performance than actual physical coordinates for
networks with obstacles.

Thesis Supervisor: Barbara Liskov
Title: Ford Professor of Engineering
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Chapter 1

| ntroduction

As wireless sensor networks continue to grow in size, we are faced with the prospect of emerging
wireless networks with hundreds or thousands of nodes. While earlier generations of such net-
works employed routing protocols that did not require a point-to-point routing primitive [32, 33],
geographic routing algorithms have recently been proposed as a new routing primitive for data-
centric storage [74] and for running more complex queries [55] over such networks. It has also
been proposed that geographic routing be used for reduced state routing over the wired Inter-
net [24]. We can expect an increasing demand for point-to-point routing in sensor networks in the
future as data-centric applications and networks containing actuators become more common.

Although geographic routing algorithms have been available for several years, there are few known
deployments of such algorithms in practice. To our knowledge, there are two main obstacles that
stand in the way of deployment: (i) practical difficulties and costs associated with distributed
planarization and (ii) the unavailability of location information. The goal of this research is to
develop new techniques and algorithms that can address these two shortcomings and make de-
ployments more practical and feasible than they are today. In this dissertation, we present two new
algorithms that are specifically designed to address these difficulties: Greedy Distributed Spanning
Tree Routing (GDSTR) [51] and Greedy Embedding Spring Coordinates (GSpring).

Existing geographic routing algorithms [7, 39,47, 52] work as follows: they first try to forward
packets greedily, i.e., to the immediate neighbor that is closest in geographic distance to the des-
tination. When a packet reaches a dead end, they switch to a forwarding mode that guarantees
packet delivery. The idea is to route the packet around “voids” in the routing topology by forward-
ing it along a face of the planarized network graph. This technique, called face routing, was first
proposed by Kranakis et al. [46] and is the current default approach to geographic routing. We
henceforth refer to these algorithms collectively as geographic face routing algorithms.

GDSTR is a geographic routing algorithm that uses a spanning tree as the backup routing topol-
ogy instead of a planar graph like the geographic face routing algorithms. In order to choose a
direction on the tree that is most likely to make progress towards the destination, each GDSTR
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node maintains a summary of the area covered by the subtree below each of its tree neighbors.
While GDSTR requires only one tree for correctness, it uses two for robustness and to give it an
additional forwarding choice.

GSpring is a new virtual coordinate assignment algorithm that derives good coordinates for ge-
ographic routing of non-location-aware wireless nodes. Starting from a set of initial coordinates
derived from a set of elected perimeter nodes, GSpring uses a modified spring relaxation algo-
rithm that incrementally adjusts virtual coordinates to increase the convexity of voids in the virtual
routing topology. This reduces the probability of packets ending up in dead ends during greedy
forwarding and improves the routing performance of existing geographic routing algorithms.

More specifically, these two algorithms represent our attempt to solve the following problems:

e Given a network of nodes with assigned coordinates, route packets efficiently between con-
nected nodes, without planarizing the network graph and without requiring more than O(1)
state to be stored at each node; and

e Given a network of nodes with no location information, assign coordinates to the nodes to
maximize the greedy forwarding success rate of the network.

Our work makes very few assumptions. First, because geographic routing uses coordinates and not
node identifiers, there must exist a mechanism for nodes to discover the coordinates of destination
nodes. For this purpose, geographic routing must be augmented by a location service, which we
assume exists and hence, we shall not attempt to address the design of a geographic location service
in this dissertation. Existing solutions like GLS [53] or a Distributed Hash Table (DHT) [73] can
be employed.

Second, we make few assumptions about radio behavior. The only requirement is that nodes must
agree on whether or not they are neighbors. GDSTR is robust against location errors, unlike pre-
viously proposed algorithms [79]. While GSpring assumes the availability of geographic routing
algorithm that supports geocast!, a requirement that is satisfied by GDSTR, this requirement can
be replaced by a different centralized or distributed location-service-like mechanism, as described
in Section 5.5.

Third, our work assumes that the nodes in the system are quasi-static. Our algorithms can cope
with intermittent node failures and the occasional node joining the system, but are not designed to
work with large scale changes in the connectivity of the network over a short interval.

The rest of this chapter explains why geographic routing is a challenge in practical systems, our
reasons for believing that virtual coordinates can achieve better geographic routing performance
than true physical coordinates, our contributions and the organization of this dissertation.

'A geocast algorithm is a routing algorithm for which a target region can be specified and a message will then be
routed to all nodes in the specified region.
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1.1 Challenges of Geographic Routing

It was originally believed that geographic face routing could provide guaranteed packet delivery
with only a minimal amount of state stored at each node [37]. Unfortunately, it turns out that
face routing is critically dependent on the planarization of the network topology graph for cor-
rectness, and the distributed planarization of network graphs for practical radio networks is an
extremely challenging problem [38]. The distributed planarization algorithms that were initially
proposed [2, 20, 21, 54, 84—86] depended on a rather strict condition, called the Unit Disk Graph
(UDG) assumption, for correctness. This assumption is often violated in practice because of ob-
stacles and the physical characteristics of real radios [41].

A related and somewhat more subtle source of difficulty was that these algorithms also assumed
that nodes knew their radio ranges and locations accurately. A recent empirical study has found
that the communication ranges of wireless networks are highly dependent on the environment and
may be highly irregular [88]. Errors in the localization of the nodes can also cause planarization to
fail [40,79].

A major breakthrough was made by Kim et al. in developing the Cross-Link Detection Protocol
(CLDP) [42], which produces a subgraph on which face-routing-based algorithms are guaranteed
to work correctly. Their key insight is that starting from a connected graph, nodes can indepen-
dently probe each of their links using a right-hand rule to determine if the link crosses another link
in the network. CLDP uses a two-phase locking protocol to ensure that no more than one link is
removed at any time from any given face; in this way it guarantees that the removal of a crossed
link will not disconnect the network. While CLDP is able to planarize an arbitrary graph, every
single link in the network has to be probed multiple times, and has a high cost.

While distributed planarization is now a solved problem, the high maintenance costs and complex-
ities associated with the deployment of face routing algorithms (with CLDP) make it worthwhile
to consider an alternative approach to face routing. In particular, since we know that geographic
routing tends to work best when packets are forwarded greedily [87], a natural approach would
be to consider a backup routing mode that does not require the use of a planar graph and hence
allows us to avoid the planarization problem altogether [51]. Our hypothesis is that a geographic
routing algorithm that does not require planarization would be able to avoid the associated costs of
planarization and hence make geographic routing less costly and more practical.

1.2 Case for Virtual Coordinates in Geographic Routing

While geographic location devices like GPS, Bat [27] and Cricket [71] are relatively mature tech-
nologies, these technologies are not yet cost effective for ubiquitous deployment on large wireless
networks. A natural question would be the following: suppose we have a small number of nodes

17



that are equipped with location devices, how do we derive good virtual coordinates for the re-
maining non-location-aware nodes efficiently so that we can achieve good routing performance for
existing geographic routing algorithms?

The idea of assigning virtual coordinates to non-location-aware nodes is not new. In fact, one
previous approach, NoGeo [73], can derive relatively good virtual coordinates when no location
information is available.

In this dissertation, we take the idea one step further: since virtual coordinates do not need to mimic
actual physical coordinates for geographic routing to be relatively efficient, instead of simply de-
riving a set of virtual coordinates suitable for geographic routing, we should exploit the flexibility
in the choice of coordinates to optimize the routing performance of existing geographic routing
algorithms.

Geographic routing algorithms tend to be most efficient when packets are forwarded greedily as
much as possible [87], since greedy forwarding avoids switching to the costly guaranteed-delivery
forwarding mode. Also, as the density of nodes in the network increases, the shortest path between
pairs of nodes corresponds increasingly to the Euclidean straight line between them. Another
observation is that concave “voids” in the routing topology are bad for geographic routing since
packets will tend to end up in the concave dead ends. This observation prompted us to explore the
hypothesis that we can improve routing performance by choosing virtual coordinates that increase
the success rate of greedy forwarding.

This idea is perhaps best illustrated with examples: for the U-shaped network shown in Figure 1-
1(a), packets routed greedily between the two ends of the U often end up in a dead end. If the
topology of the network is deformed slightly into a “smile” as shown in Figure 1-1(b), then greedy
forwarding will work almost all the time. Another example is the cross-shaped network shown in
Figure 1-1(c). Again, because of the large hole in the middle of the network, packets forwarded
greedily between a random pair of nodes will again often end up in a dead end. While the network
shown in Figure 1-1(d) may look quite different in shape from the network in Figure 1-1(c), they
are isomorphic, i.e., there is a bijective mapping from the nodes of one network to the other that
preserves the connectivity between corresponding nodes. Again, greedy forwarding will work
almost all the time for the network in Figure 1-1(d).

Finally, even where we can derive virtual coordinates that allow greedy forwarding to succeed
more often, it is not entirely obvious that geographic routing performance will necessarily improve
because the increase in the probability of greedy forwarding might have been achieved at the cost
of more routing hops. One of the key hypotheses that this dissertation explores is that virtual
coordinates that allow greedy forwarding to succeed more often will indeed improve the routing
performance of existing geographic routing algorithms.

Another argument for using virtual coordinates instead of true physical coordinates is that a change
in location does not always have an effect on geographic routing. A geographic routing algorithm
needs to react only when there is a change in network connectivity. Nodes that maintain the
same connectivity need not change their virtual coordinates simply because their physical locations
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(c) cross (d) “Greedy” isomorph
network of U-shaped network network of cross network

(a) U-shaped

Figure 1-1: Examples of routing topologies and their “greedy” isomorphs. The points represent the physical
and virtual coordinates of nodes, and the lines indicate the connectivity between nodes.

change. As an example, suppose we have a static sensor network with GPS-equipped nodes on
board a large ship and the ship sails around the world. While the physical locations of the nodes
will change over time according to their GPS readings, it is likely to be more efficient for the nodes
to adopt virtual coordinates that are independent of the GPS readings.

1.3 Contributions

The key contributions of this thesis are two algorithms: Greedy Distributed Spanning Tree Routing
(GDSTR) and Greedy Embedding Spring Coordinates (GSpring).

GDSTR is a new routing approach that avoids the need for planarization by using trees to route
around voids. To aggregate geographic information, we use a new kind of spanning tree, called
a hull tree, where each node maintains information about the points that can be reached below it
in the tree. Hull trees are much cheaper to build initially and to maintain in a distributed environ-
ment than a planar graph. Nevertheless GDSTR performs well and generally outperforms the best
existing face routing algorithms.

In addition, we describe two natural extensions to GDSTR — approximate routing and geocast.
Approximate routing is a primitive that routes a packet to the node that is closest to a specified
destination point and geocast is a primitive that delivers a packet to all the nodes in a specified
target region. We show that these extensions are supported in a very natural fashion by hull trees.

GDSTR works well for sparse networks with large voids; face routing algorithms are however able
to achieve marginally better routing performance for dense networks with small voids. We address
this scenario with GDSTR+, a variant of GDSTR that uses local hull trees to improve routing when
the voids are small.

GSpring is a new virtual coordinate assignment algorithm that derives good coordinates for geo-
graphic routing of non-location-aware wireless nodes. GSpring incrementally adjusts the routing
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coordinates to increase the convexity of voids in the virtual routing topology. GSpring not only al-
lows us to exploit existing geographic routing algorithms when location information is not widely
available, it often allows GDSTR to achieve superior stretch even when compared to routing over
actual physical coordinates, by converging to a virtual topology that has a higher greedy forward-
ing success rate than the actual physical topology. To the best of our knowledge, GSpring is the
first algorithm to derive coordinates that can achieve better geographic routing performance than
actual physical coordinates.

1.4 Organization of this Dissertation

The rest of this dissertation is organized as follows.

In Chapter 2, we provide an overview of the related and previous literature on geographic routing,
planarization, geocast and virtual coordinates.

In Chapter 3, we describe Greedy Distributed Spanning Tree Routing (GDSTR). We describe hull
trees, explain how they are used for routing, and how they are built and maintained. We also
describe how hull trees can be used to implement geocast and approximate routing, and GDSTR+,
a variant of GDSTR that achieves superior routing performance for dense networks with small
voids.

In Chapter 4, we compare the performance of GDSTR routing to existing geographic face routing
algorithms and present the experimental results for the costs of GDSTR in terms of both storage
and bandwidth. We also evaluate the performance of GDSTR+ and our new hull-tree-based geocast
algorithm.

In Chapter 5, we describe Greedy Embedding Spring Coordinates (GSpring), an online virtual
coordinate assignment algorithm that incrementally adjust virtual coordinates to increase the con-
vexity of voids in the virtual routing topology.

In Chapter 6, we evaluate the performance of GSpring, by comparing the routing performance of
existing geographic face routing algorithms with coordinates obtained with the GSpring algorithm
to that with actual physical coordinates and those obtained with the NoGeo algorithm [73].

Chapter 7 summarizes the work in this research and describes open questions and possible future
direction for future research that builds upon the work in this dissertation.

In Appendix A, we describe a new convex hull tree maintenance and tree traversal algorithm that
presents a node with a view of the locations accessible via each neighboring node. We also present
the results of some simulations that support our design choices.
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Chapter 2

Related Work

In this chapter, we provide an overview of the related literature on geographic routing. We provide
a survey of previous geographic routing and planarization algorithms. Finally, we conclude with a
survey of related routing algorithms and also a survey of previous work on geocast.

2.1 Geographic Routing

In this section, we provide an overview of previous location-based routing schemes and describe
existing geographic face routing algorithms.

The early proposals for geographic routing, suggested over a decade ago, were simple greedy
forwarding schemes that did not guarantee packet delivery in a connected network [17, 28, 82],
since packets are not delivered when greedy forwarding causes them to end up at a local minimum;
instead, they are dropped at this point.

The first geographic (or geometric) routing algorithm to provide guaranteed delivery was face rout-
ing [46] (originally called Compass Routing II). Several practical algorithms that are variations of
face routing have since been developed, including GFG [7], GPSR [39] and the GOAFR+ family
of algorithms [47,48]. The latest addition to the family is GPVFR, which improves routing effi-
ciency by exploiting local face information [52]. While GOAFR+ is asymptotically optimal and
bounds worst-case performance with an expanding ellipse search, GPVFR generally achieves the
best average case stretch performance among existing geographic face routing algorithms. There
are also other proposals for routing schemes [3,21, 31,44, 45] that are loosely based on location
but not directly related to these. A survey can be found in [22].

De Couto and Morris explored techniques for dealing with problems with geographic forward-
ing [12]. In particular, they highlighted that nodes often do not know their locations and proposed
location proxies as a solution. Location proxies are nodes that know their geographic location and
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can hence participate in geographic forwarding. A non-proxy node that does not know its location
uses a route discovery mechanism to find a nearby location proxy, and uses that as a forwarding
point for its packets. In addition, De Couto and Morris proposed intermediate node forwarding as
a probabilistic solution for routing around voids. The idea is that when a packet gets trapped in a
local minimum, a node will pick random intermediate points through which to forward the packet.

2.1.1 Geographic Face Routing

Here, we present an overview of face routing, which is the basis for all previous work on geographic
routing with guaranteed delivery. All of these algorithms require graph planarization, which we
describe in Section 2.2. The key insight in face routing is the observation that a planar graph is
composed of a set of well defined faces, each of which has nodes as its vertices. Suppose we want
to route a packet from a source node s to a destination node ¢. The imaginary line st will then
intersects a fixed number of faces as shown in Figure 2-1. By traversing the network along these
faces, one will eventually reach the destination.

Since faces are well-defined at each node, a node needs only to know about its immediate neigh-
bors, and a packet can traverse a face by using a simple right-hand rule. What this means is that
when a node receives a packet on a given link, the packet is forwarded on the first link that is
counterclockwise of the ingress link.

We observe that the line st intersects with a number of edges and it is these edges that are the
crossover points from one face to the next. Hence, to detect that a packet has reached the boundary
of one face and should cross over to traverse a new face, a node only needs to check if the line st
intersects with any of its outgoing edges. When a face change is detected, a packet is forwarded
using the right-hand rule with respect to the line st instead of the ingress link. Packets will nat-
urally already contain information about their source and destination, and they only need to store
additional information about the first node they traversed on the current face in order to detect
cycles and non-delivery.

The difference among existing face routing algorithms lies in the manner in which they route
around the planar faces. GPSR uses a deterministic right hand rule when forwarding a packet
along a face, i.e., it will always forward a packet clockwise or anti-clockwise around a void.

GOAFR+ picks a random forwarding direction to start with, but instead of forwarding continuously
along a face, it keeps track of how far the packet has gone along the face and if a packet seems to
have wandered far enough along a face and not made any apparent progress toward the destination,
GOAFR+ will backtrack and try the other forwarding direction. By expanding the area of the
search incrementally, GOAFR+ ensures that the length of the final path traversed is no longer than
a constant multiple of the optimal path.

GPVER tries to pick the optimal forwarding direction when it switches from greedy forwarding to
face traversal by having each node maintain several hops worth of information about its adjacent
planar faces.
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Figure 2-1: Routing from node s to node ¢ with Figure 2-2: An example of the path taken be-
face routing. tween s and ¢.

2.1.2 Theoretical Results on Geographic Face Routing

There has been quite a lot of theoretical work on online routing in triangulations [4], convex sub-
divisions [6], competitive bounds [5] and quasi-planar subdivisions [10].

Bose et al. showed in [4] that a deterministic oblivious (memoryless) routing algorithm exists for
arbitrary triangulations, and in [6] that no deterministic oblivious routing algorithm can guarantee
packet delivery for convex subdivisions. They also showed that there is no competitive online rout-
ing algorithm that is competitive! under the Euclidean metric for arbitrary triangulations, and that
no competitive online routing algorithm exists under the link distance metric even when the graph
is restricted to a Delaunay, greedy or minimum-weight triangulation. Bose et al. later showed [5]
that there exists an O(1)-memory c-competitive routing strategy for a select class of triangles.

Chévez et al. showed that face routing algorithms will work correctly not only for planar graphs,
but also for graphs that are quasi-planar [10].

We had earlier generalized Bose et al.’s result (Theorem 2 of [6]) and showed that no determin-
istic oblivious routing algorithm exists for planar graphs with only local information [52]. The
following theorem is a reformulation of this result:

Theorem 1 For any given non-negative integer h, there does not exist a deterministic
oblivious routing algorithm that guarantees packet delivery for all graphs if nodes are
limited to knowing only those nodes that are up to 4 hops away.

Proof: We construct a set of graphs such that no oblivious algorithm can route correctly in
all the graphs in the set, assuming that the nodes have complete local information only up to A
hops. In the graphs in Figure 2-3 every box O represents an identical chain of h nodes, the other
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Figure 2-3: Counter-examples showing non-existence of oblivious algorithm with limited information.

16 nodes are located at the vertices of a regular decahexagon, and the destination node ¢ is located
at its center.

Suppose, for the sake of contradiction, that there exists an oblivious algorithm A that routes cor-
rectly in all graphs, where the nodes have correct local information up to i hops. We claim that,
according to algorithm A, the gray nodes in all the 3 graphs in Figure 2-3 behave identically.

If not, then in graph 2-3(a) v; forwards clockwise and v;., forwards counter-clockwise and the
packet gets trapped in {v;, v;11, v;12}, since there are no routes from the nodes in the O nodes to ¢.
Note that all the gray nodes have identical local information up to / hops and are symmetric with
respect to the location of ¢.

Let us assume that all the gray nodes forward packets counter-clockwise. Now, node v; cannot
forward a packet towards node x in graph 2-3(b), because then, the packet gets caught in the
{z,v1,v16, V1,02, ...,v5} circuit. From the point of view of node v the graphs 2-3(b) and 2-3(c)
are identical because it has the same local hop information up to h hops. In graph 2-3(c), a packet
from node vs would never enter the inner octagon, and therefore would never reach t. Similar
arguments can be made for the other black nodes by rotating the construction in 2-3(b) and 2-3(c).

|

We conjecture that if nodes have no more than h hops of information, and packets have bounded (fi-
nite) memory, then if there are no constraints on the network, it is not possible to guarantee packet
delivery with a deterministic algorithm. Planar graphs and trees are highly constrained graphs. It
is well known that trees with labeled nodes can be traversed with deterministic termination with a
bounded amount of memory.

There is likely to be a relationship between how memory is divided between the nodes and the
packets. For example, if all the nodes have O(n) memory, where n is the number of nodes in the
network, we can store a full routing table at each node. On the other hand, if a packet is allowed to
carry O(n) information, there is a trivial algorithm to fully traverse the network even if there is no
memory at the nodes. Existing geographic routing algorithms represent a situation where both the
nodes and the packets have memory and hence neither needs O(n) memory to achieve correctness.

'A routing algorithm is c-competitive if the path it finds is less than a factor of ¢ times the shortest path.

24



2.2 Planarization

When Kranakis et al. first proposed Face Routing [46], they only described a routing mechanism
and did not propose a method for constructing planar subgraphs from an existing network connec-
tivity graph. Bose et al. proposed using the Gabriel Graph (GG) [7] as the planar subgraph, while
Karp and Kung suggested using the Relative Neighborhood Graph (RNG) as well [39]. There
are well-established algorithms that allow computing both the Gabriel Graph [20] and Relative
Neighborhood Graph [84] in a distributed way when nodes have only local information. The main
drawback of these algorithms is that they depend on the Unit Disk Graph assumption, which un-
fortunately has been shown not to hold practical radio networks. Other distributed algorithms that
produced planar spanners on UDG graphs have also been proposed. These include the Localized
Delaunay Graph [54] and the Restricted Delaunay Graph [21].

Kuhn et al. first investigated the planarization of topologies that do not obey the UDG-assumption
in [49], and showed that for a class of graphs known as Quasi-Unit Disk Graphs, it was possible
to augment the graph with virtual links to ensure that GG planarization is successful and correct.
In their proposed approach, the nominal radio range is normalized to one and links must exist
between nodes that are less than distance d apart, d < 1. Where links do not exist between nodes
that are between distance d and 1 apart, their algorithm replaces the “missing links” with virtual
links. Their analysis shows that this technique is scalable when d > 1/ V2.

A major breakthrough was made by Kim et al. in developing the Cross-Link Detection Protocol
(CLDP) [42], which produces a subgraph on which face-routing-based algorithms are guaranteed
to work correctly. Their key insight is that starting from a connected graph, nodes can indepen-
dently probe each of their links using a right-hand rule to determine if the link crosses some other
link in the network. CLDP uses a two-phase locking protocol to ensure that no more than one link
is removed at any time from any given face; in this way it guarantees that the removal of a crossed
link will not disconnect the network. While CLDP is able to planarize an arbitrary graph, every
single link in the network has to be probed multiple times and it has a high cost.

Fang et al. proposed an algorithm called BOUNDHOLE that sends probe packets to detect voids
in the routing topology [15]. Related to this algorithm is Brad Karp’s Greedy Perimeter Probing
(GPP) [37] which also uses probe packets to explicitly map the planar faces. These algorithms are
only tangentially related to CLDP and not particularly useful since they assume that a planar graph
exists.

2.3 Other Routing Algorithms for Wireless Networks

In this section, we describe non-location-based routing schemes that have been proposed for wire-
less networks.
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The use of spanning trees for routing in ad hoc networks is not a new idea. Several previous
schemes that use trees for routing have previously been proposed, though none of them exploit
location information like existing geographic routing algorithms.

There are previous routing algorithms for ad hoc networks that use spanning trees, though none of
them leverages location information like GDSTR. Radhakrishnan et al. first proposed the use of
a set of distributed spanning trees for routing in ad hoc wireless networks [72]. Their algorithm
constructs the spanning trees in an ad hoc manner and messages are delivered using a flooding-
based algorithm.

Newsome and Song proposed an approach for routing in sensor networks which embeds a labeled
graph in the network topology [61]. They proposed Virtual Polar Coordinate Routing (VPCR),
which routes packets on what they refer to as an embedded ringed tree graph. VPCR was evaluated
in a regime where the average node degree is about 15, and was found to achieve a stretch (which
the authors refer to as dilation) of about 1.2. This does not compare favorably with geographic
routing algorithms, since in the same regime, geographic routing algorithms are able to achieve
unit stretch almost all the time. However, considering that VPCR does not require nodes to have
access to location information because it assigns its own virtual polar coordinates, the achieved
performance is reasonably good.

Beacon Vector Routing (BVR) [19], GLIDER [16], and HopID [89] are routing algorithms that
employ a set of landmark nodes (beacons). Coordinates are assigned to nodes based on their hop
count distances to the beacons. Routing is done by minimizing a distance function to these coor-
dinates. When a packet is trapped at a local minimum, they resort to scoped flooding. The major
drawback of this approach is that it requires a large number of beacons (about 40) to achieve rout-
ing performance comparable to geographic routing algorithms. It is also somewhat cumbersome to
have to specify a destination with a large set of distance vectors, and it may be costly to keep updat-
ing a node’s coordinates when distance vectors change over time under network churn. Caruso et
al. proposed a virtual coordinate algorithm called VCap that finds three extremal-rooted landmark
nodes to generate three dimensional coordinates [9]. This is another variant of the landmark node
scheme. Since it uses only 3 landmarks, it performs extremely poorly in sparse networks.

A common application of the spanning tree in the wired domain is the Ethernet spanning tree.
The Ethernet spanning tree is not efficient for large networks because packets often have to be
routed through the root of the tree. GDSTR does not suffer from the same problem, for several
reasons. First it usually forwards packets greedily; the spanning tree is used only to route around
voids and GDSTR reverts to greedy forwarding as soon as it is safe to do so. Second, the location
information in the tree allows it to route efficiently. Finally, the location information also allows it
to avoid routing through the root.

Existing ad hoc routing algorithms that are not position-based (geographic) can be classified as
either proactive, reactive or hybrid [57]. Proactive algorithms employ classical routing strategies
such as distance-vector routing (e.g. DSDV [69]) or link-state routing (e.g. OLSR [34], TBRPF
[64]) and maintain routing information about available paths in the network even if such paths
are not currently used. Reactive algorithms on the other hand, maintain only routes that are in
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use, and thereby reduce the overhead of maintaining and exchanging routing information in the
network (e.g. DSR [35], AODV [68], TORA [66,67]). Reactive protocols will typically require
route discovery and therefore incur some delay before the first packets in a session are exchanged.

Shortest-path algorithms like Distance Vector (DV) [69] and Link State (LS) [34, 64] require each
node to have O(N) memory; where NN is the number of reachable destinations. On-demand al-
gorithms [35, 66, 68] require a node to have memory at least proportional to the number of its
destinations, and often more if aggressive caching is employed [35].

The Zone Routing Protocol (ZRP) [25] is a hybrid algorithm that expands the amount of state
stored at a node to a local neighborhood up to a fixed number of hops away. ZRP requires both
a route discovery mechanism and query control protocol to work efficiently [26]. Other similar
protocols include the limited-radius variant of DSDV [69] and a modified k-hop DSDV variant
proposed by De Couto and Morris [12].

2.4 Geocast in wireless ad hoc networks

Geocast was first suggested by Navas and Imielinski [60]. In the geocast model, nodes are each
assigned geographic coordinates. Packets have geographic destination addresses represented by a
closed polygon and are delivered to all the nodes with coordinates that lie within the polygon. In
their work, Navas and Imielinski developed a geocast system that works on Internet hosts equipped
with GPS devices.

Ko and Vaidya first investigated the problem of geocast in mobile ad hoc networks [43] and pro-
posed the use of a “forwarding zone” to decrease the delivery overhead of geocast packets. Like
GDSTR+, GeoGrid [56] partitions the geographic area into a logical 2D grid.

Huang et al. proposed a spatiotemporal version of geocast, called mobicast, for sensor networks
as a new communication abstraction [29]. These approaches are similar in that they are flooding-
based approaches. Flooding is likely to be costly in dense networks. Huang et al. subsequently
proposed a variant of their mobicast algorithm that is based on face routing [30]. It exploits the
properties of planar graphs to provide delivery guarantees and reduce overhead. Since distributed
planarization is costly [42,51], their approach is likely to be costly even though the message over-
head of the geocast protocol may be low. Mobicast is not directly comparable to geocast because
it involves a temporal component.

2.5 Virtual Coordinates

Rao et al. had earlier proposed the NoGeo family of coordinate assignment algorithms for ad hoc
wireless networks [73]. In the most general version of their algorithm for systems where nodes
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have no location information, they designate two nodes as beacon nodes. Next, nodes determine
if they are perimeter nodes from a heuristic based on their hop count from the beacons. Once
the perimeter nodes are determined, O(p*) messages are exchanged, where p is the number of
perimeter nodes, and the perimeter nodes use an error-minimization algorithm to compute their
coordinates. Finally, the perimeter nodes are projected onto an imaginary circle and nodes deter-
mine their virtual coordinates using a relaxation algorithm that works by averaging the coordinates
of neighboring nodes.

Although NoGeo has been shown to work well for dense networks, it does not work as well for
sparse networks and for networks with many obstacles. Also, NoGeo requires global coordination
to determine and compute coordinates for the perimeter nodes. This makes the algorithm compli-
cated to deploy and debug for large systems: for example, care must be taken to ensure that each
perimeter node obtains the full set of vectors to allow them to compute mutually consistent starting
positions. New nodes that join the system at physical locations outside the initial perimeter of
the system will also tend to get “flipped in”. In contrast, GSpring is a fully online algorithm and
amenable to the incremental addition of nodes without any need for periodic system reset or any
global coordination.

Papadimitriou and Ratajczak conjectured that any planar 3-connected graph can be embedded in
the plane in such a way that for any nodes s and ¢, there is a path from s to ¢ such that the Euclidean
distance to t decreases monotonically along the path. A consequence of this conjecture is that in
any ad hoc network containing such a graph as a spanning subgraph, two-dimensional virtual
coordinates for the nodes can be found for which the method of purely greedy geographic routing
is guaranteed to work [65]. While only tangentially related to GSpring, Theorem 2 of [65] inspired
the early ideas for GSpring.

Fang et al. proposed a local rule called the TENT rule to detect whether a node can be a dead-end
for a packet in unit disk graph networks [15]. In the TENT rule, all the 1-hop neighbors of a node
n are ordered counter-clockwise. For each pair of adjacent nodes u and v, a pair of bisectors are
drawn of nu and nv, which intersect at a point p. The claim is that if p lies beyond the radius of
communication for n, then n is a node at which a packet could possibly get stuck. n is referred to
as a strong stuck node.

2.5.1 NodeLocalization

There is a large body of work on the closely-related node localization problem for ad hoc wireless
networks [8,13,58,63,70,76-78]. In this problem, the goal is to assign coordinates to a set of non-
location-aware wireless nodes in a distributed way so that they correspond as closely as possible
to the actual physical coordinates. Although the node localization problem is significantly more
stringent than the problem that GSpring attempts to solve, solutions to this problem are of interest
because the methods and algorithms employed are also applicable for deriving virtual coordinates.

Solutions to this problem can be characterized according to (i) whether some location-aware anchor
nodes are available, and (i1) whether the schemes are incremental or concurrent, as follows:
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e Anchor-based algorithms. These algorithms require the availability of a minimum num-
ber or fraction of location-aware nodes in the network. It turns out that a large number of

anchor nodes are usually required for such algorithms to derive coordinates with acceptable
errors [8,13,63,76-78,78].

e Anchor-free algorithms. These algorithms use only local distance information to derive
coordinates when nodes have no pre-configured location information [58, 70, 76].

e Incremental algorithms. These algorithms start with a small number of nodes that have
assigned coordinates, and nodes are incrementally added to this set by computing their co-
ordinates from the previously computed coordinates, e.g., ABC [76].

e Concurrent algorithms. These algorithms calculate and compute the coordinates for all
nodes in parallel [8], e.g., Terrain [76] and Hop-Terrain [77].

In general, node localization has been found to be difficult under three scenarios: (i) anchor nodes
are closely co-located or too few in number (for anchor-based algorithms. This is also known as the
sparse anchor node problem), (ii) sparseness in the network (i.e., nodes are relatively far apart and
have few neighboring nodes), and (iii) errors in the locations of the anchor nodes or measurement
of inter-nodal distances. These scenarios also adversely affect the performance of GSpring to some
extent. The following is a brief survey of some existing node localization algorithms.

Nagpal et al. proposed an anchor-based algorithm for localization that works in a dense network
with average node degree 15 or greater [59]. A number of seed nodes that know their locations are
scattered in the network and the non-location-aware nodes attempt to estimate their locations by
minimizing the errors based on their hop counts to these seed nodes using gradient descent.

Doherty et al. proposed an anchor-based algorithm for localization using only connectivity con-
straints among beacons [13]. Their approach achieves good error rates only when there is a rela-
tively large number of anchor nodes (more than 40) and when the network density is high.

Bulusu et al. proposed an anchor-based scheme that uses the radio connectivity of a node to a
square grid of location-aware anchor nodes to determine its coordinates [8]. The coordinates of
non-anchor nodes are calculated as the centroid of all the anchor nodes that are within radio range.
Their algorithm is a concurrent algorithm that can achieve about a 12% localization error with 12
anchor nodes per non-anchor node, which is a significant number and practically infeasible.

Savarese et al. proposed an incremental anchor-free algorithm called ABC [76]. ABC selects
three in-range nodes and assigns them coordinates to satisfy the inter-node distances (which are
measured a priori). The algorithm then incrementally calculates the coordinates of the remaining
nodes with the already calculated coordinates. The authors report that with a range error of 5%
that they are able to obtain an average position error of 60%.

Savarese et al. also proposed an anchor-based algorithm called Terrain [76]. The Terrain algorithm
starts with the ABC algorithm, but instead of performing incremental computation, their algorithm
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performs a concurrent optimization using the distances to the anchors and also the anchors’ coor-
dinates. The authors report that they were able to achieve 25% average position error with a range
error of 5%.

Savarese et al. subsequently proposed a two-phase Variant of their Terrain algorithm in [77]. In the
first stage, the algorithm uses a variant of the Terrain algorithm called Terrain-hop that is robust
against ranging errors. In the second phase, the algorithm performs a simulated-annealing-based
simulation and they are able to achieve a 12% average position error with a range error of 5%.

Savvides et al. developed a system called AHLoS (Ad-Hoc Localization System) that uses an two-
phase anchor-based localization algorithm [78]. During the first estimation phase, nodes without
location information will use ranging information and known beacon node locations in their neigh-
borhood to estimate their locations. Node distances are estimated from the received signal strength
and coordinates are obtained by solving a set of over-constrained equations. Once a node has
initialized its location, it will assist other nodes by propagating its location estimate through the
network. Their algorithm is able to produce position errors within 20 cm of the actual position
when the ranging error is small (about 2 cm). However, about 10% of the nodes in the network are
required to be anchor nodes.

Niculescu et al. proposed an anchor-based distributed algorithm that uses angle-of-arrival for lo-
calization [63]. In their algorithm, nodes iteratively obtain position and orientation information
starting from the anchor (landmark) nodes. A potential problem with their approach is that the
angle of arrival tends to be difficult to measure in practical networks.

Priyantha et al. proposed an anchor-free algorithm where nodes start from a random initial coor-
dinate assignment and converge to a consistent solution using only local node interactions [70].
They estimate the network’s global layout using communication hops and subsequently a force-
based relaxation to optimize this layout.

Moore et al. proposed an anchor-free localization algorithm that uses the notion of robust quadri-
laterals to avoid flip ambiguities that may corrupt localization computations [58]. Like AFL, their
algorithm requires that nodes are able to estimate their distances from their neighbors.

2.5.2 Other Virtual Coordinate Algorithms

Virtual coordinate assignment schemes have also previously been proposed for Internet appli-
cations, with a view to using the coordinates for estimating Internet roundtrip times (RTTs).
GNP [62] is a centralized system that uses a small number (5 to 20) of landmark nodes and co-
ordinates are chosen based on the RTT measurements to these landmarks. Big Bang [80] and
Vivaldi [11] are two schemes that also derive coordinates by simulating physical systems. The for-
mer simulates particles moving in a force field with friction, while the latter is similar to GSpring
and simulates a physical system of springs.

30



Also closely related to our work are some geographic routing algorithms based on non-Euclidean
coordinate systems. Newsome and Song proposed a routing algorithm based on virtual polar coor-
dinates called VPCR [61]. VPCR works relatively well, but it can incur significant overheads under
node and network dynamics. Others include Beacon Vector Routing (BVR) [19], GLIDER [16],
HopID [89] and VCap [9], as described above.
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Chapter 3

Greedy Distributed Spanning Tree Routing
(GDSTR)

In this chapter, we describe Greedy Distributed Spanning Tree Routing (GDSTR). We describe
hull trees, explain how they are used for routing, and how they are built and maintained. We also
describe how hull trees can be used to implement geocast and approximate routing and GDSTR+,
a variant of GDSTR that achieves superior routing performance for dense networks with small
voids.

3.1 Overview

Like previous geographic face routing algorithms, GDSTR forwards packets using simple greedy
forwarding whenever possible. It switches to forwarding on a spanning tree only to route packets
around “voids,” and escape from a local minimum. It switches back to greedy forwarding as soon
as it is feasible to do so.

The reason GDSTR is able to guarantee the delivery of packets in a connected network is that
the tree traversal forwarding mode is guaranteed to deliver the packet to any node in the network
without greedy forwarding. In other words, even though greedy forwarding tends to be the more
common forwarding mode in practice, we can think of the tree traversal forwarding mode as the
basic routing algorithm and greedy forwarding as a best effort first try because it tends to be more
efficient, if it works [87].

It is well-known that, given a spanning tree that contains all n nodes in a network, we can suc-
cessfully deliver a packet to any node in the network by traversing the tree in a manner similar to
a depth-first search as shown in Figure 3-1(a). This traversal requires no state to be stored in the
packet and guarantees that a packet will be delivered in no more than 2n — 3 hops. If the specified
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Figure 3-1: Example of a spanning tree and a hull tree. Although convex hulls are polygons, for simplicity
they are represented with ellipses in Figure 3-1(b).

destination is not found in the tree, then we can terminate the traversal in exactly 2n — 2 hops if
we store information about the starting node in the packet.

A major contribution of our work is the definition of a new distributed data structure, an augmented
spanning tree that we call a hull tree, that allows us to restrict the above search problem to a small
subtree of the full spanning tree for a given destination, thereby guaranteeing packet delivery in
much fewer than 2n — 3 hops.

3.1.1 Hull Trees

A hull tree is a spanning tree where each node has an associated convex hull that contains the
locations of all its descendant nodes. Hull trees provide a way of aggregating location information
and they are built by aggregating convex hull information up the tree. This information is used in
routing to avoid paths that are not productive; instead we traverse a significantly reduced subtree,
consisting of only the nodes with convex hulls containing the destination point. An example of a
hull tree corresponding to the spanning tree shown in Figure 3-1(a) is illustrated in Figure 3-1(b).

Each node in a basic hull tree stores information about the convex hulls that contain the coordinates
of all the nodes in subtrees associated with each of its child nodes. The convex hull information is
aggregated up the tree. Each node computes its convex hull from the union of its coordinate and
the points on the convex hulls of all its child nodes, and this information is communicated to the
parent node. Consequently, the convex hull associated with the root node is the convex hull of the
entire network and contains all the nodes in the network.

The convex hull for a set of points is the minimal convex polygon that contains all the points; it is
minimal because the convex hull will be contained in any convex polygon that contains the given
points. The hull is represented as a set of points (its vertices), and this set could be arbitrarily
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Figure 3-2: Procedure to reduce the size of a convex hull.

large. To ensure that the convex hulls use only O(1) storage instead of O(n) storage, where n is
the network size, we can limit the number of vertices for a convex hull to a maximum of r points.
To reduce a convex hull with s vertices to a smaller one with s — 1 points, we can project the
boundary lines to form an adjacent triangle at every face. We pick the smallest triangle in this set
of s triangles and add that triangle to the hull as illustrated in Figure 3-2.

Limiting the number of points on the convex hulls allows us to save storage, but the resulting hulls
will be larger and this increases the probability that the hulls of two siblings nodes in a tree will in-
tersect. Intersections between convex hulls are undesirable because they introduce ambiguity in the
routing process and make it less efficient. However, our experiments (described in Section 4.2.1)
show that routing behavior is not affected by using as few as 5 points to represent a hull.

3.1.2 Routingwith Hull Trees

To route packets on a hull tree, we forward a packet to child nodes that have a convex hull con-
taining the destination. If none of the child nodes have convex hulls containing the destination,
we know that the destination is not reachable down the tree, so we forward the packet up the tree.
Figure 3-3(a) shows what happens when node n3 sends a packet to node ns: since ns is not in n3’s
convex hull, the packet will be forwarded up the tree to n, and from there to n., since its convex
hull contains the destination.

One minor complication that can arise is that the destination may lie in the intersection of the con-
vex hulls of two child nodes. In this case, we can still guarantee packet delivery by systematically
searching all the subtrees that have convex hulls containing the destination. This situation is illus-
trated in Figure 3-3(b). In this example, node ng sends a packet to n;. The packet is first forwarded
up the tree to the root n; since the convex hull of n5 and ng do not contain ns. At n, there are
two child nodes n, and n4 that have convex hulls containing n;. Node n; does not have sufficient
information to decide which child node is the better choice, so it sorts ny and n4 in some arbitrary
order, and forwards the packet to the first node in the sequence (which turns out to be n, in this
example). When ny4 receives the packet, it realizes that the convex hulls of its child nodes do not
contain njy, and so the packet is returned to n;. Since n; receives the packet from n4, 7, concludes
that the destination cannot lie in the subtree for n, and tries the next possible option and forwards
the packet to ns. This time, the packet is successfully forwarded down the tree to ns.
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Figure 3-3: Routing over sample hull trees. Some child nodes are omitted to avoid clutter. The destination
of the forwarded packet is marked with a cross (applicable to (c) only).

If it turns out that the destination specified by a packet does not correspond to a node in the network,
the above traversal process would not terminate. However, by recording the node at which we start
the tree traversal in the packet, we can conclude that a packet is undeliverable when we come back
to that node. This termination condition is analogous to that used to terminate traversal of planar
faces by existing geographic face routing algorithms.

Figure 3-3(c) illustrates an example involving an undeliverable packet. Suppose node n, sends
a message to an unreachable destination z, and initially this packet is routed greedily to n,, and
then to ny, which is a local minimum. At this point, nj5 records itself in the packet and switches to
routing in tree forwarding mode. The packet is forwarded on the subtree consisting of the nodes
with hulls that contain the destination (which in our example are the nodes 71, 1y, n3 and ns). The
packet is first sent to the parent node n, and from there to n;. The destination is contained in the
convex hulls of both of n;’s child nodes, but since the packet was received from n., it is forwarded
to ng. After forwarding over subtrees of ng (not shown on the diagram), the packet is returned to
n1, which forwards it to no, its first child whose convex hull contains the packet. n, forwards the
packet to n5. At this point, n5 sees that it is the originator of the tree traversal and hence concludes
that the packet is undeliverable.

In the above discussion, it should be clear that the convexity of the hulls is not a requirement for
correctness. In fact, the key purpose of the hulls in the hull tree is to maintain a summary of the
area that contains the points in each subtree. The reason we choose to use convex hulls is that
it turns out that the convex hull is a relatively compact representation for a set of points and it is
relatively easy to perform mathematical computations like the checking of containment of points
and finding intersections. It is plausible to use non-convex hulls or other shapes like circles and
ellipses to summarize the regions covered by each subtree.
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Figure 3-4: An example showing the child convex hulls and conflict hull for node 7.
3.2 Conflict Hulls: Optimization for Undeliverable Packets

When performing tree traversal on the basic hull tree described in Section 3.1.1, the search subtree
always includes the root node. Even after a node has exhaustively searched all its child subtrees, it
still does not know whether there exists a convex hull in a distant branch of the tree that contains
the destination. It therefore has no choice but to forward the packet to its parent node. This process
can only stop at the root because the root node is the only node in the system that has sufficient
(global) information to make an authoritative decision.

An obvious way to remedy this situation is to propagate information from the root down the tree
so that each node can make authoritative decisions. We achieve this by having each node maintain
information about the set of convex hulls H that intersect with its own convex hull. We refer to
these hulls as conflict hulls.

More precisely, each node stores conflict hulls for nodes with which it shares a common ancestor,
where that node is immediately below the common ancestor, and has a convex hull that intersects
with its hull. We illustrate this with an example in Figure 3-4. In addition to the convex hulls of
its child nodes n4 and ns, node ny will record the convex hull of n3 as its conflict hull. Similarly,
node nz will also record the convex hull of ns as its conflict hull.

The conflict hull information is propagated down the tree as follows: an intermediate node (or node
that is not a leaf node) broadcasts the convex hulls of its child nodes and its own set of conflict
hulls. The child nodes will record the set of convex hulls of its siblings and the conflict hulls of
its parent that intersect with its own convex hull as its set of conflict hulls. The conflict hulls of
its parent that do not intersect with its own convex hull are ignored. This is a somewhat coarse-
grained scheme; a more specific scheme would be to check if the hulls broadcast by the parent
intersect with any of the convex hulls of the child nodes and store only the ones that intersect. It
turns out that just considering the associated hull for a node works well in practice and we can
avoid additional computations.

These conflict hulls are helpful for the following reason: in the basic hull tree, nodes are not
authoritative over their convex hulls because it is possible for a point within its convex hull to be
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reachable through a distant branch of the tree. With conflict hulls, nodes are now able to determine
the set of points that are possibly reachable through a distant branch of the tree at a finer granularity.
In particular, a node is now completely authoritative over the set of points in its convex hull that do
not lie in the intersections between its convex hull and its conflict hulls. Ambiguity remains only
for the points that lie within the intersections between its convex hull and the conflict hulls.

With this additional information, a node that receives a packet from its last child during tree traver-
sal will check if any of its conflict hulls contain the destination. If not, it will forward the packet to
its first child instead of the parent. Effectively, convex hulls allow us to prune search paths down
the routing subtree during tree traversal and the conflict hulls allow us to prune some paths up the
tree.

Impact on Storage. With the basic hull tree, we can ensure that the each node requires only O(1)
storage, relative to total network size. The number of convex hulls stored at each node is no more
than the number of neighbors, and the size of each individual hull can be kept bounded as described
in Section 3.1.1. By augmenting the hull tree with conflict hulls, we can no longer bound the total
storage requirement on each node. In the worst case, it is possible that each node may have to
maintain O(N) state for the conflict hulls.

In the same way that the storage requirement for convex hulls can be limited by using convex
hulls with fewer points, the storage requirement for conflict hulls can be reduced by storing a
conflict hull that is the union of all the conflict hulls, when there is more than one conflict hull. As
before, there is a possible tradeoff in routing efficiency. With a larger conflict hull, the intersection
between the conflict hull and a node’s convex hull will likely be larger and hence the set of a
node’s authoritative set is reduced accordingly. Another possibility is to store only the intersection
between the conflict hull and the local convex hull, if it saves storage. This will however require
additional computation.

The number of conflict hulls is dependent on the topology of the network and on the chosen tree
building algorithm. In practice, the number of conflict hulls generated by our chosen tree building
algorithm is usually very small (no more than 2 or 3) and the additional storage requirement is
modest. This is because of the way that we build the tree.

3.3 Multiple Hull Trees: Offering More Routing Choices

Kuhn et al. have shown that in evaluating the performance of geographic routing algorithms, it is
critical to study their routing performance for random topologies with average node degrees in the
region between 4 and 8 [47] (also called the critical region) because geographic routing algorithms
are almost always uniformly good for both very sparse and very dense random networks.

The main factor that affects routing performance for topologies in the critical region is the voids,
and the key difference between existing geographic routing algorithms is the manner in which
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Figure 3-5: An example illustrating the benefits of two trees when traversing a void.

they route around these voids. There are often two forwarding choices around a void (clockwise
and counterclockwise), both correct. The key difference is that one path is longer than the other.
Choosing the longer path will hurt routing performance.

Figure 3-5 illustrates the last point. Suppose that node n; in Figure 3-5(a) needs to route a packet
around a void to n,. A face routing algorithm is likely to have a face exactly corresponding to
the void, and must choose between routing clockwise or counterclockwise. While the forwarding
direction does not affect correctness, it can be costly when a bad choice is made. In this example,
the optimal choice is counterclockwise. While having some local face information (information
about a bounded number of hops along each face) allows a face routing algorithm to pick the
optimal direction fairly often [52], it is not possible to guarantee that the optimal routing direction
will be picked when the void is large and a node only has access to the topology information of its
immediate vicinity in the network.

Figure 3-5(b) shows that if we only have one hull tree rooted at ry, n; would be forced to route
clockwise. However, if we have two hull trees as shown in Figure 3-5(c), and the other tree is
rooted at r,, at the opposite end of the network, n; is presented with the other choice as well.
This example demonstrates how two trees rooted at opposite ends of a network can effectively
“approximate” a planar face and offer approximately the same choices as that available to some
face routing algorithms.

While it is true that having more hull trees provides more options and will not hurt routing perfor-
mance as long as we are able to choose wisely, there is a cost associated with maintaining more
trees. It turns out that with two extremal-rooted trees, GDSTR is usually presented with both rout-
ing choices around voids in the network. Hence, GDSTR maintains two hull trees. This decision is
validated with our simulations that demonstrate that we can achieve only a marginal improvement
in routing performance with more than two hull trees.

If any of the convex hulls contain the destination point, a node is able to determine the correct
forwarding direction from this hull. Otherwise, the more favorable forwarding direction around
a void can be determined by choosing the tree with a root that is nearest to the destination. The

38



na no

ny ny

(a) (b)

Figure 3-6: An example illustrating why GDSTR imposes an overhead compared to face routing.

reason this works is that when none of the trees have convex hulls that contain the destination, the
packet will be forwarded up the tree. Choosing a tree with a root that is nearer to the destination
will often cause the packet to be forwarded in the correct general direction of the destination most
efficiently.

In contrast, face routing algorithms only maintain information about the nodes within a small local-
ized vicinity and this is often insufficient to pick the correct forwarding direction in sparse networks
with large voids. For this reason, GDSTR is expected to achieve superior routing performance in
such networks.

For dense networks with small voids, it generally does not matter which forwarding direction is
picked. However, it turns out that tree routing does not traverse a void quite as efficiently as face
routing and incurs a slightly higher overhead. This is illustrated in Fig. 3-6. Suppose that node 7,
in Fig. 3-6(a) needs to route a packet around a void to n,. A face routing algorithm is likely to
have a face exactly corresponding to the void as shown in Fig. 3-6(a). On the other hand, because a
tree is unable to “approximate” the void exactly, routing around the void using the tree will require
the packet to take a short detour and incur some additional routing overhead as shown in Fig. 3-
6(b). For this reason, GDSTR is expected to perform marginally worse than face routing in dense
networks with small voids. We present a solution to address this problem in Section 3.8.

Finally, using a single tree as the basis of routing is inherently fragile. If the root node fails, the
entire tree may collapse and have to be rebuilt, and while this is happening, routing will not work
well. Hence, in addition to offering additional routing choices, maintaining multiple trees also
provides some degree of resilience to such network changes.

3.4 Building & Maintaining Good Hull Trees

In previous sections, we discussed the key ideas and insights for GDSTR. In this section, we
will discuss how to build hull trees that yield good routing performance. Hull trees are built in
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Figure 3-7: Examples of “bad” and “good” trees.

two steps. First, we construct a basic spanning tree and then, the convex and conflict hulls are
determined from the topology of the spanning tree.

GDSTR will work correctly with any distributed spanning tree. However, routing performance will
be best if there is minimal overlap among the convex hulls of different tree branches. Intuitively, we
want trees that are geographically “compact” in order to avoid intersecting convex hulls. Figure 3-
7 illustrates this idea. While the coordinates of the nodes in both Figures 3-7(a) and 3-7(b) are
the same, the tree configuration in Figure 3-7(a) creates an undesirable intersection in the hulls for
nodes n; and n,. From these examples, it is clear that we want to build trees that cluster nearby
nodes in the same subtree.

In addition, we want a hull tree that will conform closely to the shape of the voids in the network,
i.e., “wrap” around the voids, so that we can route around voids in the smallest number of hops.
Also, when we have two hull trees, we want the two hull trees to provide complementary paths
around each void. We found that we can achieve the former by choosing the right spanning tree
algorithm and the latter by rooting the hull trees at the extreme ends of the network.

3.4.1 Building the Spanning Tree

After evaluating a number of spanning tree algorithms, we found that the minimal-depth tree yields
the best routing performance. The minimal-depth tree is constructed by having each node choose
the neighbor with the minimal number of hops to the root as its parent. When a node has a
choice between multiple neighboring nodes that are the same number of hops from the root, the
nearest node is chosen preferentially. The details and simulation results for the other spanning tree
algorithms are contained in Appendix A.

With hindsight, it is not surprising that the minimal-depth tree yields the best routing performance.
Firstly, the minimal-depth tree tends to choose the shorter links preferentially. If we refer to the
example in Figure 3-7, it should be clear that shorter links reduce the occurrences of “crossing”
links. This results in trees with subtrees that are more clustered together, thereby reducing the
probability of intersections between convex hulls, and generating fewer conflict hulls.
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Figure 3-8: An example of the interaction between min-depth tree and routing void. The dashed lines
indicate the shape of the void.

In Figure 3-8, we see an example of how the min-depth tree interacts with a void in the routing
topology. We call the region of the void nearest of the root of the tree, the uptree region. In this
region, the edges of the void are not edges in the hull tree and hence routing around this region
involves routing up and down the tree. For the remaining parts of the void, all the edges (except
one) are part of the min-depth tree. Because the min-depth tree yields the shortest paths between
each node and all of its ancestor nodes, tree traversal is efficient along these regions.

Because spanning trees do not contain cycles and yet must contain all nodes in the network, we
know that there is exactly one edge on the far side of the void from the root that is not an edge in
the tree. We call this the missing link. This missing edge restricts packet forwarding along the void
using this hull tree to only one direction. Given two hull trees, we observe that as long as the two
trees do not share the same missing link, they will together allow the void to be traversed in both
directions (clockwise and counterclockwise) around the void.

To increase the probability of generating hull trees that cover disjoint regions of the void, our
approach is to set their roots at opposite ends of the network. In particular, the nodes with the
minimal and maximal x coordinates are chosen as the roots of the two spanning trees. It is easy to
visualize why two trees that are rooted at the extreme = coordinates will tend to meet each void in
the network at different sides. For most topologies, doing so will cause the two trees to “approach”
each void from opposite directions and it becomes highly improbable for them to share the same
missing edge.

To summarize, the choice of the min-depth tree as the underlying spanning tree algorithm allows
us to build hull trees that have fewer intersecting convex hull. The rooting of the spanning trees at
opposite ends of the network ensures that generally the two trees will allow voids to be traversed
in both directions.

The spanning tree algorithm makes few assumptions about radio behavior. The only requirement
is that nodes must agree on whether they are neighbors. GDSTR is also robust against location
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errors [79], because if a node has a wrong location, the hulls in its part of the hull trees will grow
to include the node’s wrong location. When greedy routing to that node hits a dead end, the tree
traversal will eventually route to the tree branch that includes the node because of the large hull.

3.4.2 Building Hull Trees

Each node broadcasts a keepalive message periodically to inform its neighbors of its location. In
each message, the node includes its view of the root of each tree and its distance in hop count
from each root. Through these exchanges, all the nodes will eventually come to a consensus as
to which nodes should be the roots; each node will also know its hop count from the root. The
inter-beacon transmission interval is jittered by up to 20% to avoid synchronization between the
transmissions of neighboring nodes [18]. Given a mean inter-beacon interval 7', the actual inter-
beacon transmission intervals are uniformly distributed in [0.87", 1.277].

Once the tree has been formed, each node broadcasts its chosen parent node as well as its convex
hull. To compute its convex hull, a node determines the minimal convex hull that contains the union
of the convex hulls of its children in that tree and its own coordinate. The convex hull information
is aggregated up the tree.

The convex hull for a set of points can be computed in O(n logn) operations using the Graham’s
Scan algorithm [23]. As the number of points in the set increases, it achieves the optimal asymp-
totic efficiency of O(nlogn) time.

Algorithm 1 (Graham’s Scan) Given a set of points S and an empty stack V.

1. Select the rightmost lowest point p, in S. Set p[0] := py and i := 2.

2. Sort S according to the angle that each point makes with the horizontal line
through pg, with p, as a center. For ties, discard the points that are closer to py.

3. Let p[-] be the sorted array of points. Push p[0] and p[1] onto stack V.

whilei < N {
Let p; be the first point on the top of stack W.
Let p, be the second point on the top of stack W.
if (p[i] is strictly left of the line py to py) {
Push p[i] onto W.
increment ¢

} else {
Pop the top point p; off the stack W
}

}

The points contained in the stack ¥V form the convex hull of S.
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Once the root acquires hulls from all its children, each node determines the set of conflict hulls H
and adds this information to its keepalive messages. Information about the conflict hulls is propa-
gated down the tree starting at the root; each node in turn informs its children about intersections
between their hulls and other known hulls. Once the information about the conflict hulls has prop-
agated down to the leaves of the tree, the tree is fully built and consistent. This algorithm (like
other tree building algorithms) takes at most 3D rounds of message exchanges to complete, where
D is the diameter of the network graph.

3.4.3 Maintaining & Repairing Hull Trees

We use the same algorithm to repair a tree when nodes fail. If the mean inter-message interval is
T seconds, even in the worst case where the root of a tree fails, a hull tree can be restored within
3T'D seconds. To speed up tree repair and recovery, we can trigger immediate transmissions in
place of regular messages when a node failure is detected.

A node concludes that a neighbor has failed when it does not hear from it after a pre-determined
multiple of the keepalive message interval. If the failed node is a child, a node will reduce and
update its convex hull; if the failed node is a parent, a node will choose a new parent. In either
case, it sends the new information in its next keepalive message. When the (new or old) parent
hears about the changes, it will update its state accordingly.

Hence, it is straightforward to update the routing state when anything changes in the system. When
a node hears the keepalive message from a neighbor, it updates its own state and the information
that it broadcasts in its subsequent keepalive message. If nothing changes, a node does not need to
update anything.

In fact, a node only has to broadcast its hull tree information when there are changes to the state
of its hull trees. If nothing changes after the same hull tree information has been sent for several
rounds, subsequent keepalive messages will contain only the node’s identifier and location. When
there is a change in its hull tree information, a node resumes broadcasting its hull tree information
for another few rounds.

Our approach is simple and robust. However, it is perhaps instructive to consider the minimal num-
ber of broadcasts that are required to build a hull tree if we could synchronize the communication
of the nodes perfectly. To broadcast the identity of a root node and its associated hop count, each
node requires one broadcast (if they do it in exactly the right order). Similarly, one broadcast is
required to aggregate the convex hull information from the leaf nodes and for the root to broadcast
conflict hull information down to the leaf nodes. The minimal total number of broadcasts is 3n,
where n is the total number of nodes and we would expect that a reasonable implementation of the
hull tree building algorithm to require O(n) messages.

43



3.5 GDSTR: Geographic Routing with Hull Trees

In this section, we describe the details of the GDSTR routing algorithm.

Since there are two hull trees, a tree must be chosen when a packet switches from greedy forward-
ing to tree forwarding mode. Also, there are different heuristics that can be employed with regard
to the ordering of neighbors/child nodes during tree traversal and the choice of hull tree when some
hull tree contains the destination and when none of them contains the destination. A study of how
these heuristics affect routing performance is presented in Appendix A.

In summary, we found that the following simple heuristic works best for choosing a hull tree when
we switch from greedy forwarding to tree traversal:

1. If some child node has a convex hull containing the destination node, pick any tree from the
set of trees with such nodes.

2. Otherwise, if none of the child nodes (in any tree) have convex hulls that contain the desti-
nation node, pick the tree with the root that is nearest to the destination.

The following is a precise description of GDSTR that incorporates the use of multiple trees and
the set of conflict hulls H. A GDSTR data packet p is tagged with the following state components:

e mode: current forwarding mode (Greedy/Tree),
® n,:n. Node visited that is nearest to destination,
e tree: identifier for chosen forwarding tree,

® Nnchor: tree traversal anchor node.

Nmin 18 the node at which a packet switches from greedy forwarding to tree traversal. It is used to
determine when routing should revert to greedy forwarding. 74,,ch0 1S Used to mark the termination
point for tree traversal. It is set when a packet first changes to Tree Traversal mode and updated
when a packet is forwarded down a subtree for which forwarding up to the parent would not be
productive. While n,,;, is often the same as n4,.x.r, they are occasionally not the same node.
Nmin 18 Used by a node to determine whether is it safe for a packet to revert to greedy forwarding
mode and 74,cho- 18 Used to determine if the packet is undeliverable during tree traversal. In
particular, when a packet is forwarded to a child node that does not have a conflict hull containing
the destination, the child node is set as the new anchor node 7 ,,chor-

Algorithm 2 (GDSTR) When a node v receives packet p for destination node ¢ from
a neighboring node w, do:
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1. Preliminary Checks:

(a) Packet Delivery: If v = t, the packet has been delivered.

(b) Check for switch to Greedy mode: If p.mode # Greedy and there is
at least one immediate neighbor w such that |wt| < [(p.7min)t|, then set
p.mode := Greedy, p.n,,;, := w and clear p.nq,.no» and p.tree if they are
set. Execute step 2 or 3 according to p.mode.

2. Greedy Mode: Find the node w in the set of immediate neighbors that is closest
to the destination ¢.

(@) Greedy Forwarding: If |wt| < |vt|, set p.n..,, :== w and forward the packet
to w.

(b) Switch to Tree Traversal Mode: Choose one of the hull trees for for-
warding and set p.tree to the chosen tree’s identifier, p.mode := Tree and
D-Nanchor := v. Then, find the set of child nodes with convex hulls that con-
tain the destination ¢.

e If set is non-empty, arrange the child nodes (relative to p.tree) with
convex hulls that contain the destination point in an ascending sequence
according to the global ordering of node identifiers and forward the
packet to the first such child node.

e Else, forward the packet to the parent node in p.tree.
3. Tree Mode: If the root for p.tree has changed, follow step 2(b), else follow
step 3(a).
(a) Check Termination Condition: Conclude that packet is not deliverable if

v = p.anchor and one of the following conditions holds:

(i) w is the last child and v is the root node for p.tree;

(ii) w is the last child and the set of conflict hulls H does not contain desti-
nation node ¢; or

(iii) w is the parent node.
(b) Tree Traversal: Execute step (i), (ii) or (iii) according to the node « from
which packet was received.

(i) w is a child node that does not have ¢ in its convex hull: This means
that we are trying to forward the packet to the subtree containing the
destination ¢.

e Set p.anchor :=v.

e If v does not have a child node with a convex hull that contains the
destination ¢, forward the packet to the parent node. Else, forward the
packet to the first child node.

(if) w is a child node that contains ¢ in its convex hull: This means that
we are searching a subtree.

e If v has a greater child node with a convex hull that contains the
destination ¢, forward the packet to it.
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e Ifthe set of conflict hulls H does not contain the destination ¢, forward
the packet to the first child node with a convex hull that contains the
destination ¢.

e Else, forward the packet to the parent node.
(iii) w is a parent node: This means that we are searching a subtree.

e If the set of conflict hulls H does not contain the destination ¢, set
p.anchor := v.

e If v does not have a child node with a convex hull that contains the
destination ¢, forward the packet to the parent node. Else, forward the
packet to the first child node.

Note that there are two possible scenarios when a packet switches to Tree Traversal mode. It can
either be in a subtree containing the destination ¢, or not. In the latter case, GDSTR will forward
the packet progressively up a hull tree until it reaches a node that is a node in the subtree containing
the destination t.

While there will be periodic changes in the membership of the network, we do not expect such
changes to be common. It is possible for the root node of a hull tree to fail. This causes the
associated hull tree to be re-built. Since we use a tree building algorithm that guarantees the
uniqueness of a tree given a root node, the tree identifier on a packet is the node identifier of the
root node of the hull tree. When a hull tree is rebuilt with a new node, the identifier on the packet
will no longer match that of the new tree and so we may have to revert to Step 2(b) in Step 3 to
pick a new tree. Smaller, transient changes in the hull trees may cause some packet losses, but such
losses are not a major concern since changes in network membership due to node failures and new
nodes joining the network are expected to be rare.

The following is a statement of correctness for GDSTR.

Theorem 2 Given a pair of nodes v and ¢ in a connected graph G, GDSTR guarantees
packet delivery from v to ¢.

The following is the proof that if a packet is deliverable, it will be delivered to the destination node
and if it is not deliverable, the routing algorithm will eventually terminate. By deliverable, we
mean that the destination coordinate in the packet corresponds to a live node and there is a path
from the source node to the destination node.

Proof: First, suppose a packet from v to ¢ is deliverable, but GDSTR fails to deliver it. This
failure can arise only as a result of one of two situations: (i) the packet is trapped in some loop; or
(ii) the packet terminates at some node u # t.

It is not possible for a packet to be trapped in a loop because (i) if the packet is in Greedy mode,
|(p-1min)t| is strictly decreasing and (ii) if the packet is in Tree Traversal mode, it will eventually
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return to the anchor node p.n4chor and GDSTR will terminate. Note that it is possible for a packet
to oscillate between the Greedy and Tree Traversal modes. However, since |(p.7,,)t| is also
strictly decreasing each time a packet switches to Greedy mode, a packet cannot be trapped in a
loop indefinitely by switching between the two modes.

Termination can occur during greedy forwarding (i.e., Step 1(a)) or in Step 3(b). Termination
during greedy forwarding occurs only if a packet is delivered to its destination. Since we assume
that GDSTR fails to deliver the packet, it remains to show that it is not possible for the algorithm
to terminate in Step 3(a).

For a packet to terminate in Step 3(a), it must have fully traversed the subtree that contains ¢. This
means that the packet would have reached ¢.

Next, we show that a packet that is undeliverable will eventually terminate. Suppose for the sake
of contradiction that this statement is false, i.e., we have a packet that is undeliverable and yet it
loops indefinitely. Since |(p.nmq,)t| strictly decreases whenever a packet is forwarded in Greedy
mode and whenever it switches to Greedy mode, at some point, |(p.n,:,)t| will reach a minimum
value greater than zero. Since the number of nodes in the network is finite, it is not possible for
|(p-nmin)t| to continue to decrease and not reach zero. Since |(p.n,,,)t| is constant only in Tree
Traversal mode and the packet cannot switch to Greedy mode, it has to loop indefinitely in Tree
Traversal mode. This is impossible since the packet will eventually return to the anchor node
D-Nanchor and GDSTR will terminate. Note that p.ng,chor 18 first set in step 2(b), and incrementally
updated in step 3(b) to ensure that p.7n,,.x.- remains on the traversed subtree. |

3.6 Approximate Routing

In data-centric sensor applications [55, 74], the goal is often to route a packet to the node that is
closest in geographic distance to the specified destination, rather than to a specific node in the
network. We refer to this routing primitive as approximate routing.

Existing face routing algorithms achieve this goal by forwarding a packet around a face (void) [14].
The same can be achieved with hull trees. GDSTR can be modified to achieve the same by con-
sidering the destination not as a simple point, but as a “fat” point centered at the destination and
bounded by the node nearest to the destination that has thus been visited by a packet. Next, the
search subtree is constructed by checking for intersections between this “fat” point and the convex
and conflict hulls.

This is illustrated in Figure 3-9. In this example, suppose node ns; sends a packet addressed to
t. Since node ng is nearest to ¢, it is the intended recipient of the packet. When the packet is
forwarded to nq, no has to forward the packet up to its parent even though its convex hull intersects
with the circle C, and it does not have any conflict hulls. C is centered at the destination ¢ and with
radius |n,,;,t|, where n,,;, is the node nearest to the destination that has been visited by a packet.
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Figure 3-9: An example illustrating approximate routing.

The above process is equivalent to a systematic search for the node that is nearest to ¢ on the hull
tree. As N, 1S updated in this process, the size of the search region shrinks in size. Since 74y,ch0r
is updated, the packet may terminate at 14y,chor 7 Momin- 1f S0, we redirect the packet to 7,,;,. The
modified algorithm is stated below as Algorithm 3.

Algorithm 3 (Approximate GDSTR) When a node v receives packet p for a desti-
nation point ¢ from a neighboring node «, do:

1. Preliminary Checks:

(a) Packet Delivery: If v = t, the packet has been delivered.

(b) Check for switch to Greedy mode: If p.mode # Greedy and there is
at least one immediate neighbor w such that |wt| < [(p.7mn)t|, then set
p.mode := Greedy, p.n,,;, := w and clear p.n,,.n.» and p.tree if they are
set. Execute step 2 or 3 according to p.mode.

2. Greedy Mode: Find the node w in the set of immediate neighbors that is closest
to the destination ¢.

(@) Greedy Forwarding: If |wt| < |vt|, set p.n,.,, := w and forward the packet
to w.

(b) Switch to Tree Traversal Mode: Choose one of the hull trees for for-
warding and set p.tree to the chosen tree’s identifier, p.mode := Tree and
D-Nanchor = v. Then, find the set of child nodes with convex hulls that inter-
sect the circle C, centered at ¢ with radius |p.7.,,, )t|.

e If set is non-empty, arrange the child nodes (relative to p.tree) with
convex hulls that contain the destination point in an ascending sequence
according to the global ordering of node identifiers and forward the
packet to the first child node.

e Else, forward the packet to the parent node in p.tree.
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3. Tree Mode: If the root for p.tree has changed, follow step 2(b), else follow
step 3(a).
(a) Check Termination Condition: If v = p.anchor and one of the following
conditions holds:
(i) w is the last child and v is the root node for p.tree;
(i) w is the last child and »’s convex hull fully contains the circle C, and
none of the conflict hulls in H intersects the circle C; or
(iii) w is the parent node.
do:
e If v = p.min, deliver the packet to v.
e Else, sett = v and p.mode := Greedy, clear p.ng,.nor and p.tree if they

are set and follow step 2(a).

(b) Tree Traversal: Execute step (i), (ii) or (iii) according to the node u from
which packet was received.

(i) wisachild node that has a convex hull that does not intersect C: This

means that we are trying to forward the packet to the subtree containing

C.

e Set p.anchor := .

e If v does not have a child node with a convex hull that intersects C,
forward the packet to the parent node. Else, forward the packet to the
first child node.

(if) w is achild node that has a convex hull that intersects C: This means
that we are searching a subtree.

e If v has a greater child node with a convex hull that intersects C,
forward the packet to it.

e If there is a child node, excluding u, that has convex hull that inter-
sects C and none of the none of the conflict hulls in H intersects the
circle C, forward the packet to the first child node.

e Forward the packet to the parent node.

(iii) w is a parent node: This means that we are searching a subtree.

e If v’s convex hull fully contains the circle C, and none of the conflict
hulls in H intersects the circle C, set p.anchor := v.

e If v does not have a child node with a convex hull that intersects C,
forward the packet to the parent node. Else, forward the packet to the
first such child node.

This algorithm is a straightforward extension of Algorithm 2 with the two following modifications:

1. Instead of traversing only the child nodes with convex hulls that contain the destination
coordinate ¢, a packet will traverse all child nodes with convex hulls that intersect the circle

C.
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2. The conflict hulls can only prune nodes at the top of the search subtree if C is fully contained
in a node’s convex hull. The reason for this is that a node is only authoritative over the points
within its convex hull that is not intersected by a conflict hull. If there are points in C that
lie outside its convex hull, a node does not have sufficient information to decide that the
destination is not reachable through a distant branch of the tree, and hence has to forward
the packet to its parent.

The correctness of this algorithm follows from the following property of a hull tree:

Lemma 1l Given a set of nodes on a hull tree 7, let P be the set of all nodes contained in the
region R and 7' be the set of all nodes that have convex hulls that intersect R. Then, P ¢ 7.
Furthermore, the set of nodes 7" is a subtree of 7.

Proof: It is easy to see that P C 7, since any node n € P is contained in R and therefore
its convex hull must have at least one point in R, which implies that it intersects K.

To show that 7" is a subtree of 7, we just have to show that 7" is connected. A connected subset
of the nodes in a tree cannot contain loops and is therefore a tree.

Assume 7' is not connected, i.e., there exists two nodes ni,no € R such that no path exists
between them through the nodes in 7.

Consider the root node r of 7. Clearly r» € 7" since the convex hull for r contains all the nodes in
the network. Also a path must exist between r and n4, since there is a path from the root to every
node in 7. We also know that the convex hulls of all the nodes on the path between r and n; must
contain the coordinate of n; since this is a property of the convex hull aggregation algorithm. This
means that these nodes are all in 7’. The same argument applies to n; and so we know that there
is a path in 7" between r and both n; and n,. We can therefore construct a path in 7’ between n;
and n, by concatenating these two paths and obtain a contradiction. [ ]

The correctness of this algorithm follows from Algorithm 3. The main difference between the two
algorithms is in the definition of the tree to be traversed in Tree Traversal mode.

Proof: [of Algorithm 3] Suppose a packet from v to t is deliverable, but Algorithm 3 fails to
deliver it to z, the node in the network that is nearest to ¢. This failure can arise only as a result of
one of two situations: (i) the packet is trapped in some loop; or (ii) the packet terminates at some
node u such that u # z.

As before, it is not possible for a packet to be trapped in a loop because (i) if the packet is in
Greedy mode, |(p.n,i,)t] is strictly decreasing and (ii) if the packet is in Tree Traversal mode, it
will eventually return to the anchor node p.n4,chor and the algorithm will terminate. Note that it is
possible for a packet to oscillate between the Greedy and Tree Traversal modes. However, since
|(p-nmin)t| is also strictly decreasing each time a packet switches to Greedy mode, a packet cannot
be trapped in a loop indefinitely by switching between the two modes.

50



Termination can occur during greedy forwarding (i.e., Step 1(a)) or in Step 3(a). Termination
during greedy forwarding occurs only if a packet is delivered to the specified destination ¢. It
remains to show that it is not possible for the algorithm to terminate a node w is not the node in the
network that is nearest to ¢.

Recall that p.n,,;, is the node visited by the packet this is closest to ¢. This means that if p.n,,,;, #
z, z must lie within the circle C centered at the destination ¢ and with radius |p.n,,;,t|. From
Lemma 1, we conclude that for a packet to terminate in Step 3(a), it means that it has fully traversed
all the nodes contained in C. This means that the packet would have visited z. If p.anchor #
D-Nmin = %, setting the destination to p.n,,;, will certainly succeed in routing a packet if we start
routing afresh from p.anchor. In the worst case, a packet would traverse the subtree covering the
circle C over again.

The proof that packet forwarding must eventually terminate is identical to the proof for Algo-
rithm 2. It is based on the observation that |p.n,;,t| is monotonically decreasing whenever a
packet is in Greedy mode and that Tree Traversal will eventually take a packet back to p.anchor.

|

3.7 Implementing Geocast with Hull Trees

Geocast [60] is a routing primitive that delivers a packet to all the nodes in a specified target region
R. In Section 3.6, we showed that given a hull tree 7 and a subtree 7' consisting of all nodes with
convex hulls that intersect R, 7' contains all the nodes in the target region (see Lemma 1). This
property suggests the following straightforward approach to implement geocast with hull trees:
forward a geocast packet to any node on 7’ and subsequently broadcast it to all the nodes in the
subtree 7. Because this process is analogous to fireworks, we call this algorithm the Fireworks
algorithm.

To route a geocast packet to 7', we route the packet with GDSTR like a regular GDSTR packet to
a destination ¢ € R. In principle, any point in the target region R would work. If R is convex, we

can use the centroid of the region as initial destination ¢ since the centroid will be contained within
R.

In forwarding the geocast message to ¢t using GDSTR, one of two situations can occur: (i) the
message reaches a node in 7’ before it reaches ¢; or (ii) ¢ does not correspond to a node in network
and routing terminates without visiting any node in 7”'. In the latter, we simply forward the packet
up the hull tree. At some point, the packet will eventually either reach a node with a convex hull
that intersects R, i.e., a node on 7", or end up at the root of the tree because none of the nodes is
contained in the target region R.

Algorithm 4 (Fireworks (GDSTR Geocast)) When a node v receives packet p for
region R and effective destination ¢, t € R, from a neighboring node w, do:
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1. Check for Geocast Mode: If p.mode = Geocast, follow step 5.

2. Check Reached Broadcast Tree: If v has a child with a convex hull that inter-
sects with R, follow step 5. Otherwise, follow step 3.

3. FindTree Mode: If p.mode = FindTree:

e If v is the root node for p.Tree, algorithm terminates here.
e Otherwise, forward p to the parent node in p.Tree.

4. GDSTR Routing: Route packet to destination ¢ according to GDSTR (Algo-
rithm 2). If packet is undeliverable, set p.mode := FindTree and follow step 3.

5. Tree Broadcast: If p.T'ree is not set, pick hull tree with root nearest to ¢ and set
p.T'ree accordingly. Determine target set for message broadcast with respect to
p.Tree according to the following rules:

e If p.mode = Geocast, node from which geocast message was originally
received is not to be included in set of targets.

e Each child node that has a convex hull that intersects R is added to the
target set.

e If the convex hull of associated hull tree p.T'ree fully contains R and none of
the conflict hulls H intersects R, do not add parent to target set. Otherwise,
add the parent node to the target set.

If p.mode # Geocast, set p.mode := Geocast. Broadcast p to all nodes in target
set.

The proof of correctness for this algorithm is as follows.

Proof: Step 5 follows from the definition of 77, i.e., if the packet p reaches a node in 7, then
Step 5 uniquely defines the broadcast tree 7'. From Lemma 1, we know that all the nodes in R are
contained in 7" and broadcasting the geocast message on 7' will deliver the message to all nodes
in the target region R. It only remains to for us to show that a packet will eventually reach a node
in7".

If the packet p switches to Geocast mode in Step 2, clearly v € 7’ and we are done. Suppose
p switches to FindTree mode in Step 3 because it is undeliverable according to GDSTR. Then,
according to Step 3, the packet will be forwarded to the parent node and further up the tree as long
as the convex hulls of the ancestor nodes do not intersect R. Any ancestor node with a convex hull
that intersects R is by definition in 7.

The final node in the chain of ancestors is the root of the hull tree. The convex hull of the root
contains the coordinates of all nodes in the network. If this convex hull does not intersect R, then
the target set is clearly an empty set; otherwise, then the root node is in 7' and we are done. [ ]

Geocast is exactly analogous to approximate routing with the following two caveats:
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1. Instead of considering the destination as an incrementally shrinking “fat” point, the destina-
tion is now an area.

2. Instead of traversing the search subtree systematically with one packet during the Tree
Traversal, we effectively traverse the entire search subtree in parallel by having each node
broadcast a packet to all its neighbors to the subtree, except for the node from which the
packet was received.

3.8 GDSTR+: Using Local Information to Improve Routing
and Geocast Performance

GDSTR works well for sparse networks with large voids. For dense networks, geographic face
routing algorithms can achieve better performance since the voids tend to be small and it generally
does not matter which forwarding direction is picked. The is because when there are many hops
between the root of the hull trees and the leaves, the hull trees are not able to approximate voids
quite as well as planar faces and GDSTR therefore incurs additional routing overhead. Also,
geocast is expected to be less efficient when the hull tree is large.

One possible approach would be to use GDSTR in sparse networks and geographic face routing
algorithms in moderately dense networks. However, such an approach does not address the high
maintenance costs of planarizing the network graph [42,51]. Another issue is that large networks
are likely to be heterogeneous, with some dense regions and some sparse regions. Ideally, a good
geographic routing algorithm should work well in networks of all densities.

Our earlier work with GPVFR [52], demonstrated that we can improve routing performance for
face routing by storing a small amount of local face information at each node. The key reason for
this improvement is not directly related to face routing; the improvement arises because with a few
hops of extra face information, GPVFR can improve the probability of picking a good forwarding
direction. When the network is dense and voids are small, a few hops of information is in fact
sufficient to guarantee that the correct forwarding direction around a void is chosen all the time.
Based on this observation, we developed GDSTR+, a variant of GDSTR that incorporates local
information to improve routing and geocast performance in dense networks.

3.8.1 Oveview

The key idea in GDSTR+ is to augment GDSTR with two forests of “local” trees and an additional
greedy-hull forwarding mode. In GDSTR+, a node will first attempt to forward a packet greedily as
before. If greedy forwarding fails, it will switch to the new greedy-hull forwarding mode by using
the information contained in the convex hulls of a local hull tree. By local, we mean that the tree
contains only the nodes in a limited locality. Since correctness cannot be guaranteed, forwarding
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Figure 3-10: Example showing the aggregation of convex hulls for local trees in GDSTR+. Again, convex
hulls are represented with ellipses for simplicity.

can sometimes fail using the local tree and in such a case, a node will switch to forwarding on one
of the two original global hull trees, which is guaranteed to succeed.

In order to implement greedy-hull forwarding, the local hull trees employ a different convex hull
aggregation algorithm than that employed by GDSTR to maintain global hull trees. This new ag-
gregation mechanism presents a node with a view of the locations accessible via each neighboring
node. To aggregate hulls this way, each node broadcasts the hulls of all its neighbors instead of its
own hull.

We illustrate the local hull tree aggregation algorithm with the example shown in Figure 3-10. In
particular, the convex hull associated with each neighbor contains the set of destination points that
are reachable through that neighbor. In this example, both nodes n; and ns have three neighbors.
In Fig. 3-10(a), we show the convex hulls from n;’s perspective. Under this new scheme, ny’s
keepalive message will contain the hulls for ny, n5 and ng from its perspective. From n;’s perspec-
tive, its convex hull for n, is the convex hull that contains n, and the convex hulls for ns and ng.
Similarly, as shown in Fig. 3-10(b), From ny’s perspective, its convex hull for n; is the convex hull
that contains n; and the convex hulls for ng and n4. This provides each node with a view of the
geographic coordinates accessible via each neighboring node in the tree.

We illustrate this process with the example network in Figure 3-11. In this example, node s receives
a packet with destination ¢ and has to decide how to forward the packet. Since node s is a dead
end for greedy forwarding, it tries to forward the packet in greedy-hull forwarding mode. In this
mode, node s considers the convex hulls of its neighboring nodes and finds the point on the hulls
that is closest to the destination ¢. It turns out to be point 7 on the convex hull of node n,. Hence,
node s forwards the packet to n, instead of n;.

Like GDSTR, the coordinate of the node at which a packet switches to greedy-hull forwarding
mode (s in the above example) is recorded as n,,;, and a packet will revert to greedy forwarding
mode as soon as a neighboring node that is closer to the destination than n,,;, is found. In addition,
the coordinate of the point that is closest to the destination ¢ that is found on any convex hull is also
recorded in the packet, as a new component pj.;;. prun Will be updated at each step until a packet
either ends up at py,,;; and has no neighbor with a hull point closer to the destination than py,,; or if
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Figure 3-11: Example of greedy-hull forwarding. The shaded polygons are the convex hulls of neighboring
nodes from the perspective of node s.

it switches to greedy mode. In the former case, a packet will switch to GDSTR tree traversal mode
on one of the two available global trees. pp,; is only updated with a value that is monotonically
nearer to the destination. If a packet in greedy forwarding mode ends up in a dead end and the
associated node does not have a convex hull that has a point that is closer to the point pj;, the
packet will bypass the greedy-hull forwarding mode and switch directly to tree traversal on one of
the two global trees. This is to prevent oscillations.

3.8.2 Building Local Trees

There are many possible schemes to construct the local hull trees. We adopt the following simple
scheme: we divide the coordinate space into a square grid of fixed length, and all the nodes within
each grid square will be members of the same local tree. The root of a local tree is the node with a
coordinate that is closest to the center of a grid square. The process of building such a tree has two
steps: first, a node attempts to route a packet to the center of its local grid square. Doing so will
allow it to identify the root node of its local tree. Next, it determines its parent by routing a packet
to the root node.

The second step is necessary because a given node may not be connected to the root of its hull tree
through neighbors that are within the same grid square. This is illustrated in the example shown
in Fig. 3-12(a). In this example, node r is the root of the local hull tree since it is nearest to the
center of the square grid; node s is however connected to neighbors that are outside the square grid.
The resulting local hull tree is shown in Fig. 3-12(b). This example also shows that it is possible
for nodes near the edge of a grid square to be members of the local hull trees of neighboring grid
squares. We impose the strict membership condition that all the nodes within each grid square
belong to the same local hull tree to provide correctness guarantees for geocast (to be described in
Section 3.8.4).
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Figure 3-12: Example demonstrating the building of local hull trees. The connectivity of an example grid
square is shown in (a). The resulting local hull tree is shown in (b).
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Figure 3-13: Example network with its two associated forests of local hull trees.

The above process will create a forest of local hull trees, where in general most nodes will be a
member of only one local hull tree and only a small number near the boundaries of a grid square
will be members of two or more trees. The purpose of these local hull trees is to provide nodes
with a local view of the surrounding network. With only one forest of trees, the nodes near the
centers of the grid squares will have a relatively balanced view of the network, while those near
the edges of the grid squares will have a somewhat skewed perspective. To address this, we build
a second forest of local hull trees using grid squares with an offset from the original grid such that
the centers of the new grid squares are the corners of the original grid. The resulting forests are
illustrated in Fig. 3-13.

In building the local hull trees, it is necessary to decide on the width of the grid squares. Prior work
has shown that about 4 hops of information is sufficient to choose the optimal forwarding direction
when the network is dense [52]. Hence, in our implementation, we use a grid width that is 5 times
the radio range. For a random network, the resulting local trees are about 3 or 4 nodes deep.
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3.8.3 Routing Algorithm

GDSTR+ is effectively a cross between GDSTR and GPVFR. From GDSTR, we borrow the idea
of approximating voids with trees; from GPVFR, we borrow the idea of using local information in
a greedy fashion first before resorting to routing with the more costly tree traversal routing mode.

A GDSTR+ data packet p is tagged with the following state components:

e mode: current forwarding mode (Greedy/Greedy-Hull/Tree),

® n,,;n. Node visited that is nearest to destination,

® P point on observed convex hull that is nearest to destination,

e tree: identifier for chosen forwarding tree,

® Nuchor. tree traversal anchor node.

Algorithm 5 (GDSTR+) When a node v receives packet p for destination node ¢ from
a neighboring node u, do:

1.

Preliminary Checks:

(a) Packet Delivery: If v = t, the packet has been delivered, and we are done.

(b) Check for switch to Greedy mode: If p.mode # Greedy and there is
at least one immediate neighbor w such that |wt| < [(p.7mn)t|, then set
p.mode := Greedy, p.n,,;, := w and clear p.nq,..o. and p.tree if they are
set. Execute step 2, 3 or 4 according to p.mode.

. Greedy Mode: Find the node w in the set of immediate neighbors that is closest

to?.

(@) Greedy Forwarding: If |wt| < |vt|, set p.n,.., := w and forward the packet
to w.

(b) Switch to Greedy-Hull Mode: Consider the convex hulls of each neighbor-
ing node with respect to p.tree and find p,,.;,,, the point that is closest to the
destination ¢. If |pint| < |p-pruit|, follow step 3; otherwise, follow step 4.

. Greedy-Hull Mode: If p.tree is not set or if the root for p.tree has changed,

follow step 3(a), else follow step 3(b).

(a) Choose Hull Tree: Choose one of the local hull trees for forwarding and
set p.tree to the chosen tree’s identifier. If a suitable tree is found, follow
step 3(b). Otherwise, clear p.tree, set p.mode := Tree and follow step 3(c).

(b) Check Hull Tree: Consider the convex hulls of each neighboring node with
respect to p.tree and find p,,.;,, the point that is closest to the destination ¢.

If ‘pmmt| < |p'phullt‘ OF Dimin = D-Phull set P-Phull = Pmin and forward p
to the neighboring node that has the convex hull containing p,,,.
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(c) Switch to Tree Traversal Mode: Choose one of the hull trees for for-
warding and set p.tree to the chosen tree’s identifier, p.mode := Tree and
D Nanchor := v. Then, find the set of child nodes with convex hulls that con-
tain the destination t.

e If set is non-empty, arrange the child nodes (relative to p.tree) with
convex hulls that contain the destination point in an ascending sequence
according to the global ordering of node identifiers and forward the
packet to the first child node.

e Else, forward the packet to the parent node in p.tree.
4. Tree Mode: If the root for p.tree has changed, follow step 3(c), else follow
step 4(a).
(a) Check Termination Condition: Conclude that packet is not deliverable if

v = p.anchor and one of the following conditions holds:

(i) w is the last child and v is the root node for p.tree;

(if) w is the last child and the set of conflict hulls H does not contain desti-
nation node ¢; or

(iii) w is the parent node.
(b) Tree Traversal: Execute step (i), (ii) or (iii) according to the node u from
which packet was received.

(i) w is a child node that does not have ¢ in its convex hull: This means
that we are trying to forward the packet to the subtree containing the
destination ¢.

e Set p.anchor :=v.

e If v does not have a child node with a convex hull that contains the
destination ¢, forward the packet to the parent node. Else, forward the
packet to the first child node.

(if) w is a child node that contains ¢ in its convex hull: This means that
we are searching a subtree.

e If v has a greater child node with a convex hull that contains the
destination ¢, forward the packet to it.

e If the set of conflict hulls H does not contain the destination ¢, forward
the packet to the first child node with a convex hull that contains the
destination ¢.

e Else, forward the packet to the parent node.

(iii) w is a parent node: This means that we are searching a subtree.

e If the set of conflict hulls H does not contain the destination ¢, set
p.anchor := wv.

e If v does not have a child node with a convex hull that contains the
destination ¢, forward the packet to the parent node. Else, forward the
packet to the first child node.

58



This algorithm is equivalent to GDSTR (Algorithm 2), with an additional Greedy-Hull Forwarding
stage (Steps 3(a) and 3(b)).

In Step 3(a), the local hull tree is chosen by considering the convex hulls of all the neighboring
nodes and identifying the convex hull with the point that is nearest to the destination in terms of
geometric distance. The hull tree containing the said convex hull is chosen as the routing tree
p.tree. In order to prevent loops, the resulting nearest point p,,;, must be strictly nearer to the
destination ¢ than py,,; if such a point is recorded in the packet. If such a point cannot be found,
then the local hull tree selection in Step 2(b) will fail, and we revert to GDSTR tree traversal mode.

The correctness of GDSTR+ follows from the correctness of GDSTR. Given that GDSTR is cor-
rect, the correctness of GDSTR+ can be reasoned as follows: GDSTR+ is GDSTR with an addi-
tional greedy-hull forwarding mode. Greedy-hull forwarding does not have a termination condition
and hence it can only affect correctness if it causes looping. We note that looping is impossible
because in each forwarding step, either py,; is monotonically decreasing or the packet is moving
closer to py,; along a fixed tree p.tree.

If a packet should end up in a dead end in Step 3 at a point where the grid square of a local tree
contains the destination point, we can traverse a local tree instead of a global tree. However, we
chose not to do so and decided to use the global trees to keep the algorithm simple. In any case,
greedy-hull forwarding is almost always guaranteed to succeed in such circumstances.

GDSTR+ can also be modified to implement approximate routing. As described in Section 3.6, we
adjust Algorithm 5 to search a circle C centered at ¢ instead. In addition, since we know that all
the points within each grid square are contained in the associated local hull tree, a local hull tree
should be chosen for tree traversal once the circle C is small enough that it falls completely within
a grid square.

3.8.4 Geocast

Geocast is most efficient over a minimal spanning tree that includes all the nodes in the target
region. GDSTR does not attempt to build a minimal tree, it simply uses its existing hull trees.
When the network is large, the global hull trees are large and hence while geocast over these trees
achieves correctness, it is not an ideal technique. It would be preferable to geocast over smaller
trees that cover an area that is just a little larger than the target area.

GDSTR+’s use of local hull trees presents us with an opportunity to improve geocast efficiency.
In particular, because of the local tree building algorithm, we know that each local hull tree com-
pletely covers all the nodes in a given grid square. Hence, if the target region of a geocast message
is completely contained in a grid square, we know that it will be broadcast correctly to all the
required targets within the region. Because two forests are available, even if the target region of
a geocast message is not completely contained within a grid square for one forest, it is likely to
be contained within a grid square of the other. If indeed a suitable local tree cannot be found,
correctness can be guaranteed by broadcasting on one of the global hull trees as before.
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Algorithm 6 (Fireworks (GDSTR+ Geocast)) When a node v receives packet p for
region R and effective destination ¢, t € R, from a neighboring node u, do:

1. Check for Geocast Mode: If p.mode = Geocast, follow step 6.

2. Check Reached Broadcast Tree: If v has a child with a convex hull that inter-
sects with R, follow step 5. Otherwise, follow step 3.

3. FindTree Mode: If p.mode = FindTree:

e If v is the root node for p.Tree, algorithm terminates here.
e Otherwise, forward p to the parent node in p.Tree.

4. GDSTR+ Routing: Route packet to destination ¢ according to Algorithm 5. If
packet is undeliverable, set p.mode := FindTree and follow step 3.

5. Pick Hull Tree for Geocast:

e If R is contained in either of the grid squares of the local hull trees, set
p.Tree as the local tree (in a grid square that contains R) with a root that
is closest to the ¢.

e If the grid squares of the local hull trees do not completely contain R, set
p.Tree as the global tree with a convex hull that contains R; if such a global
tree does not exist, pick the global tree with a root that is closest to .

Follow step 6.

6. Broadcast to Target Set: Determine target set B for message broadcast with
respect to p.T'ree according to the following rules:

e If p.mode = Geocast, the node from which geocast message was originally
received is not to be included in set of targets.

e If p.Treeis a local tree, each neighboring node that has an associated con-
vex hull (from v’s perspective) that intersects R is added to the target set.

e If p.Tree is a global tree, each child node that has a convex hull that inter-
sects R is added to the target set. If the convex hull of associated hull tree
p.Tree fully contains R and none of the conflict hulls H intersects R, do
not add the parent node to target set. Otherwise, add the parent node to the
target set.

If p.mode # Geocast, set p.mode := Geocast. Broadcast p to all nodes in target
set B.

The correctness of this algorithm follows from the correctness of the GDSTR geocast algorithm
(Algorithm 4).

Proof: The only difference between this algorithm and Algorithm 4 is that when a grid square
contains the target region R, we broadcast on the associated local hull tree instead of global tree.
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We know from the proof of Algorithm 4 that if the message is broadcast on a global hull tree, all
the points are in the target region k.

Therefore, it suffices to show that local hull tree contains all the points in the target region R. We
know that this is true because the local hull tree contains all the points in the grid square and since
the grid square contains the target region R, all the points in the target region R must lie on the
local hull tree. By construction, we know that the associated tree traversal algorithm will allow us
to reach every single point in R on the local hull tree since during the broadcast step, the geocast
message is forwarded to every neighbor with a convex hull that intersects R. This means that if
there is a node in R that is reachable, the message will eventually reach it.

3.9 Summary

The key insight of GDSTR is that for geographic routing, two hull trees can replace a planar graph
as the backup routing topology when greedy forwarding fails, and it is significantly easier to build
and maintain hull trees than a planar graph. GDSTR requires only one hull tree for correctness.
However, we use a second tree because doing so provides better robustness in the event of node
failures and an additional routing choice. In addition, we describe two natural extensions to the
basic GDSTR routing algorithm — approximate routing and geocast (Fireworks algorithm).

We also describe GDSTR+, a variant of GDSTR that maintains two additional local hull trees.
While GDSTR+ requires slightly more storage per node, the local hull trees are small and hence
both cheap to build and maintain. With additional local information, GDSTR+ is expected to
achieve better routing performance in dense networks with small voids.
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Chapter 4

GDSTR Evaluation

In this chapter, we compare the performance of GDSTR routing to existing geographic face routing
algorithms and present the experimental results for the costs of GDSTR in terms of both storage
and bandwidth. We also evaluate the performance of GDSTR+ and show that it performs better
than GPVFR [52], the best existing geographic face routing algorithm, in networks where the
routing performance of GPVFR surpasses that of GDSTR. We also discuss the performance of
our hull-tree-based geocast algorithm, but only for our own system and not in comparison to other
algorithms.

Kuhn et al. showed that the routing performance of geographic routing algorithms is highly depen-
dent on the network density [47]. In particular, geographic routing algorithms are almost always
uniformly good for both very sparse and very dense random networks, and it is critical to study
routing performance for topologies with average node degrees in the region between 4 and 8 (called
the critical region). Moderately dense topologies with average node degrees between 8 and 14 are
also of interest since there is a marginal difference in the routing performance of different algo-
rithms. Topologies that are ultra-sparse or ultra-dense are not particularly interesting, since greedy
forwarding will tend to work almost all the time and the routing performance of geographic routing
algorithms tends to be indistinguishable.

To systematically explore the performance of GDSTR over different random topologies, we first
evaluate GDSTR in small networks over a wide range of random topologies with average node
degrees ranging from 0.7 to 14.4. Subsequently, we evaluate the routing performance and costs
for GDSTR for a range of network sizes up to 5,000 for two network densities. In particular, we
consider a set of sparse networks in the critical region (with an average node degree of 6.5) and
another set of moderately dense networks with an average node degree of 12. We also investigated
the effect of obstacles by generating two sets of routing topologies with a high and low density of
obstacles, respectively.
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Figure 4-1: Sample networks of increasing average density and node degree.

4.1 Simulation Setup

This section describes our simulation setup for evaluating the performance of GDSTR. The simu-
lations are performed using our own high-level, event-driven simulator [50].

For our simulations, we use a simple radio model: all nodes have unit radio range; two nodes can
communicate if and only if they are within radio range of each other and if their line-of-sight does
not intersect an obstacle. The simulator supports linear, polygonal, and circular obstacles. Wireless
losses are not simulated since our goal is to compare the basic algorithmic behavior of GDSTR to
other geographic routing algorithms.

As discussed in Section 3.4.1, the underlying radio model does not matter for GDSTR. While the
simulator is able to support non-uniform radio ranges, we consider only topologies with uniform
unit radios since uni-directional links are not used by GDSTR, and topologies with non-uniform
radio ranges can be replicated by adding obstacles. Even under this assumption, we are able to
generate a diverse range of topologies, which we believe is adequate for the purposes of comparing
GDSTR to existing geographic face routing algorithms.

We measure routing performance with respect to two metrics: (i) path stretch and (ii) hop stretch.
Path stretch is the ratio of the total path length to the shortest path (in Euclidean distance) between
two nodes; hop stretch is the ratio of the number of hops on the route between two nodes to the
number of hops in the shortest path (in terms of hops).

Effect of Network Density. To understand the effects of network density on routing performance
and maintenance costs, we generate networks by randomly scattering between 25 to 500 nodes
over a 10 x 10 unit square. This process generates networks with average node degrees between
0.7 and 14.4. For each density, we generate 200 networks, and then route 20,000 packets using
each algorithm between randomly chosen pairs of source and destination nodes. The performance
measurements presented are the average values over the 200 times 20,000 data points. We also use
these topologies to evaluate the effects of parameters such as the number of hull trees and the value
of r, the maximum size for the convex hulls.

Figure 4-1 shows some sample networks. The main point to notice here is that all these networks
have large voids that will need to be routed around. The node degrees between 4 and 8 are critical
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Figure 4-2: Sample 400-node sparse network. Figure 4-3: Sample 400-node dense network.

for all geographic routing algorithms, since greedy forwarding works well on denser networks, and
sparser networks tend not to be well connected [47].

A density of 500 nodes in 100 square units is high enough that greedy forwarding almost always
succeeds, and neither GDSTR nor face routing is needed. For this reason, we did not explore
higher densities.

Effect of Network size. To evaluate the scaling of maintenance costs and performance, we gen-
erate networks with constant node density with sizes ranging from 50 to 5,000 nodes. As before,
networks are generated for each size by scattering nodes randomly over a x X x unit square, scaling
x by a factor of \/n for each network size n. This procedure sometimes generates networks that
are not connected. We discard such networks and repeat the above until we have 200 connected
networks for each network size.

We investigate scaling effects only with sparse and dense networks with average node degrees
of approximately 6.5 and 12, respectively. We found that below an average node degree of 6.5,
the random process described above often produces disconnected networks. Sample 400-node
networks from the two sets are shown in Figures 4-2 and 4-3, respectively.

Effect of Obstacles. To evaluate the effect of obstacles, we generate some moderately dense
networks and add a number of cross-shaped obstacles to them. Again, we generate a range of
networks with constant node density from 50 to 5,000 nodes in size. The networks were generated
for each size by scattering nodes randomly over an x X x unit square, where = was scaled by a
factor of \/n for each network size n. Next, we add a number of cross-shaped obstacles (0.25 units
across) proportional to the size of the area over which nodes are scattered.

This procedure sometimes generates networks that are not connected. Again, we discard such
networks and repeat the above procedure until we have 200 connected networks for each network
size. We found that it is difficult in practice to generate random connected networks for graphs
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Figure 4-4: Sample 400-node network with low  Figure 4-5: Sample 400-node network with high
obstacle density. obstacle density.

with a density of obstacles above a given threshold. The resulting networks had an average node
degree of 7; without the obstacles, the networks would have had an average node degree of 9.5.
Sample 400-node networks from the two sets are shown in Figures 4-4 and 4-5, respectively.

Comparisons. We compare the routing performance of GDSTR to GPSR [39], GOAFR+ [47] and
GPVEFR [52]. We evaluate the geographic face routing algorithms (GPSR, GOAFR+ and GPVFR)
with CLDP planarization [42] rather than Gabriel Graph (GG) [20] or Relative Neighborhood
Graph (RNG) [84] planarization, since CLDP is currently the only algorithm that is known to
work for practical networks. In any case, the networks with obstacles are not unit-disk graphs
(UDGs) and hence GG and RNG would not planarize them correctly.

Our implementation of these routing techniques is based on the algorithms described in [39], [47],
and [52], respectively. The configuration parameters for GOAFR+ are py = 1.4,p = /2 and
ﬁ, as suggested [47]. For GPVFR, we limited the length of the propagated path vectors to 3.
Unless stated otherwise, we used two hull trees for all experiments with GDSTR. Our implemen-

tation of CLDP follows the description in [42].

g =

4.2 GDSTR Routing Performance

Figure 4-6 shows the hop stretch for deliverable packets for GDSTR, GPSR, GOAFR+ and GPVFR
over a range of average node degrees.

GDSTR has the best performance for most of the range; that is, GDSTR routes packets along
shorter paths than the other algorithms, and is thus likely to deliver packets faster and with less
consumption of radio resources. The only exception is that the stretch of GPVFR is a few percent
less than that of GDSTR for node degrees higher than 9.
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Figure 4-6: Plot comparing the stretch for GDSTR (two trees) to that for GPSR, GOAFR+ and GPVFR
under CLDP planarization.

The differences in the performance of the various algorithms are most pronounced in the critical
region with node degrees between 4 and 6. The reason for this is that networks in this region tend
to have large outer perimeters and the voids that are generated are often concave. Packets tend to
end up in a local minima fairly often for these topologies, and the routing algorithm must resort to
forwarding the packet along a face (for the face routing algorithms) or on a tree (for GDSTR).

GPSR performs the worst because it uses a deterministic right hand rule when forwarding a packet
along a face. It turns out that topologies in the critical region typically present nodes that need
to switch to face traversal with one good forwarding direction and one terrible alternative. By
choosing the same direction consistently, GPSR gets it wrong about half the time.

GOAFR+ is better than GPSR because it uses an expanding ellipse to bound the search radius.
GOAFR+ picks a random forwarding direction to start with, but instead of forwarding continuously
along a face, it keeps track of how far it has gone along the face. If a packet seems to have wandered
far enough along a face and not made any apparent progress toward the destination, GOAFR+ will
make the packet backtrack. By expanding the area of the search incrementally, GOAFR+ ensures
that the length of the final path traversed is no longer than a constant multiple of the optimal path.

GPVER tries to pick the optimal forwarding direction when it switches from greedy forwarding
to face traversal. It does so by maintaining several hops worth of information about its adjacent
planar faces. It turns out that in practice, by maintaining information about nodes that are up to 4
hops away along the planar faces, GPVFR will often make the correct decision when the network
density is low. When the network density is relatively high (above an average node degree of 9),
CLDP produces planar faces that are relatively small (usually with fewer than seven points). Thus,
under such circumstances, GPVFR has enough information to guarantee that it chooses the correct
forwarding direction almost all the time, which explains why it performs better than GDSTR for
node degrees higher than 9.

When two forwarding directions are available, GDSTR’s tree-choosing heuristic of picking the
tree with a root that is closest to the destination allows us to choose a good forwarding direction
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Figure 4-7: Proportion of hops taken in greedy for- Figure 4-8: Connectivity probability and greedy for-
warding mode. warding success rate.

around a void most of the time. However, we believe that a more significant factor explaining why
GDSTR outperforms the other algorithms in the critical region is that the convex hulls contain
sufficient information to allow GDSTR to prune away many bad routing choices and route on a
much reduced subtree that is often significantly smaller than large voids or the perimeter of the
network (which often have one hundred or more nodes).

To further understand the performance of GDSTR, we also measured the distribution of the for-
warding modes for GDSTR, GPVFR, GOAFR+, and GPSR. The distributions are plotted in Fig-
ure 4-7. These results suggest that a likely reason why GDSTR achieves better routing perfor-
mance than GPSR, GOAFR+, and GPVFR is that it forwards packets in greedy mode 10% more
frequently than these other algorithms in the critical region. For reference, the probability of two
source-destination pairs being connected and the probability that greedy forwarding alone is suffi-
cient to route between any random source-destination pair are shown in Figure 4-8.

421 How Many Treesare Useful?

GDSTR employs two hull trees rooted at the nodes with the maximal and minimal x coordinates.
Since GDSTR can use more than two hull trees, it is important to understand how the number
of hull trees will affect routing performance. Since our goal is to use hull trees to “approximate”
voids and we want the roots of the £ hull trees to be as far apart as possible, we can construct k rays
rooted at the origin, and choose as roots the nodes whose projections onto these rays are farthest
from the origin.

Figure 4-9 shows the effect of increasing the number of trees on the average hop stretch. Routing
performance improves quite significantly when we increase the number of hull trees from one
to two (achieving a peak improvement of approximately 10% in path and hop stretch); routing
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Figure 4-10: Routing stretch performance for GDSTR with different numbers of hull trees for packets that
require tree traversal.

performance continues to improve with more trees. However, beyond two trees, the improvement
is marginal.

Figure 4-9 shows aggregate routing performance averaged over a range of source-destination pairs.
For dense networks, the probability that routing will succeed without the need for tree traversal is
high. To better understand the effect of the hull trees (which is only used during tree traversal), in
Figure 4-10, we plot the stretch for source-destination pairs for which greedy forwarding alone is
sufficient and a packet has to be forwarded on the hull trees at some point.

We see from these results that indeed, increasing the number of hull trees from one to two has a
very significant effect on routing stretch. This is especially so for denser networks. The difference
in routing performance when more trees are employed is more apparent in Figure 4-10 when only
the packets that require tree traversal are considered, because when greedy forwarding alone is
sufficient to deliver a packet, it almost always achieves a stretch of one. Moreover, the high prob-
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Figure 4-11: Proportion of nodes with conflict hulls.

ability of greedy forwarding success for dense networks brings down the average significantly in
Figure 4-9.

4.2.2 Effect of Convex Hull Representation

In Sections 4.2 and 4.2.1, we did not limit r, the maximum size for the convex hulls. As shown in
Figure 4-11, limiting the number of points used to represent the convex hulls will cause intersec-
tions between convex hulls to be more common, thereby generating more conflict hulls. In fact, in
networks of average node degree 6, some 7% of the nodes will have conflict hulls.

When we repeated the measurements for routing stretch for different values of r, we found that
surprisingly, the value of r has a negligible effect on both path and hop stretch, i.e., the stretch
for r = 5 was virtually indistinguishable from the stretch when r is unlimited. We found that the
reason for this is that although the hulls are bigger when r is limited and there are more intersec-
tions between the convex hulls of sibling nodes, intersections do not necessarily degrade routing
performance as long as they are not particularly large or if they occur close to the leaves of a tree.
In fact, intersections that do not contain any nodes do not affect routing performance.

It seems that even when r is reduced and the size of the hulls is increased, it is still relatively rare for
nodes to fall into the intersections of hulls. Furthermore, intersections only matter when a packet
is not forwarded in greedy mode. Since GDSTR forwards packets in greedy mode more than 75%
of the time in our experimental setup and only occasionally switches to tree forwarding mode, it is
not completely surprising that r does not seem to affect the aggregate routing performance.
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Figure 4-12: Plots of routing stretch for sparse UDG networks (average node degree 6.5).
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Figure 4-13: Plots of routing stretch for dense UDG networks (average node degree 12).

4.2.3 Scaling Up

In this section, we evaluate the performance of GDSTR and compare it to that for the face routing
algorithms for networks of approximately constant density up to 5,000 nodes in size.

Effect of Network Density. The routing performance of sparse and dense networks is shown in
Figures 4-12 and 4-13, respectively. As expected, the routing performance for dense networks is
significantly better for all algorithms.

As shown in Figure 4-12, GDSTR performs significantly better than the geographic face routing
algorithms in sparse networks. GPVFR performs slightly better than GOAFR+ when the networks
are relatively small. For larger networks, GOAFR+ tends to perform better. The reason for this
is that our implementation of GPVFR only maintains information about nodes that are up to 4
hops away along the planar faces. When the networks are small, it often able to choose a better
forwarding direction using this information; when the networks are large, the voids tend to be
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Figure 4-14: Plots of routing stretch for networks with high obstacle density (average node degree 6).

larger and the face information is less predictive. It is also interesting to note that while there is a
noticeable improvement in performance when GDSTR uses two trees instead of one, the routing
performance between GDSTR with 2 and 3 trees is almost indistinguishable.

In dense networks (see Figure 4-13), GOAFR+ and GPVFR achieve better routing performance
than GDSTR since they are able to traverse voids almost perfectly, while tree traversal in GDSTR
occasionally requires a short detour up the tree. It was somewhat surprising that GPSR did not
perform quite as well as we expected. It turns out that using a fixed right-hand rule occasionally
causes GPSR to traverse the perimeter of the network in the “wrong” direction. Such a mistake
is very costly; hence, GPSR does not perform well on average. As the network size increases,
the probability that a packet that is routed on the perimeter decreases. Thus, hence the routing
performance of GPSR seems to improve slightly with increasing network size.

Note that the scale of the y axis for Figure 4-13 has been adjusted, since the stretch is very good
(between 1.07 and 1.13) for all the algorithms and the difference between them is not significant.

Obstacles. The hop stretch for networks with high and low obstacle densities are shown in Fig-
ures 4-14 and 4-15, respectively. Sample networks from each set are shown in Figures 4-4 and 4-5,
respectively. The key difference between the networks from the two sets lies in the sizes of the
voids.

These results demonstrate that for sparse networks with large voids, the routing performance of
GDSTR is consistently better than that for existing face routing algorithms, while for denser net-
works with small voids, existing face routing algorithms can sometimes achieve a slightly lower
stretch. As mentioned, the reason for this is that extremal-rooted trees do not approximate voids
quite as well when there are many hops between the leaf nodes and the root.
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Figure 4-15: Plots of routing stretch for networks with low obstacle density (average node degree 7).

4.3 Costs

In this section, we present experimental results for the costs of GDSTR. Our main concern is
with bandwidth, since it is likely to be a limiting factor in radio networks. However we begin by
discussing the storage costs of our system, since storage concerns were once a primary motivation
for geographic routing algorithms.

4.3.1 Small Networks

First, we evaluate how costs scale with network density (average node degree) by considering
networks up to 500 nodes in size.

Storage Costs. Figures 4-16 and 4-17 show the average and maximal storage required by any
nodes over the range of densities investigated, respectively. We assume that a set of coordinates
and a node identifier are 8 and 12 bytes in size, respectively. We can see from the figure that the
maximum is about 1,000 bytes. This amount of storage is hardly a concern for modern sensor
devices like the Mica2 [83], which has 128K of program memory and 512K of flash RAM.

The figure shows the storage requirements when GDSTR uses two hull trees. In general, GDSTR
with two hull trees requires more than twice as much storage on average as existing face rout-
ing algorithms at low network densities. However, as the network density increases, the storage
requirement of the neighbor set becomes comparable to the storage requirement for the hull trees.

The figure also shows the effect of limiting the size of the convex hulls, r, on storage. These results
show that by limiting r, there is negligible effect on the average storage requirement. When r = 5,
we can reduce the maximum storage required by up to 30% at low network densities. Since the
associated storage costs are small, we find that in practice, we can set a large limit on the maximum
size of the convex hulls.
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Bandwidth Costs. In the following experiments measuring the costs of stabilization and mainte-
nance, we compare the cost of GDSTR with the cost of building and maintaining a planar graph
with CLDP. The reason for this is that the other associated costs of existing geographic face rout-
ing algorithms [39, 47, 52] are small relative to the cost of CLDP. The costs for GPSR [39] and
GOAFR+ [47] are negligible; GPVFR [52] does impose some maintenance cost on the network to
maintain its face information, but the cost is also small relative to CLDP.

We quantify the bandwidth costs for each algorithm in terms of the number of messages sent or
forwarded by nodes during stabilization and repair. For GDSTR, we count the number of keepalive
messages that contain new hull information. For CLDP, we count the probe messages.

The average size of these messages is shown in Figure 4-18. As shown, the relative sizes of the
CLDP probes and GDSTR broadcast messages are comparable. CLDP probes are largest in the
critical region (average node degree 4 to 8) because the probes contain the points on the faces and
these networks tend to have the largest perimeters.

Startup Costs. To investigate the startup costs for a network, we start all the nodes in the network
at approximately the same time and measure the average number of messages sent by each node
before the network converges.

CLDP involves a locking mechanism, so a configuration involving binary backoff will likely be
able to optimize its startup performance. We do not know the optimal parameters, so we used the
following simple probe model: all nodes have the same probing period with a 20% jitter (to avoid
synchronization), and at the start of each period, a node probes all the links that require probing.
If a reply is received, it is acted upon immediately. If a probe message is dropped because it
encounters a locked edge, the node will resend the probe during the next probe interval. A node is
deemed to have converged when all its links are marked either dormant or non-routable and it does
not have to initiate any more probes during the next probing interval. Similarly, a GDSTR node is
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Figure 4-18: Comparing the sizes of CLDP probes
and GDSTR broadcast messages.

deemed to have converged when it no longer needs to broadcast hull information in its keepalive
messages.

In Figure 4-19, we plot the average number of messages that would have sent or forwarded by
each node during stabilization, with all nodes starting up without any state. As shown, CLDP
sends about two orders of magnitude more messages than GDSTR before the network stabilizes.
For node degrees between 6 and 14, each CLDP node will send about 1,500 messages; for GDSTR,
the corresponding number is slightly more than 10 messages.

We see in Figure 4-19 that the startup costs for CLDP increase rapidly until node degree 6 and
taper off thereafter. This is because below node degree 6, the experimental topologies usually
consist of several small, disjoint networks. As the node degree increases, the networks become
larger and more tree-like, and they tend to have larger perimeters that are costly to probe. After a
critical density of about node degree 6, the networks become more connected, and their perimeters
are somewhat more convex. The probing costs do not increase much at this stage with increasing
density, because the network perimeters either stay relatively constant or may even shrink slightly.
However, the probing costs for CLDP are also proportional to the number of edges in the network
graph, so when the network density increases beyond node degree 8, the increase in the number of
edges (links) becomes the dominating factor, and we again see an increase in the CLDP probing
cost.

Figure 4-19 also shows that the number of messages required per node by GDSTR plateaus at node
degree 6 and increases only slightly thereafter. The reason for this is that the number of update
messages that GDSTR requires is a function of the network diameter D. It turns out that since the
nodes have unit radio range and are all contained within a 10 x 10 unit square, D is approximately
constant for densities higher than node degree 6.

Incremental Costs. To quantify the bandwidth required to update routing state when a new node
joins and to repair the routing state after a node fails, we measure the costs of adding and removing
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a single node from a stable network as follows: after a network has stabilized, we remove one node
and count the number of messages sent per node. After the network has stabilized once again, we
add the removed node back to the network and take the same measurement. We repeat this process
on 20 randomly chosen nodes for each network and average the results to obtain the average cost
per node change in each network.

In Figures 4-20 and 4-21, we plot the number of messages that are sent per node in order for
the system to converge after one node join or departure, respectively. Note that these figures are
averaged over only the nodes that are affected by a node join or failure. The peak for CLDP is
about 200 messages per node at a node degree of 6. When a node joins the network for CLDP,
new links are created between it and all its immediate neighbors, and these new links are probed
independently by the various nodes; when a node fails, its adjoining neighbors will probe all the
adjacent links that are marked non-routable, in case there is the need to revive a non-routable link
to restore connectivity. We see that the costs for node joins and departures are comparable, except
for high network densities. The likely reason for this is that at high densities, node failures are
significantly more costly than node joins, because more links are re-probed for node failures and
the number of such links is proportional to the node degree.

The join costs for GDSTR are uniformly low at approximately 3 messages per node; the repair costs
after a node failure are highest in the region with node degree between 2 and 6 and fall gradually
with increasing node density. The latter is because the likelihood of failure for an intermediate
node is much higher at lower node densities (with a maximum of approximately 15 messages),
whereas for high node densities, node failures are more likely to occur at the leaf nodes.

The bandwidth costs for updating a planar graph with CLDP incrementally are significantly lower
than that for en masse stabilization at startup. In fact, they can also be interpreted as the cost to
stabilize for CLDP when the network grows one node at a time.
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Figure 4-22: Amount of routing state stored at each node for networks with up to 5,000 nodes.

Discussion. We chose to evaluate startup and maintenance in terms of message count rather than
convergence time, because the system parameters for both CLDP and GDSTR can be tuned to
achieve faster convergence. For example, the probing rate for CLDP can be increased and for
GDSTR, nodes can broadcast update messages as and when there are changes in its hull trees
instead of waiting to piggyback the information on keepalive messages. The total amount of infor-
mation to be transmitted to bring the routing information to a consistent state is however the same
in all cases. In fact, we can work out the fundamental limit on convergence time by dividing the
volume of messages to be transmitted by the maximal achievable bandwidth of the radios.

4.3.2 Scalability

In this section, we summarize what happens to cost as we scale networks up to 5,000 nodes for the
networks described in Section 4.2.3. We refer to the UDG networks with average node degrees 6.5
and 12 as “Sparse” and “Dense,” respectively, and to the non-UDG networks with high and low
obstacle densities as “Large Voids” and “Small Voids,” respectively.

Storage Costs. As shown in Figure 4-22, the average storage required per node is somewhat
independent of network size and is about 300 bytes over the entire range of network topologies
that we investigated; the maximal storage requirement increases steadily with network size, but it
does not exceed 1,500 bytes even when the network size is scaled up to 5,000 nodes.

Bandwidth Costs. In Figures 4-23 and 4-24, we plot the total number of messages required by
the entire network for stabilization for the UDG and non-UDG networks from a fresh state. Again,
we see that CLDP requires about two orders of magnitude more packets for stabilization. Because
the y axes of Figures 4-23 and 4-24 are in logscale, it may not be quite apparent, but it turns out
that the total number of packets required for GDSTR seems to grow linearly with network size.
Also, the total number of packets required for GDSTR seems to be somewhat independent of the
topology.
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For large networks, the initial startup costs where all nodes start from a fresh state are not important,
since large networks will have to be turned on incrementally. In Figures 4-25 to 4-28, we plot
the total number of messages (summed over all nodes) required to repair routing state when a
node joins the network. For both CLDP and GDSTR, the average number of messages sent per
node increase with network size. Node joins for GDSTR are relatively cheap, while repairs after
network departures are significantly more costly, but still require almost an order of magnitude
fewer messages than CLDP. Individual node joins and network repairs only affect a fraction of the
nodes in the network (typically less than 20% and decreasing with increasing network size).

The reason node joins are cheap is that when the number of nodes is large, the probability that a
new node will be a leaf node in both trees is high. The coordinates of leaf nodes often fall within
existing convex hulls and propagate only a few hops up the hull tree and are somewhat localized.
On the other hand, node departures will often cause changes to both the structure of the existing
hull trees and to the convex hulls and are thus significantly more disruptive. Similarly, if a new
extremal node is added to the network, a hull tree may have to be re-built. However, such an event
is likely to be rare. It is likely that the repair algorithm can be optimized to reduce the number of
messages exchanged by introducing some selective damping, i.e., we can allow local changes to
propagate much faster than distant changes.

44 GDSTR+

In this section, we evaluate the performance of GDSTR+ by comparing it to GDSTR. Since
GDSTR+ stores more state than GDSTR (with two hull trees), we compare GDSTR+ with one
and two local hull trees to GDSTR with up to four hull trees. The width of the grids of the local
trees in our implementation of GDSTR+ is five times the (unit) radio range.
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Typically, GDSTR uses only two global hull trees. To understand the tradeoffs, we compare the
performance of GDSTR+ with one and two local trees (in addition to two global trees) to that for
GDSTR with two to four global hull trees to determine whether we would see the same perfor-
mance for GDSTR with three or four global trees.

4.4.1 Routing Performance

The stretch performance for networks with large and small voids is shown in Figures 4-29 and 4-30,
respectively. The routing performance for GPVFR [52], the best face routing algorithm available,
is also plotted for reference.

In Figure 4-29, we see that for networks with large voids, GDSTR performs better than GPVFR
and GDSTR+ performs marginally better than GDSTR with the corresponding number of trees,
i.e. GDSTR+ with one local tree is better than GDSTR with three global trees, and GDSTR+ with
two local trees is better than GDSTR with four local trees.

In Figure 4-30, we see that the relative difference in performance between the hull-tree-based
algorithms for networks with small voids is smaller than that for networks with large voids. Note
also that the scale of the y-axis has changed between Figure 4-29 and Figure 4-30 to magnify these
differences. It is noteworthy, however, that the relative performance for GPVFR is significantly
better compared to that in Figure 4-29. In particular, we see that GPVFR achieves better routing
performance than GDSTR with two trees. GDSTR+ is able to surpass the routing performance of
both GDSTR and GPVFR. For 5,000-node networks, GDSTR+ with two local hull trees achieves
a 17% improvement in stretch over GDSTR (with two global hull trees) and 8% lower stretch than
GPVEFR.
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We plot the stretch performance for sparse and dense networks in Figures 4-31 and 4-32, respec-
tively. For the sparse networks in Figure 4-31, we find that GDSTR+ with one local tree performs
slightly worse than GDSTR with three global hull trees, and GDSTR+ with two local trees per-
forms slightly worse than GDSTR with four global hull trees. The corresponding hop stretch for
the face routing algorithms is not plotted because it is greater than two. The reason GDSTR+
performs slightly worse than the corresponding version of GDSTR is that a packet can sometimes
be forwarded in the wrong direction based on local information. In such instances, a packet would
have to backtrack and hence, incur additional routing overhead. With tree traversal on global hull
trees, packets are never forwarded in the wrong direction. It should be noted, however, that the
difference in routing performance is less than 1%.

We see from the results in Figure 4-32 that, as expected, that GDSTR+ performs better than
GDSTR. In such networks, the voids are relatively small, and hence, the information contained in
the local hull trees are often sufficient to route packets around them in greedy-hull mode. Because
the local trees are smaller and the roots are closer to the voids, the uptree region (see Section 3.4.1)
for local trees tends to be smaller than that for global trees and the detour that packets may have to
take to route up a tree is smaller, so void traversal is more efficient on average.

442 Costs

We had earlier shown that GDSTR has very low costs in terms of both storage requirements and
maintenance bandwidth [51]. It turns out that the storage requirement for GDSTR+ with two local
hull trees is approximately equal to the storage requirement for GDSTR with four global hull trees,
and is less than 600 bytes on average across the entire range of networks studied.

While the size of the GDSTR+ maintenance messages is somewhat larger than that of the main-
tenance messages for GDSTR, since GDSTR+ needs to maintain two additional local trees, these
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Figure 4-30: Plots comparing the routing performance of GDSTR to GDSTR+ for non-UDG networks
with small voids (average node degree 7).

messages are small (< 500 bytes). The time taken for stabilization is not increased, however, since
the local hull trees are shallow and it only takes a few hops to build them, while messages have to
propagate across the entire network to build the global trees.

45 (Geocast

In our evaluation of geocast efficiency, we do not compare our algorithm with previous algorithms
since our objective is not to demonstrate that our hull-tree-based geocast algorithm is necessar-
ily better, but that given an existing GDSTR/GDSTR+ deployment, geocast can be implemented
relatively efficiently.
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Figure 4-32: Plots comparing the routing performance of GDSTR to GDSTR+ for dense UDG networks
(average node degree 12).
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Figure 4-33: Estimated geocast stretch for sparse Figure 4-34: Estimated geocast stretch for dense
UDG networks (average node degree 6.5). UDG networks (average node degree 12).

We evaluate the performance of our geocast algorithm by measuring the number of geocast packets
that is required to deliver a geocast message successfully to a unit square. To normalize across
different network sizes, we define a ratio, Geocast Stretch, which is the ratio of the number of
packets required by a geocast algorithm to the minimum number of packets required. The latter is
the number of edges on the minimum-spanning tree containing the source and all the destination
nodes.

We define h to be the sum of the minimum number of hops between the source and any node in the
target region and the number of nodes in the target region minus one. It is easy to see that it is not
possible to deliver the geocast message in fewer than A hops, since if we could route a packet to the
node that is closest to the source and then take one hop to reach each of the remaining nodes in the
target region, we have an optimal solution (though such a solution may not exist in general). Since
it is costly to compute the minimum-spanning tree, we determine an upper bound on the maximum
number of packets required by taking the ratio of the actual number of packets to h. We call this
upper bound the Estimated Geocast Stretch.

We plot the results for sparse networks in Figure 4-33. In general, we can improve performance
(i.e., achieve a lower geocast stretch) by having more trees and using a combination of two global
and two local trees (GDSTR+) seems to work best. Using only one local tree (in addition to
two global ones) seems to noticeably worse than using three global trees. This is likely because
with only one forest of trees, it is relatively common that the target region does not fall completely
within a GDSTR+ grid square, and hence, we have to resort to using a global tree for the broadcast.

We plot the results for sparse networks in Figure 4-34. The results with local trees are marginally
better than those with only two global trees. Surprisingly, the results with three and four global
trees are worse. We suspect that the latter is due to an artifact in the experimental setup. The
effective difference in the results is small: it translates to a difference in two or three packets for
each geocast instance.
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The results for networks with obstacles are shown in Figures 4-35 and 4-36. These results show
that obstacles have a marginal effect on geocast performance. The fact that geocast with three
global hull trees performs marginally worse than the rest is likely an artifact of the experimental
set up, since the grid squares and target regions are squares that are aligned with the = and y axes.
On the other hand, the rays that are used to choose the roots for the three global trees are not
aligned in the same way. This is likely to have an effect on the orientation of the resulting hull
trees.

Overall, geocast with local hull trees (GDSTR+) incurs 10% less overhead than geocast with only
two global hull trees in sparse networks with large voids. All the variants seem to perform equally
well in dense networks. These results also suggest that we can likely implement geocast using hull
trees with no more than two times the minimum number of messages (since the Estimated Geocast
Stretch is a loose upper bound).

46 Summary

Our simulations show that GDSTR achieves a peak improvement of about 20% in terms of path
and hop stretch over the best available geographic face routing algorithm in situations where dead
ends are common, and that GDSTR performance is consistently good over a wide range of network
densities and sizes.

Simulation also shows that GDSTR generates significantly less maintenance traffic than CLDP.
GDSTR sends two orders of magnitude fewer messages to build its trees initially than what CLDP
sends to construct a planar subgraph, and GDSTR’s communication when maintaining existing
trees is one order of magnitude less than that of CLDP.
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Finally, GDSTR+ is able to achieve up to a 17% improvement in stretch performance over GDSTR
and an 8% lower stretch than GPVFR, the best existing face routing algorithm, for dense networks
with small voids. We have also shown than we can implement geocast with 10% less overhead with
GDSTR+ hull trees when compared to that for GDSTR (with two hull trees). Furthermore, our
algorithm will likely require no more than twice the minimum number of messages for networks
smaller than 5,000 nodes in size.
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Chapter 5

Greedy Embedding Spring Coordinates
(GSpring)

In this chapter, we describe Greedy Embedding Spring Coordinates (GSpring), an online virtual
coordinate assignment algorithm that incrementally adjusts virtual coordinates to increase the con-
vexity of voids in a virtual routing topology, thereby increasing the success rate of greedy forward-
ing and consequently improving geographic routing performance.

A coordinate assignment is often referred to as an embedding. A greedy embedding is a graph that
has the property that given any two distinct nodes s and ¢, there is a neighbor of s that is closer (in
Euclidean distance) to ¢ than s is, or ¢ is a neighbor of s [65]. In other words, we can pick any two
nodes in the graph and successfully forward a packet between them using only greedy forwarding.

Since geographic routing works best when packets are forwarded greedily as much as possible [87],
an important measure of “goodness” for a virtual coordinate assignment or embedding is the prob-
ability that a packet can be successfully forwarded between two randomly chosen nodes using only
a simple greedy forwarding. We call this measure the greedy forwarding success rate.

5.1 Preliminaries

In this section, we describe the background of the geometric objects and properties that are em-
ployed by GSpring to incrementally improve the greedy forwarding success rate of virtual coordi-
nates.

5.1.1 Region of Ownership

We define the region of ownership of a node as the set of points that are closer to it than to its
immediate neighbors in the network connectivity graph. For example, in Figure 5-1(a), the region
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Figure 5-1: Regions of ownership for the node s is shaded.

of ownership for node s is a pentagon and independent of the position of node ¢ since ¢ is far
from s. The region of ownership for a node is constructed by finding the intersection of all the
half-planes formed by the bisectors of the edges to each neighboring node.

The region of ownership is often a closed polygon. The region of ownership can also be unbounded
as illustrated in Figure 5-1(b). The regions of ownership are often similar to the Voronoi diagram
for a set of points. The key difference is that in the construction of the Voronoi diagram, we have
global knowledge and hence it divides a plane into disjoint partitions. In contrast, the regions of
ownership for two nodes can sometimes intersect because the network can have arbitrary connec-
tivity and nodes have only local (one-hop) knowledge. Figure 5-2(a) shows a topology for which
a node s has another node ¢ in its region of ownership.

GSpring uses the following result to incrementally adjust coordinates to increase the greedy for-
warding success rate of an embedding:

Theorem 3 An embedding of a Euclidean graph is greedy if and only if the region of ownership
of every vertex does not contain any other vertices of the graph.

Proof: It is easy to see that a graph which has a vertex u with a region of ownership that
contains another vertex v of the graph cannot be greedy. Consider a packet with destination v at
vertex u. Clearly, the packet is not deliverable using just greedy forwarding since w is closer to the
destination than all v’s neighbors.

Next, suppose that we have a non-greedy graph embedding where the region of ownership of every
vertex does not contain any other vertices. Since the embedding is non-greedy, it means that there
exists a source-destination vertex pair where greedy forwarding will cause a packet to reach a dead
end at some intermediate vertex u, such that node u is not the destination node v. We know that
v must be in the region of ownership for u. If not, the packet would be forwarded to one of u’s
neighbors. However, since the region of ownership of every vertex does not contain any other
vertices of the graph, we have a contradiction. [ |
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Figure 5-2: Required adjustment to move node s so that node ¢ is no longer in its region of ownership.
Original region of ownership for s is shaded in gray.

5.1.2 Adjustment of Coordinates to Increase Greedy Forwarding Success
Rate

The key insight of our work is that the region of ownership can be used to adjust coordinates to
increase the greedy forwarding success rate of a virtual routing topology and thereby improve the
performance of existing geographic routing algorithms. To understand how this is done, consider
the example in Figure 5-2(a), where we have a node s with another node ¢ within its region of
ownership. We observe that to ensure that ¢ does not lie in the region of ownership for s, it is
sufficient for us to shift s away from ¢ to a point s’ such that the distance between s’ and ¢ is greater
than the distance between ¢ and the neighbor of s that is nearest to ¢ (i.e., ny). This is illustrated
in Figure 5-2(b). A simple way to achieve this is to have s be repelled by ¢ as long as s remains
within the circle centered at ¢. While this describes only local adjustments, such adjustments in
aggregate have a net global effect of incrementally increasing the convexity of the voids in the
routing topology. We will refer to all the nodes within a node’s region of ownership as its conflict
set. If there are multiple nodes within the conflict set, we can repeat the above process to find a
point s’ that satisfies the above condition for all nodes in the conflict set. There are, however, some
configurations for which it is impossible to do so by simply shifting the position of s alone.

5.1.3 A Greedy Embedding Does Not Always Exist

It is known that a greedy embedding exists for all graphs that have a Hamiltonian path. A Hamilto-
nian path is a simple path through a graph that includes every vertex in the graph. The embedding
is trivial — it is one with all the nodes laid out in a straight line in sequence along the Hamiltonian
path. Unfortunately, the problem of determining if an arbitrary graph has a Hamiltonian path is
known to be /N P-complete, so it is not likely that this condition will be useful for determining if a
greedy embedding exists for an arbitrary network in a distributed setting.
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It is easy to see that given a graph GG, with vertex set )V and edge set £, if a greedy embedding exists
for subgraph G’ with vertex set V and edge set &’ C &, the same greedy embedding will work for
G.

However, the converse is false, i.e., if a greedy embedding exists for G, it is not always true that a
greedy embedding will exist for G’. An example is the simple star-like graph shown in Figure 5-3.
A greedy embedding in the Euclidean plane does not exist for this graph.

Proof: Assume that a greedy embedding exists. Consider the angles made by the neighbors
of s at s. Since there are seven neighbors, it is most certainly the case that there exists at least
one pair of nodes n; and n; such that the angle subtended at s is less than 2. If |sn;| = |sny],
then |n;n;| < |sn;|, which means that a packet at n; with destination n; is undeliverable. Without
loss of generality, assume therefore |sn;| < |sn;|. Again |n;n;| < |sn;|, and a packet at n; with
destination n; is again undeliverable. [ |

5.2 Overview of GSpring

In this section, we describe our online incremental virtual coordinate assignment algorithm, Greedy
Embedding Spring Coordinates (GSpring).

GSpring implements the idea described in Section 5.1.2, i.e., to make concave voids more convex
by having each node gradually move away from the nodes in its conflict set. To do so, each node
sends a geocast message to discover the nodes in its conflict set. Once the nodes in the conflict set
are determined, a node adjusts its coordinates so as to “move away”’ from the nodes in its conflict
set.

We model the nodes as particles and the required adjustment as a repulsion force acting between
particles. While the repulsion arising from conflict sets is the critical factor that improves the
greedy forwarding success rate, we use spring forces to keep the local relationship between nodes
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consistent. Hence, GSpring acts as a distributed relaxation of a system of particles acted upon by
a set of springs and some repulsion forces.

The final coordinates are those to which the system converges at equilibrium. Since GSpring
simulates a spring system, nodes can in principle oscillate forever. Like others [11], we achieve
stability by introducing damping and hysteresis.

52.1 Spring Rest Length

Each link between two neighboring nodes ¢ and j is represented with a spring of rest length [;;.
It is preferable for nodes that share many common neighbors to be closer together in the virtual
coordinate space than nodes that do not share any common neighbors. We thus define the per-
centage of common neighbors, r;;, between two nodes 7 and j as follows: suppose ¢ and j have a
set of common neighbors S;; and sets of neighbors which are not shared by the other, S; and Sj,
respectively. Then,

L if |Si;| + (S| =0
Tij = Sl or [S;;| +[S;] =0 (5.1)
m, otherwise

Hence, 0 < r;; < 1. The rest length of the spring between two nodes ¢ and j, ;;, is then given by:
lij = lmm + (1 - Tij)(lmax — lmm) (52)

where [,,;, and [,,,,, are constants such that /,,,;,, < l;,a. In our implementation, we set /,,,,,, = 100
(equal to the radio range) and [,,,;,, = 1—10lmax.

5.2.2 Spring Relaxation Update Rule

From Hooke’s Law, the force vector that the spring between two nodes ¢ and j exerts on node 1,
F;;, is given by:

Fij = rx (lij— || # — 25 [) X u(z; — ;) (5.3)
where & is the spring constant, x; and z; are the coordinates of nodes ¢ and j, respectively, [;; is

the rest length of the spring, the scalar quantity ({,;— || z; —z; ||) is the displacement of the spring
from rest, and u(z; — z;) is the unit vector from z; to x;.

The net force exerted on a node ¢, F}, is the sum of the forces from the springs attached to all its
immediate neighbors:
F,=> F; (5.4)
J#i
Each node will periodically broadcast a keepalive message to inform its neighbors of its current co-
ordinates. At the same time, a node will also update its coordinates based on the virtual coordinates
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of its immediate neighbors using the following rule:

min(|F;|, oy)

F; (5.5)
| Eil

where o is a damping constant that decreases over time.

5.2.3 Greedy Embedding Update Rule

After a node has joined the network and the update rule described in Equation (5.5) no longer
yields any significant changes to its virtual coordinates, it will geocast a HELLO message to all
nodes within its region of ownership, which will respond with their current virtual coordinates.
After a pre-determined interval, the node will have heard from all the nodes within its conflict set.

If nodes are discovered within its region of ownership, a node will use a modified coordinate
update rule. Each node k in the conflict set for node 7 will exert a force of repulsion R;; on node ¢
as follows:

Rir = 0 x u(x; — xy) (5.6)

where 9 is the repulsion constant. The total force acting on a node is now the sum of the spring
forces and a capped total of the repulsion force as follows:

) capped conflict set repulsion forces
spring forces

P mln(| Zk;ﬁz Rzk‘7 Rmal’)
P P+ Rix 5.7
jz#; ’ | Yok Rkl kz;éz

The repulsion force from the conflict set serves two purposes: (i) it tends to force nodes that are
topologically separated from each other apart; and (ii) it makes concave voids more convex and
hence improves the greedy forwarding success rate of the network (as described in Section 5.1.2).
The reason why we need to cap the repulsion forces at some maximum R,,,, is that in a large
network, a given node may find that it has a very large conflict set and we do not want the repulsion
of the conflict set to overwhelm the spring forces. In our implementation, x = 0.5, 6 = 0.5 and
Ryper = 10.

Analogy to Simulated Annealing. One issue that we have to deal with is that the nodes may
sometimes end up in a local minimum analogous to a local minimum-energy state for a physical
system: the physical analogy is a tangled mess of springs. We found that one way to break out
of such minima is to give the system a “jolt” every once in a while. To achieve this effect, when
a node s has at least one node in its conflict set, with a small probability p at each update step,
instead of making an incremental adjustment according to Equation (5.5), it will set its coordinates
as the point s’ where it has no nodes in its conflict set as described in Section 5.1.2, if such a point
s’ exists. While this process occasionally causes the system to end up in a somewhat unfavorable
configuration, the basic spring relaxation algorithm will restore the configuration to a “good” state
relatively quickly. In our implementation, we set p = 0.1.
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5.3 Determination of Initial Coordinates

In essence, GSpring is a relaxation technique that incrementally improves the greedy forwarding
success rate of a given set of virtual coordinates. Because GSpring only makes local changes,
it requires a set of relatively “good” coordinates as input. True physical coordinates are usually
“good,” but they are not always available. Random coordinates will not work well because the
small local adjustments that GSpring makes at each step are also not sufficient to allow the system
to “unfold” the topology. A related point is that if we do not have access to true physical coordi-
nates and hence have to guess some starting coordinates, it is a bad idea to guess coordinates for
every node. While GSpring can “undo” the damage caused by bad guesses on occasion, a better
strategy is to guess coordinates for a subset of the nodes, run GSpring for a while so that the subset
of nodes converges on relatively good coordinates first and then have the remaining nodes take the
cue from these nodes. For this reason, new nodes will also not attempt to “join” the network all at
once, but will do so in a locally incremental way (See Section 5.4.1).

The challenge in GSpring is to seed a subset of the network with relatively “good” coordinates.
Depending on the nature of the network deployment, one of the following strategies might be
applicable:

e Nodes in the subset have access to their physical locations. The straightforward approach
is this case is to seed all the nodes with their true physical coordinates.

e Nodes do not have access to their physical locations. We generate good “seed” coordinates
using the hop-count algorithm (See Section 5.3.1).

Once a small fraction of the nodes in the system are seeded with starting coordinates, which can
either be obtained from a positioning device, manually configured, or derived with the hop-count
algorithm, a new node ¢ that does not start with coordinates will derive its initial coordinates from
its immediate neighbors as follows:

e Case 1: If the node has only one initialized neighbor j, choose coordinates on the circle of
radius /;; centered at j that makes the greatest angle with a pair of the one-hop neighbors of
j. If j has only one other neighbor, add ¢ at the point on the circle directly opposite of that
neighbor. If j has no other neighboring node, select a point on the circle at random.

e Case 2: If 7 has at least two initialized neighbors, find the two initialized neighbors with
virtual coordinates that are furthest apart and pick the midpoint between these nodes as the
initial coordinates.

These two cases are illustrated in Figure 5-4. In summary, a network starts with a handful of nodes
initialized with coordinates. Then, as nodes derive coordinates from their neighbors, coordinates
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Figure 5-4: Choosing neighbors from which to derive initial coordinates.

gradually percolate through the system. Nodes apply the update rule described in Equation (5.5)
as soon as coordinates become available.

For the nodes that are initialized with their actual physical coordinates, these coordinates are only
used as the initial seed values. Their virtual coordinates will be updated according to the relaxation
algorithm, and the final coordinates are likely to be different from the actual physical coordinates.
As mentioned, there are two reasons why we do not pin nodes to their actual physical coordi-
nates: (i) virtual coordinates that are somewhat different from the physical coordinates may yield
more convex voids and hence higher greedy forwarding success rates; and (ii) allowing the virtual
coordinates to be different from the actual physical coordinates provides greater flexibility in the
choice of simulation parameters like the rest length of the springs. If we pin the initialized nodes
to their actual physical coordinates and do not choose an appropriate spring rest length, it is likely
that the spring relaxation process will cause the virtual topology to converge into a “contorted”
configuration. By allowing the virtual coordinates of the nodes to change accordingly, we avoid
such a situation and can afford some degree of freedom in choosing the spring rest length and other
simulation parameters.

5.3.1 Deriving Seed Coordinates with Hop-Count Algorithm

In this section, we describe the algorithm that we use to derive initial seed coordinates where
location information is not available or the available information is limited.

Boundary Detection. We begin by attempting to detect nodes at the boundary of the network
graph. We start by identifying a common reference node, . This can be the node with the smallest
identifier. To achieve a consensus, each node will record and broadcast the identity of the node
that it thinks is the one with the lowest identifier. Also, by recording the hop count to this node, all
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nodes will eventually come to an agreement on this reference node and also its hop count to that
node. This process will take no longer than O (D) time, where D is the diameter of the network.

Next, the network will try to come to a consensus on the perimeter node p; which is furthest from
r in terms of hop count. As before, each node will broadcast the node that they think is the one that
is furthest from r and also that node’s hop count to r. Ties are broken consistently by comparing
node identifiers. Again, it will take no more than O(D) time for the system to come to a consensus.
Once p; is determined, p- is determined in a similar way, as the node that is furthest from p; in
terms of hop count. In a similar fashion, ps, is the node that has the greatest sum of the square
roots of the hop counts from p; and po, i.e., ps is the node which has the maximal value V5 defined

by:

where h;; and h;, are the hop counts from node j to nodes p; and p,. We choose to define V5 as a
sum of square roots because such an approach would prefer nodes that are approximately halfway
between p; and p,. Similar, p, for £ > 3 are likewise defined by the cost function V}:

sz\/hijlﬂL\/hTz%—---—l-\/hjk—l

The reason why we use the sum of square roots instead of the sum of hop counts is that a sum does
not differentiate between two configurations with the same sum. For example, a node that is four
and six hops away from two other perimeter nodes is as good as one that is five and five hops away.
It is preferable for the perimeters to be spread evenly on the boundary of the network. Using the
sum of the square roots will tend to prefer the latter.

As more perimeter nodes p;’s are defined, each py, is associated with a vector of its hop counts to
each of the other perimeter nodes p;, j # k. Overall, this perimeter detection scheme will stabilize
in O(D) time, and the constant is relatively small when the number of perimeter nodes that we
need to elect is small. The storage cost is small since the total maximum amount of information
exchanged between any pair of nodes is equivalent to a square matrix consisting of (1) = ’#
hop counts, where p is the number of perimeter nodes, since p is small. It turns out that we do not
need a large number of perimeter nodes, and we used eight perimeter nodes in our implementation,

which yields excellent results.

Arranging Perimeter Nodes on a Circle. After the perimeter nodes are elected, the next step is
to assign a set of reasonable starting coordinates to them and like Rao et al. [73], it seemed that
a natural approach is to arrange them in a virtual circle. Our algorithm for doing so is based on
a very simple observation: given that we have a hop count matrix between the set of perimeter
nodes, we can in general determine the adjacency relationship between the nodes by looking at the
hop counts. We determine the adjacency relationship using the following algorithm:

Algorithm 7 (Determination of Cyclical Ordering) Given a set of perimeter points
P and an empty array A of size |P|.
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Figure 5-5: Determination of starting coordinates for perimeter nodes.

Seti =0
Remove a node p;, from P at random and cNode = py,
Set A[0] = cNode
While P is non-empty {
Increment ¢
Find p; in P that is of minimal hop count to cNode
(Break ties by choosing p; such that j and the corresponding
index of cNode is maximal modulo |P|)
Set A[i] = cNode
Remove p; from P

}

The array A contains a cyclical ordering of the perimeter nodes.

Coordinates for Perimeter Nodes. Once we have obtained the cyclical ordering of the nodes in
P, {n1,ng, -, ni}, where k is the number of perimeter nodes, we estimate the number of hops
on the boundary of the network graph by summing the hop counts between adjacent nodes. Let the
hop counts between adjacent nodes n; and 711 (mod k) be h;, and H = Z?Zl h;, then the radius of

the virtual circle, C, is given by:

H x1
O = 2 X tmaz (5.8)
2

The intuition here is to use H X l,,,4, to approximate the circumference of the virtual circle.

Without loss of generality, we set the coordinates of n; as the origin, (0,0). The coordinates of
the remaining nodes are spread out along a circle of radius C, centered at (0, C') according to their
relative hop distances. We illustrate this in Figure 5-5. The coordinates of 7, is the point on the
circle such that 5= = h—I}, where h; is the hop count between n; and ns.

Interpolation. The above procedure will derive coordinates for & perimeter nodes. One observa-
tion is that the hop matrix between all the perimeter nodes is known by all nodes since they are
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Figure 5-6: Node state transitions for GSpring.

propagated by broadcast. In addition, each node also knows its hop count from each of the perime-
ter nodes. A node z can determine that it is on the shortest path between one pair of perimeter
nodes if h; = h; + }_L,-+1(mod k)» Where h; is the hop count between some pair of perimeter nodes
n; and 14 1(mod k) and h; and N1 1(moq &) are the hop counts from x to the two nodes, respectively.
When a node satisfies this condition, it will derive its initial coordinates by interpolating accord-
ingly between the coordinates of n; and 7,4 (mod x) and h;, which can calculated from the hop
matrix.

When this algorithm terminates, a small number of nodes at the boundary of the network and some
nodes in the middle of the network will be initialized with some initial coordinates. The remaining
nodes will derive their coordinates from these nodes as these node run the GSpring algorithm and
stabilize.

5.4 Implementation

Sections 5.2.2 and 5.2.3 describe how nodes update their virtual coordinates. This section explains
the node state transitions required to implement GSpring, and how damping and hysteresis are
employed to ensure that the algorithm converges.

5.4.1 Node State Transitions

Nodes implement the GSpring algorithm with a simple state machine. The node state transitions
for GSpring are shown in Figure 5-6, and a brief explanation of the various states is as follows:

e Start: Nodes are created in this state. A node in this state will attempt to determine its ini-
tial coordinates from the coordinates of immediate neighbors that are initialized. However,
before a node does so, it will ensure that it does not have a neighbor with a smaller node
identifier that is in the Start state or a neighbor in one of the other states that is not initial-
ized. Some nodes are initialized with coordinates when the system starts; the other nodes
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are considered to be initialized once they have switched to Geocast state and subsequently
returned to the Ready state. Once a node picks its initial coordinates, it changes to the Relax
state.

e Relax: A node in this state will change to the Ready state when the magnitude of the up-
dates to its virtual coordinates during periodic updating/relaxation is smaller than a minimum
threshold, o,,;,.

e Ready: If there are changes to the neighboring nodes that cause periodic updates to differ
from the last update vector by a magnitude greater than a threshold «,,,, a node will change
back to the Relax state; a node in this state will periodically change to the Geocast state to
probe for nodes in its region of ownership, even if no changes are detected in the immediate
vicinity of the node.

e Geocast: When a node switches to this state, it sends a geocast message to detect if there are
nodes in its region of ownership. Only the nodes in one of the two stable states (Ready or
Geocast) will respond to the querying node; nodes in the unstable states will simply ignore
the geocast query. A node will stay in the Geocast state for a pre-determined interval. If no
new nodes are discovered, it will simply revert to the Ready state; if a new node is discovered,
the node will switch to the Relax state.

5.4.2 Damping and Hysteresis

The rate of progress for GSpring is controlled by the size of the damping constant «;, which
decreases with the progress of time. Once the size of the change for a given time step falls below
a threshold, «,,,;,,, a node will consider itself stabilized and no longer updates its coordinates.

More specifically, since the nodes broadcast keepalive messages periodically to inform its neigh-
bors of its location, we use the interval between broadcasts as the update interval and each node
tracks the number of iterations it spends in Relax state. Once the number of iterations exceeds a
pre-determined threshold 7', «; is scaled by an exponentially decreasing constant as follows:

o, = { Qnazs ift<T (5.9)

_t .
Qmaz€” T, otherwise

where «,,,,, and T" are constants and ¢ is the count of the number of iterations after a node switches
to the Relax state. If the magnitude of the displacement min(|F;|, oy) falls below a minimum
threshold «,,,;,, a node in Relax state will switch to the Ready state.

Qimaz 18 the parameter that controls the hysteresis factor in the system. When a node switches to
the Ready state at time ¢, it will record the force vector F;;; it will revert to the Relax state when
and if the force vector |F} ¢+1 — F} 1| > Quna, at some point ¢ + 1. In our implementation, oy, = 1,
Qaz = D and T = 50.
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Figure 5-7: Configuration where a node, s, will oscillate and is unable to obtain virtual coordinates that
will keep other nodes out of its region of ownership (shaded in gray).

There are configurations in which a node is unable to find good coordinates for which it is able to
avoid having other nodes in its region of ownership. In fact, oscillation due to conflict set repulsion
is possible. One example configuration is shown in Figure 5-7.

To avoid oscillations due to repulsion from a changing conflict set, a node will keep track of
the nodes that it hears from and adopt a new conflict set for computing the repulsion forces as
described in Equation (5.7), only if it hears from new nodes in the new conflict set. In the example
shown in Figure 5-7(a), s is first repelled by n4, and subsequently by n3 when it ends up as shown
in Figure 5-7(b), and hence the system returns to the configuration in Figure 5-7(a). However,
since it had heard from n; before, it will keep n3 as the node in its conflict set and remain in the
configuration in Figure 5-7(a).

5.5 Geocast can be replaced with Location Service

While GSpring as described requires the availability of a geocast mechanism, what is truly required
is not a geocast mechanism, but rather a rendezvous mechanism that will allow a node to determine
the other nodes that are within its region of ownership.

As mentioned in Chapter 1, geographic routing must be augmented by a location service. A loca-
tion service is a rendezvous mechanism that can be used in place of geocast. Since nodes have to
update their coordinates with the location service when they join the network and when they move,
the location service contains information on the coordinates of nodes in the network.

Hence, in place of geocast, GSpring can also resort to querying the location service as long as nodes
update their locations with the location service often enough. The relative costs of geocasting
versus the querying of the location service will depend on the design and implementation of the
respective services.
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5.6 Summary

We have described GSpring, a simple virtual coordinate assignment algorithm that finds good
virtual coordinates for geographic routing by incrementally adjusting coordinates to increase the
convexity of voids in the virtual routing topology. GSpring is a combination of the following
mechanisms:

1. A hop-count-based algorithm to detect a small number of perimeter nodes and seed nodes
that lie on a suitably scaled circle;

2. The initialization of only a small number of nodes at the beginning and incremental addition
of nodes only after the neighbors have stabilized to reduce system inertia;

3. Spring forces between adjacent nodes to keep the local relationship between nodes consis-
tent;

4. Repulsion between nodes when one node is within the region of ownership of the other to
incrementally improve the greedy forwarding success rate; and

5. The use of damping and hysteresis to ensure that the system converges.
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Chapter 6

GSpring Evaluation

In this chapter, we evaluate the performance of GSpring, by comparing the routing performance
of existing geographic face routing algorithms using coordinates obtained with the GSpring algo-
rithm, actual physical coordinates, and coordinates obtained with the NoGeo algorithm [73]. In
addition to path stretch and hop stretch, we also evaluate the scalability of GSpring with respect to
network size and the cost overhead in terms of the number of iterations required for convergence
to a set of stable coordinates and the number of geocast messages sent and received per node.

6.1 Simulation Setup

In this section, we describe our simulation setup. The goal of our simulations is to understand the
effect of network density, network size and obstacles on the GSpring algorithm.

As before, we evaluate the performance of GSpring with simulations. The simulations are per-
formed using the same high-level event-driven simulator [50] that was used to evaluate GDSTR,
as described in Section 4.1.

Effect of Network Density. We use a different set of networks from those used for evaluating
GDSTR to investigate the effect of network density on GSpring. The random scattering of nodes
over a fixed area tends to generate separate networks instead of one connected network when the
node density is low.

Hence, to generate a set of connected networks over a range of network densities, we randomly
scatter 500 nodes of unit radio range over a number of x X = unit squares, where x ranges from 10 to
20+/5. Then, we determine the largest set of connected nodes among the scattered nodes, remove
the remaining nodes and use this set as the network for our evaluation. While this procedure
produces networks of randomly varying sizes, we are able to obtain a good spread of networks
with densities spanning the entire region of interest.
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Figure 6-1: Plot of hop stretch with actual physical coordinates.

Effect of Network Size and Obstacles. To evaluate the scaling properties of GSpring and the
effectiveness of GSpring for different kinds of networks (including networks with obstacles), we
use the topologies described in Section 4.1. As before, we refer to the UDG networks with average
node degrees 6.5 and 12 as “Sparse” and “Dense,” respectively, and to the non-UDG networks with
high and low obstacle densities as “Large Voids” and “Small Voids,” respectively. We evaluate
these networks for the sizes ranging from 50 to 2,000.

6.2 Routing Performance

In this section, we evaluate the routing performance for existing geographic routing algorithms
with GSpring coordinates. We compare this with performance achieved using actual physical
coordinates and for NoGeo coordinates. In Section 6.2.1, we evaluate the routing performance for
small networks (with less than 500 nodes). In Section 6.2.2, we evaluate how routing performance
scales with increasing network size from 50 to 2,000 nodes for sparse and dense unit disk graph
(UDG) networks (see Section 2.2) with constant network density. We evaluate routing performance
in networks with obstacles in Section 6.2.3.

6.2.1 Effect of Network Density

First, we compare the routing performance of the following geographic face routing algorithms
over GSpring coordinates to the routing performance over actual physical coordinates: GPSR [39],
GOAFR+ [48] and GPVER [52] with CLDP planarization [42], the only algorithm that is known to
work for practical networks, and with GDSTR [51], over random networks for a range of average
node degrees up to about 16. The results are shown in Figures 6-1 and 6-2.
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Figure 6-2: Plot of hop stretch with GSpring coordinates.
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Figure 6-3: Plot comparing the stretch for GDSTR/GSpring over networks of different average node de-
grees (Note change of scale from Figure 6-2).

As before, our implementations of these routing techniques are based on the algorithms as de-
scribed in [39], [47], [52] and [51], respectively. The configuration parameters for GOAFR+ are
po=14,p=+2ando = ﬁ as suggested in [47]; for GPVFR, we limit the length of the prop-
agated path vectors to 3; our implementation of CLDP follows the description in [42] and we use
two hull trees for all experiments with GDSTR.

Our results show that the virtual coordinates produced by GSpring allow existing geographic rout-
ing algorithms to achieve routing performance that is comparable to that obtained with real physical
coordinates for the face routing algorithms. Since GDSTR is generally more efficient and signifi-
cantly cheaper to deploy than geographic face routing algorithms [52], we focus on evaluating the
performance of GSpring with GDSTR.

In Figure 6-3, we plot the routing performance of GDSTR over NoGeo coordinates, GSpring coor-
dinates, and actual physical coordinates. We make two observations from these results: (i) GSpring
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coordinates allow GDSTR to achieve better routing stretch than NoGeo over the entire range of
network densities; and (ii) GSpring produces coordinates that achieve slightly better performance
than the actual physical coordinates. It turns out that observation (ii) is true only because the net-
works evaluated in this section are relatively small (i.e., less than 500 nodes in size) and because
of the way that the networks have been generated.

We measured the greedy forwarding success rates for the various networks and found an inverse
relation between routing stretch and greedy forwarding success rate. Our results are shown in
Figure 6-4. For relatively sparse networks with average node degrees between 5 and 8, GSpring
achieves greedy forwarding success rates that are about 15% higher than that for the true physical
coordinates.

6.2.2 Unit Disk Graph Networks

We plot the routing stretch for GDSTR with coordinates derived with NoGeo and GSpring, as well
as with actual physical coordinates in Figures 6-5 and 6-6, respectively.

As shown in Figure 6-5, the actual physical coordinates yield the best routing performance for
sparse UDG networks. GSpring achieves routing stretch that is approximately 10% higher than
that for actual physical coordinates and about 20% lower than that for NoGeo coordinates.

As shown in Figure 6-6, the actual physical coordinates achieve close to optimal (unit) stretch for
dense UDG networks. Note that the scale of the y axis was increased to improve clarity. GSpring
is not only able to match the routing performance of the actual physical coordinates, it is in fact
able to achieve slightly lower stretch when the networks are large. The difference however is very
small. As before, GDSTR achieves 20% lower stretch with GSpring coordinates than with NoGeo
coordinates.
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6.2.3 Obstacles

Given that we adopt uniform radio ranges for the nodes in our evaluation in Section 6.2.2, it might
not be surprising that GSpring converges to a virtual topology that has the same approximate shape
as the actual physical topology. Since obstacles are common in real networks, it is important to
understand the performance of GSpring in the presence of obstacles.

The routing performances for non-UDG networks with small and large voids are shown in Fig-
ures 6-7 and 6-8, respectively. We see from these results that the density of obstacles does not
seem to have a very large effect on routing stretch.

Overall, NoGeo performs universally poorly for networks with obstacles. The routing performance
for NoGeo worsens progressively with increasing network size. For 2,000-node networks, NoGeo
incurs up to 40% higher stretch than actual physical coordinates. The Spring algorithm seems
be perform universally better than NoGeo, though like NoGeo, the routing performance seems to
worsen with increasing network size.
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GSpring on the other hand, demonstrates better performance than the actual physical coordinates
and its performance is somewhat independent of the obstacle density. Not surprisingly, its perfor-
mance when compared to the actual physical coordinates seems to depend on the size of the voids.
For the networks with large voids (and higher obstacle density), it achieves up to 10% lower stretch
than actual physical coordinates. The improvement is halved at 5% for the networks with smaller
voids.

6.3 Seeding Some Nodes with Location Information

While GSpring is able to derive virtual coordinates when no location information is available, some
networks may have a small number of nodes equipped with positioning devices. In this section,
we investigate the routing performance for GDSTR with GSpring under scenarios where a small
fraction (< 5%) of the nodes are seeded with their true coordinates. We also consider the case
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Figure 6-10: Plot of GDSTR stretch with location information seeding for dense UDG networks (average
node degree 12).

where 100% of the nodes are initialized with their actual physical coordinates.

Overall, we found that seeding a small fraction (< 5%) of the nodes with their true coordinates
does not work as well as initializing the system with the hop-count algorithm as described in
Section 5.3.

6.3.1 Unit Disk Graph Networks

In Figures 6-9 and 6-10, we plot the corresponding routing performance when nodes are seeded
with their true physical coordinates instead of using the hop-count algorithm. Not surprisingly,
we find in general that routing performance improves when more nodes are initialized. The case
where 100% of the nodes are initialized provides an upper bound of how well we can do with more
information.
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Our results in Figure 6-9 shows that for sparse UDG networks, initializing 100% of the nodes with
their true location information yields comparable routing performance to the hop-count algorithm.
Earlier in Figure 6-5, we saw that GSpring coordinates did not perform as well as actual physical
coordinates for such networks. This means that GSpring can make coordinates worse in sparse
networks.

A likely explanation for this phenomenon is that the configuration for sparse random UDG net-
works is already relatively greedy. Because GSpring is a localized algorithm, it can in fact disrupt
an existing configuration that is relatively greedy for large networks. Also, to ensure that the al-
gorithm converges, we have to introduce damping and hysteresis. It is likely that as a result, the
network often cannot “undo” bad adjustments.

The results for dense UDG networks in Figure 6-10 seem to suggest that the routing performance
for dense UDG networks is dependent mostly on the fraction of nodes initialized and is somewhat
independent of size. Like in the case of sparse networks, when some of the nodes are initialized
with their true physical coordinates, initializing only a small fraction of the nodes does not seem
to work well.

We found that this is because without sufficient initial points to “pin” the initial coordinates of
the nodes down, it is quite easy for the network to converge to a set of coordinates that “folds
over itself”. Such topologies are bad for geographic routing since geometric distance no longer
corresponds to the routing distance, i.e., forwarding a packet greedily no longer guarantees that
progress will be made. GSpring is analogous to an attempt at “unfurling” a mesh of springs. When
the mesh is small, it is relatively easy to unfurl it; but when the mesh is large, the mesh tends to get
“entangled” in a bad configuration. If we can start by pinning some points of the mesh to “good”
points in space, we can generally do better.

6.3.2 Obstacles

In Figures 6-11 and 6-12, we plot the corresponding routing performance for networks with obsta-
cles when instead of using the hop-count algorithm, we seed some nodes with their true physical
coordinates.

While seeding some nodes with their actual coordinates seemed to work fairly well for UDG
networks, the same cannot be said for non-UDG networks with obstacles. Even in the limit when
all the nodes are initialized with their actual physical coordinates, the performance of the final
routing topology is significantly worse than that for actual physical coordinates and GSpring with
the hop-count algorithm.

We suspect that the reason for this is that when damping and hysteresis are introduced, a network
with all its nodes initialized will stabilize before the system reaches an “optimal” configuration.
On the other hand, when the hop-count algorithm is applied, the majority of the nodes will wait for
the system to stabilize before joining, and therefore the approach does not introduce quite as much
rigidity and inertia. This suggests that it is helpful to initialize only a small number of nodes with
good coordinates and incrementally add nodes only after the neighbors have stabilized.
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6.4 Understanding the Effect of Greedy Embedding Repulsion

We will refer to a variant of the GSpring algorithm without the greedy embedding repulsion com-
ponent, i.e., it consists of using the hop-count algorithm to place 8 perimeter nodes on a virtual
circle, and running the relaxation algorithm using only the Spring Relaxation Update Rule (see
Section 5.2.2), as the “Spring” algorithm. We compare the hop stretch performance of Spring to
GSpring and NoGeo in Figures 6-13 to 6-16. The corresponding path stretch performance follows
the same trend.

From these results, it is clear that the greedy embedding repulsion is crucial for good routing
performance, since the performance for Spring is significantly worse than GSpring in all cases.
The Spring algorithm performs slightly better than NoGeo for sparse networks and for smaller
dense networks. However, NoGeo seems to scale better than Spring for dense networks. The
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reason for this is that when the network is both large and dense, the virtual springs tend to “clump”
together. In fact, the untangling of springs in a spring-like system is known to be challenging.

While our experiments described in the previous sections demonstrate that GSpring is able to con-
verge to virtual coordinates that yield good routing performance, it is important to understand why.
In the following sections, we present some examples of the routing topologies that are generated
by GSpring to provide us with some insights and intuitions on how GSpring works.

6.4.1 Unit Disk Graph Networks

An example of a dense UDG network containing 300 nodes is shown in Figure 6-17(a). Fig-
ure 6-17(b) shows that if the basic spring relaxation algorithm is used by itself without conflict
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Figure 6-17: Derived coordinates for sample dense 300-node unit disk graph (UDG) network with GSpring
and NoGeo.

set repulsion, the resulting topology is fairly close to that of the real topology. When 100% of
the nodes are initialized with their true physical coordinates, the basic spring relaxation algorithm
tends to preserve the shape of the actual physical topology as shown in Figure 6-17(c).

The routing topology produced by GSpring is shown in Figure 6-17(e). We note that the topology
produced by GSpring is similar to the actual topology. The effect of the conflict set repulsion can
be seen by comparing Figure 6-17(f) to Figure 6-17(a), since Figure 6-17(f) shows the final routing
topology by running the GSpring algorithm with all nodes initially seeded with their actual physical
coordinates. In this particular network, the effect of the transformation induced by GSpring is
not pronounced, though it should be noted that some nodes are shifted to positions that make
the topology somewhat more “greedy”. The virtual topology generated by NoGeo is shown in
Figure 6-17(d) for reference.

We explained in Section 5.3.1 that we use the sum of square roots in the hop-count algorithm
instead of the sum of hop counts to differentiate between two configurations with the same sum.
It is not ideal to use the sum of hop counts. To illustrate this, consider Figure 6-18. Figure 6-
18(a) shows the network configuration when we use the sum of the hop counts instead of their
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square roots with the Spring algorithm only. As shown, using the sum of the hop counts does not
detect perimeter nodes well, and the resulting basic topology resembles a tangled mess of springs
instead of the one in Figure 6-17(b). The figure in Figure 6-18(b) is the final configuration with
the above hop-count algorithm implementation when we apply GSpring. We see that it is almost
identical to Figure 6-17(e). This example demonstrates how GSpring is able to “unfurl” a tangled
initial configuration and why the greedy embedding repulsion rule is absolutely essential for good
routing performance.

6.4.2 Network with Obstacles

To provide some physical intuition for the effect of GSpring on networks with obstacles, we present
an example a network with 300 nodes and a high density of cross-shaped obstacles in Figure 6-
19(a).

As shown in Figure 6-19(b), applying only the basic spring relaxation algorithm results in a topol-
ogy that is quite different from the actual topology. This is because the hop-count algorithm is
relatively successful at stretching out the topology. If all the nodes in the network are initialized
with the true coordinates, the basic spring algorithm will however tend to preserve the basic shape
of the actual physical topology as shown in Figure 6-19(c).

Unlike the earlier example in Figure 6-17, the changes induced by GSpring on the routing topology
are somewhat more pronounced on this network. We see this by comparing Figure 6-19(e) to
Figure 6-19(f). The effect of the greedy embedding repulsion forces is also clear from comparing
Figure 6-19(c) to Figure 6-19(f). As before, the virtual topology generated by NoGeo is shown in
Figure 6-19(d) for reference.
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Figure 6-19: Derived coordinates for sample 300-node network with cross-shaped obstacles with GSpring
and NoGeo.

6.4.3 Irregular Shapes

We present the resulting virtual topologies for three irregular shapes — cross, donut and U-shape,
in Figure 6-20. For each shape, the first figure is the actual physical layout of the nodes; the second
figure is the virtual topology generated by GSpring; and the third figure is the topology generated
by NoGeo.

In the case of the cross and the donut topologies, the virtual routing topologies generated by
GSpring are quite similar in shape to that of the actual topology. However, for the U-shaped
topology, GSpring tends to “flatten” out the U. As discussed in Section 1.2, this is desirable be-
cause the original topology causes packets routed between nodes at the two ends of the U to end
up in a dead end.

Two drawbacks of the NoGeo algorithm for small and relatively sparse networks are also apparent
from these examples. First, small networks will result in NoGeo electing fewer perimeter nodes.
Having only a small number of perimeter nodes will cause the nodes in the virtual topology to
“clump together,” leading to regions of unnecessarily high density in the virtual routing space. The
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Figure 6-20: Routing topologies for sample 300-node networks with irregular shapes — cross, U-shape and
donut.

other major drawback for NoGeo is clear from the example of the cross and U-shaped networks:
the fact that NoGeo attempts to “map” a network onto a circle makes it likely to generate more

dead ends for networks for which the greedy embedding is not circular.

6.5 Convergence and Costs

In this section, we evaluate the costs of the GSpring algorithm, in terms of the time taken to
converge and the number of geocast messages that have to be sent. We also examine how damping
and hysteresis affects both the convergence time and the number of geocast messages sent.
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Figure 6-23: Iterations required for stabilization for Figure 6-24: Iterations required for stabilization for
networks with small voids (average node degree 8). networks with large voids (average node degree 7).

6.5.1 Convergence Time

With our current implementation of GSpring, each node typically requires between a thousand to
two thousand iterations to stabilize (where one iteration involves an application of the update step
described in Equation (5.5)). The average number of iterations required by a node to stabilize for
the networks studied in Sections 6.3.1 and 6.2.3 is shown in Figures 6-21 to 6-24. These figures
represent the scenario where, except for the initialized nodes, the rest of the nodes start off without
any state.

As expected, if a larger proportion of the nodes is initialized with their actual physical coordinates,
GSpring tends to converge more quickly. GSpring takes more iterations to converge in sparse net-
works than in dense networks. In sparse networks, the time to convergence seems to increase with
network size, while in dense networks, the time to convergence seems to be somewhat indepen-
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Figure 6-25: Geocast messages sent and received per Figure 6-26: Geocast messages sent and received per
node for sparse UDG networks (average node degree node for dense UDG networks (average node degree
6.5). 12).

dent of size. If the hop-count algorithm is not used to derive initial coordinates and some of the
nodes are seeded with their actual physical coordinates, the time to convergence decreases with the
proportion of nodes seeded as expected. Obstacles seem to have a marginal effect on convergence
time, though a high density of obstacles seems to increase the convergence time for GSpring only
marginally.

6.5.2 Geocast M essages

The average number of geocast messages sent and received by each node during stabilization for
the networks evaluated is shown in Figures 6-25 to 6-28. These figures show that the number of
geocast messages depends to a large extent on the density of the network. Dense networks without
obstacles seem to require significantly fewer geocast messages than sparse networks and networks
with obstacles. This is because the regions of ownership for dense networks are smaller and the
likelihood that a node will be found in the region of ownership of another node is low.

The intuition for this phenomenon is that there are large voids in the latter networks and these
large voids will tend to give rise to large conflict sets. While the number of messages seems
somewhat large, note that our current implementation is naive: every node that is within the region
of ownership will reply to a querying node. It is quite likely that the number of messages required
can be reduced substantially by pruning some replies from the nodes in a conflict set. Also, as
nodes observe geocast messages that are routed to them and through them, it is likely that they can
use the information contained in the geocast queries and thus save on some geocast query messages
as well.

Given these figures, it is natural to ask if GSpring is feasible for deployment in a practical setting.
If the interval between each iteration is one minute, then 1,000 iterations is equivalent to about
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Figure 6-27: Geocast messages sent and received per Figure 6-28: Geocast messages sent and received per
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17 hours. If the deployment scenario is a sensor network that is expected to be deployed for
weeks and months at a time, then perhaps 17 hours is not too long to wait. In any case, we show
in Section 6.5.3 that the number of iterations can be reduced without major adverse effect by
increasing damping and hysteresis.

In the same way, with an iteration interval of one minute, to send or receive 200 geocast messages
before stabilization is equivalent to processing one geocast message every 5 minutes and thus the
geocast message overhead seems modest.

6.5.3 Damping and Hysteresis

We have been conservative in our implementation by setting o, = 5. Itis likely that with a larger
value of a4, GSpring would be able to stabilize with fewer iterations. Similarly, GSpring can be
forced to stabilize faster by imposing more damping, i.e., by reducing 7" in Equation (5.9), or hys-
teresis, i.e., by increasing a.,;,. Overall, the tradeoff is that increasing «,,,, might introduce some
instability in the relaxation process and increasing the amount of damping and hysteresis might
cause the system to stabilize in a less optimal configuration. Overall, our current implementation
serves only as a proof of concept and has not been fully optimized.

Effect of Damping Constant, «,,,;,. The effect of varying the damping constant, «,,;,,, from 0.5 to
5 on routing stretch is shown in Figure 6-29. The default value of a,,;,, is 1.0. As expected, routing
performance gets worse as damping is increased. However, these figures show that the change is
not significant.

The corresponding number of iterations required for convergence and the number of geocast mes-
sages sent and received per node is shown in Figures 6-30 and 6-31, respectively. These results
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Figure 6-30: Plot of o, against iterations required
for stabilization.

demonstrate that we can reduce the number of iterations required for convergence by almost half by
increasing the damping constant to 5. The number of geocast messages will be increased slightly
in most cases. The reason for this is that with increased damping, nodes are likely to stop adjusting
their coordinates sooner, often even before they have completely eliminated all the nodes in their
region of ownership.

Effect of Hysteresis Constant, ... The effect of varying the hysteresis constant, ., from 3
to 12 on routing stretch is shown in Figure 6-29. The default value of «,,, is 5.0. As expected,
routing performance gets worse as hysteresis is increased. Again, these figures show that the
change is not significant.

The corresponding number of iterations required for convergence and the number of geocast mes-
sages sent and received per node is shown in Figures 6-33 and 6-34, respectively. These results
are similar to that for increasing the damping constant: we can reduce the number of iterations
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required for convergence by almost half by increasing the hysteresis constant to 12. The number
of geocast messages will also be increased as the hysteresis applied is increased. The increase rises
up to 100% for networks with obstacles as shown in Figure 6-34. Nevertheless, because the total
number of messages is not large, we do not expect this to be a major issue.

6.6 Getting Simulation Parameters Right

Since GSpring involves a large number of simulation parameters (i.e., spring rest length, spring
constant, repulsion constant, etc.), one major concern is how the various parameters should be
set to achieve good performance. In our work, we systematically tried a range of values for each
parameter and we found that GSpring seems to be relatively robust to the parameter settings, i.e.,
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Figure 6-35: Effect of varying repulsion force (d, Rynaz)-

GSpring seems to work reasonably well over a wide range of parameter settings and we do not
need to try too hard to get the parameters “right.”

The following example serves to illustrate this point: in Figure 6-35, we present the correspond-
ing topologies for the network in Figure 6-19(a) when none of the nodes are initialized, and the
conflict node repulsion constant 6 and the maximum total repulsion force R, are varied. Com-
paring these figures with Figure 6-19(e), we see that increasing the repulsion constants will tend to
make the final topology somewhat more “spread out”, while the general shape of the topology is
preserved.

6.7 Summary

We have shown the GSpring is able to converge to virtual coordinates that yield routing perfor-
mance that is comparable to actual physical coordinates and significantly better than that for No-
Geo coordinates for geographic routing algorithms.

In particular, we show that GDSTR [51] is able to achieve 20% lower hop stretch by routing
with GSpring coordinates instead of NoGeo coordinates for sparse networks. GSpring achieves
even better performance (up to 40% lower hop stretch) for networks with obstacles. For sparse
networks, GDSTR routing with GSpring coordinates incurs only a small overhead of about 10%
in stretch compared to routing with actual physical coordinates. For dense networks, geographic
routing algorithms are often able to achieve unit (optimal) stretch; GSpring coordinates are able to
match the routing performance of actual physical coordinates in such cases.

GSpring is the first known algorithm that can derive coordinates that achieve better geographic
routing performance than actual physical coordinates. For networks with obstacles, GDSTR rout-
ing with GSpring coordinates achieves up to a 10% improvement in stretch compared to routing
with actual physical coordinates.
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While GSpring typically requires about a thousand iterations for a network to converge to a set
of stable coordinates, this is not an issue in a practical setting since GSpring converges relatively
quickly to a set of coordinates that are good enough to route with. The higher-level geographic
routing algorithm will ensure packet delivery during the transitional period. After a network has
reached stable coordinates, a new node joining the system can often stabilize within a few hundred
iterations and will typically only cause small and local changes to the virtual routing topology.
Also, as described, GSpring is not fully optimized and we can achieve convergence by increasing
the damping or hysteresis that is applied to the system.
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Chapter 7

Conclusion

In this chapter, we summarize our work and discuss some open questions and possible directions
for future research.

7.1 Summary

In this dissertation, we describe and evaluate two new algorithms for geographic routing: Greedy
Distributed Spanning Tree Routing (GDSTR) and Greedy Embedding Spring Coordinates (GSpring).

7.1.1 Greedy Distributed Spanning Tree Routing (GDSTR)

GDSTR is a geographic routing algorithm that uses a new data structure called a hull tree as the
backup routing topology instead of a planar graph like the geographic face routing algorithms. Our
simulations show that GDSTR achieves a peak improvement of about 20% in terms of path and
hop stretch over the best available geographic face routing algorithm in situations where dead ends
are common. GDSTR performance is consistently good over a wide range of network densities
and sizes.

Simulation also shows that GDSTR generates significantly less maintenance traffic than CLDP
and hence makes geographic routing more practical. GDSTR sends two orders of magnitude fewer
messages to build its trees initially than what CLDP sends to construct a planar subgraph, and
GDSTR’s communication when maintaining existing trees is one order of magnitude less than
CLDP.

We found that for sparse networks, the routing performance of GDSTR is consistently better than
that for existing face routing algorithms, while for denser and larger networks, existing face routing
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algorithms can sometimes achieve slightly lower stretch. We address this issue with GDSTR+, a
variant of GDSTR that maintains two additional local hull trees. The key insight is that a few hops
of information is often sufficient to guarantee that a node picks the correct forwarding direction
around a void.

Our simulations show that GDSTR+ is able to achieve up to a 17% improvement in stretch per-
formance over GDSTR and an 8% lower stretch than GPVFR, the best existing face routing al-
gorithm, for networks where the routing performance of GPVFR surpasses that of GDSTR, and
slightly better routing performance than GDSTR with two global trees for sparse networks. This
makes GDSTR+ suitable for deployment over highly heterogeneous networks.

We have also shown GDSTR can be extended to implement approximate routing and how geo-
cast can be implemented with hull trees. Our geocast algorithm incurs 10% less overhead with
GDSTR+ hull trees when compared to that for GDSTR (with two hull trees) and will likely require
no more than twice the minimum number of messages.

GDSTR is immediately applicable to a large class of stationary wireless networks, e.g. roofnets [1,
81] and sensor networks [36,75]. While we have not explicitly evaluated the performance of
GDSTR for mobile networks, our simulations show that GDSTR requires only a small number of
packets to set up and repair its routing state. This suggests that it is quite plausible that GDSTR
will work well in a mobile setting with some tuning and optimization.

7.1.2 Greedy Embedding Spring Coordinates (GSpring)

GSpring is a new virtual coordinate assignment algorithm that derives good coordinates for geo-
graphic routing of location-aware wireless nodes. Starting from a set of initial coordinates derived
with a set of elected perimeter nodes, GSpring use a modified spring relaxation algorithm to adjust
virtual coordinates incrementally to increase the convexity of voids in the virtual routing topology.
This reduces the probability that packets will end up in dead ends during greedy forwarding and
improves the routing performance of existing geographic routing algorithms.

GDSTR is able to achieve 20% lower hop stretch by routing with GSpring coordinates instead
of NoGeo coordinates for sparse networks. GSpring achieves even better performance (up to 40%
lower hop stretch) for networks with obstacles. For sparse networks, GDSTR routing with GSpring
coordinates incurs only a small overhead of about 10% in stretch compared to routing with actual
physical coordinates. For dense networks, geographic routing algorithms are often able to achieve
unit (optimal) stretch; GSpring coordinates are able to match the routing performance of actual
physical coordinates in such cases.

GSpring is the first known algorithm that can derive coordinates that support better geographic
routing performance than actual physical coordinates. For networks with obstacles, GDSTR rout-
ing with GSpring coordinates can achieve up to a 10% improvement in stretch compared to routing
with actual physical coordinates.
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While GSpring typically requires about a thousand iterations for a network to converge to a set
of stable coordinates, this is not an issue in a practical setting since GSpring converges relatively
quickly to a set of coordinates that are good enough to route with. The higher-level geographic
routing algorithm will ensure packet delivery during the transitional period. After a network has
reached stable coordinates, a new node joining the system can often stabilize within a few hundred
iterations and will typically only cause small and local changes to the virtual routing topology.
Also, as described, GSpring is not fully optimized and we can achieve convergence by increasing
the damping or hysteresis constants thereby allowing the network to converge at least twice as fast.

7.1.3 Insights

The following is a summary of the insights gained on geographic routing over the course of this
research:

1. Planarization is unnecessary for geographic routing. Most of the previous work on pla-
narization has focused on deriving planarization algorithms that yielded better geographic
routing performance for Unit Disk Graph (UDG) networks [2, 21, 54, 85, 86] and CLDP
solves the practical distributed planarization in the general case [42].

A major contribution of our research is a paradigm shift to improve geographic routing per-
formance, not by incrementally improving the planarization or face routing algorithm, but by
thinking about geographic routing in terms of a greedy forwarding mode and a guaranteed-
delivery forwarding mode. To some extent our approach is a natural response to the realiza-
tion that perhaps it is both too expensive and unnecessary to attempt to planarize the network
graph.

2. Convex hulls can aggregate location information efficiently. The underlying intuition for
geographic routing is that the physical location of a node relative to the destination of packet
provides a good hint of the correct general forwarding direction. Brad Karp refers to this as
the self-describing nature of position information [37]. These hints however are insufficient
to guarantee packet delivery, which we will also define as correctness.

For geographic face routing algorithms, correctness is achieved by exploiting the geometric
properties of a planar graph. Our key observation is that a similar guarantee can be obtained
by using a hull tree.

This result is not surprising, considering that a common technique for achieving scalability
in traditional networking is the aggregation of information about the address space. It turns
out that we can apply the same principle in GDSTR to help it route along a spanning tree, by
aggregating the locations covered by subtrees using convex hulls. GDSTR uses the convex
hulls to decide which direction in the tree is most likely to make progress towards a given
geographic destination.
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3. Getting the forwarding direction right is key when routing around voids. Existing geo-
graphic face routing algorithms [7,39,47,52] differ mainly in the way they handle situations
when a packet is routed to a dead end during greedy forwarding. These dead ends usually
arise because of voids in the routing topology.

We make three key observations about such voids:

(a) The backup routing topology employed when greedy routing fails should attempt to
“approximate” these voids, since a topology that conforms to the shape of the voids
will allow a packet to be routed around them most efficiently. A planar graph is a
natural topology that approximates such voids very well; our insight in developing
GDSTR is that it is often no less efficient to use two hull trees instead of a planar graph
as the backup routing topology when greedy forwarding fails, and that it is significantly
easier to build and maintain hull trees than a planar graph.

(b) In sparse networks with large voids, it is critical to choose the correct forwarding di-
rection when attempting to route around a void in order to achieve good routing per-
formance, even though either forwarding direction will allow us to guarantee packet
delivery. In general, it is impossible to guarantee that the optimal forwarding direction
is chosen when the voids are large without global information.

(c) That said, in a dense network where voids are generally small, we can often pick the op-
timal forwarding direction by maintaining several hops of information about the routing
topology.

4. Local Information Can Improve Performance by Providing Hints on the Optimal For-
warding Direction. While it may seem obvious that maintaining more information about
the network beyond the one-hop neighborhood would improve routing performance, it was
not entirely clear how such information helps. We found that maintaining a little extra in-
formation along each planar face is sufficient to allow a node to guess the right forwarding
direction more often when the voids are large and be always correct when the voids are small
enough for nodes to have complete information about the adjacent voids.

5. Routing performance can be improved with a judicious choice of routing coordinates.
Geographic routing systems should exploit flexibility in choosing coordinates when loca-
tion information is not available, to choose virtual coordinates that result in virtual routing
topologies with convex voids and fewer crossed links. The former reduces the probability
that packets will get trapped in dead ends, while the latter allows the routing address space
to be aggregated more efficiently with convex hulls.

The hypothesis that virtual coordinates which allow greedy forwarding to succeed more often
will improve the routing performance for existing geographic routing algorithms is validated
over a wide range of random network graphs. To the best of our knowledge, GSpring is the
first algorithm to derive coordinates that can achieve better geographic routing performance
than actual physical coordinates. In some sense, we can view GSpring as an algorithm that
“embeds” part of the required routing tables into the coordinate system.
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Finally, we found that it was extremely important to have a good visualization tool when develop-
ing and debugging geographic routing algorithms. Without such a tool, it would be very different
to understand why things fail if there is a bug in the implementation. It is for this reason that a lot
of effort in this work was devoted to the development of a good visualization tool for our network
simulator [50].

7.2 Open Issues and Future work

Existing work on geographic routing has focused almost exclusively on two dimensional Euclidean
coordinates because face routing only works with a planar graph and is not applicable to higher
dimensions. Both GDSTR and GSpring can be generalized to higher dimensions in a straightfor-
ward way — both the convex hull and the region of ownership are well-defined entities in higher
dimensions. We believe that it is likely that we can achieve better stretch for some networks by
routing in higher dimensions. We conjecture that it is easier for GSpring to converge to a greedy
embedding in higher dimensional space. Perhaps given d dimensions where 2 < d < O(logn), it
is possible to show that GSpring will always converge to a greedy embedding.

The aim of our research is to explore new ideas, and due to time constraints, only a limited amount
of effort was spent optimizing and exploring the effect of various parameter settings for GSpring.
While anecdotal evidence shows that GSpring is relatively robust to many parameter settings, the
effect of the various parameters on the convergence time has not been systematically explored. Be-
fore GSpring can be deployed in real system, it is essential to understand how parameters should be
set to minimize the convergence time of the algorithm without sacrificing the routing performance
of the resulting coordinates.

A major motivation for geographic routing is an assumption that geographic routing is cheap be-
cause only local (one-hop) information is sufficient to guarantee delivery [37]. The difficulties of
practical planarization were not well-understood then. Recent advances in our understanding of
distributed planarization algorithms have shown that the cost of planarization can be prohibitive in
practice [42,51]. While GDSTR partially mitigates this cost by obviating the need for planariza-
tion, it is perhaps timely to compare the associated costs of GDSTR to traditional ad hoc routing
algorithms [35, 66, 68, 69], which maintain O(n) routing state. From our work, we know that the
cost of maintaining the routing state for GDSTR is O(n), like traditional ad hoc routing algo-
rithms. We believe that GDSTR is likely to have a lower constant than traditional ad hoc routing
algorithms since it has access to location information, but the constants remain to be evaluated in
a practical setting.

The effect of mobility on GDSTR and GSpring is another area that remains to be explored. In
particular, it may be useful to see if variants of GDSTR and GSpring can be developed for het-
erogeneous networks, consisting of a mixture of both mobile and stationary nodes, and where
individual nodes have differing amounts of available energy.
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Appendix A

GDSTR Algorithm Design

In this Appendix, we describe a variant of GDSTR, called GDSTR II, that uses a different convex
hull aggregation mechanism that presents a node with a view of the locations accessible via each
neighboring node. We also present the results of some simulations for GDSTR and GDSTR 1II to
support our design choices.

In particular, we explore the following dimensions in the GDSTR design space to determine how
GDSTR performance and maintenance costs are affected by the following design choices:

1. Hull tree maintenance/tree traversal algorithm (GDSTR versus GDSTR II)

2. Spanning tree algorithm

3. Node traversal ordering

4. Hull tree choosing heuristic

A.1 GDSTR II: A Node-Centric Approach to Hull Tree Main-
tenance

In Section 3.8.1, we described a different convex hull aggregation mechanism that does not support
the notion of a “root”. The global hull trees can also use this algorithm to maintain its trees. We
call the variant of GDSTR that uses such hull trees for routing GDSTR II.

Each node orders its neighbors in a cyclical fashion and during tree traversal, there is no notion of
forwarding up or down a tree. A packet is simply forwarded to the next neighbor in the cyclical
ordering. The following is an modified routing algorithm:
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Algorithm 8 (GDSTR 11) When a node v receives packet p for destination node ¢
from a neighboring node w, do:

1. Preliminary Checks:

(a) Packet Delivery: If v = t, the packet has been delivered.

(b) Check for switch to Greedy mode: If p.mode # Greedy and there is
at least one immediate neighbor w such that |wt| < [(p.7mn)t|, then set
p.mode := Greedy, p.n,,;, := w and clear p.nq,..o. and p.tree if they are
set. Execute step 2 or 3 according to p.mode.

2. Greedy Mode: Find the node w in the set of immediate neighbors that is closest
to the destination t.

(@) Greedy Forwarding: If |wt| < |vt|, set p.n,.., := w and forward the packet
to w.

(b) Switch to Tree Traversal Mode: Choose one of the hull trees for for-
warding and set p.tree to the chosen tree’s identifier, p.mode := Tree and
D Nanchor = v. Then, find the set of child nodes with convex hulls that con-
tain the destination t.

e If set is non-empty, arrange the nodes (relative to p.tree) with convex
hulls that contain the destination point in an ascending sequence ac-
cording to the global ordering of node identifiers and forward the packet
to the first such node.

e Else, conclude that packet is not deliverable.

3. Tree Mode: If the root for p.tree has changed, follow step 2(b), else follow
step 3(a).
(@) Check Termination Condition: If v = p.anchor and w is the last child,
conclude that packet is not deliverable.
(b) Tree Traversal: Given an ascending sequence of nodes with convex hulls
that contain the destination point, forward to the next neighboring node in
this sequence.

The correctness of GDSTR II follows from the correctness of GDSTR. GDSTR 1I is effectively
equivalent to GDSTR. The key difference lies only in how the convex hull information is recorded
and propagated. Corresponding algorithms for approximate routing and geocast can also be derived

for GDSTR II.

While the formulation of GDSTR II and its associated geocast algorithm is simpler than GDSTR,
there are two tradeoffs: (i) GDSTR II incurs higher maintenance bandwidth even though it does
not require conflict hulls since each node has to broadcast more convex hull information. Instead
of broadcasting only its own hull, it has to broadcast the convex hulls of all its neighbors from
its perspective; and (ii) it turns out that the use of conflict hulls in GDSTR is a more efficient
way to prune the routing subtree and hence GDSTR tends to achieve marginally better routing
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performance in practice. The reason for the latter is that GDSTR II's aggregation algorithm is
rather inefficient for extremal-rooted trees; it is much better for radially-balanced trees.

Another key distinction between GDSTR and GDSTR II is the following: in GDSTR, only the root
nodes have a global view of the network; in GDSTR II, every node has a perspective of the global
view. While this view does not provide much benefit with respect to routing since the convex hull
associated with the parent node in a hull tree (in GDSTR II) is likely to be large and intersect with
other convex hulls, it does allow a node to drop packets that are destined for points that are outside
of the perimeter of the network. Unfortunately, it is unlikely that such a feature would turn out to
be useful in practice since such circumstances are likely to be rare and for data centric applications,
the goal is to route a packet to the node that is closest to the destination point even if the destination
is outside the perimeter of the network. Finally, there is a cost associated with providing each node
with a global view of the network: network changes are likely to require more nodes to be updated
and thereby increase maintenance cost.

We also explored the effect of various design choices and heuristics on GDSTR 1II, and found that
unlike GDSTR, the minimal-path spanning tree works best and also that picking the neighboring
node with a convex hull containing the destination that is nearest to the destination works best. The
storage savings the GDSTR II has over GDSTR also turn out to be quite insignificant in practice.

A.2 Design Choices

In this section, we describe the various options for the major design choices, including the spanning
tree algorithm, the node traversal ordering and the hull tree choosing heuristic.

A.2.1 Spanning TreeAlgorithms

Because the constraints for correctness are much stricter for planarizations, it will in general require
more effort to maintain a planar subgraph than a spanning tree. In fact, a distributed spanning tree
has only two criteria for correctness:

1. Each node, except for the root node, has exactly one parent node.
2. Each node must be connected. We guarantee this by ensuring that every node has a common

view of the root of the tree.

Both these conditions can be checked locally by a node by communicating only with immediate
neighbors. On the other hand, the only known technique for detecting and eliminating non-planar
edges in a connected graph requires non-local face traversals [42]. The GDSTR routing algorithm
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will work correctly as long as we have a rooted spanning tree. In this section, we describe some
algorithms that will produce rooted spanning trees.

Given a hull tree with a specific root, GDSTR employs the following Minimal-Depth Spanning
Tree algorithm. A node, n, chooses its parent node as follows:

Algorithm 9 (Minimal-Depth Spanning Tree) Determine the set of neighboring nodes
that have minimal depth, i.e., are at the smallest number of hops from the root.

e If there is only one node in the set, choose that node as the parent.

e If there is more than one node in the set, choose the node that is closest in geo-
metric distance to » as the parent.

Closely related is the following Minimal-Path Spanning Tree:

Algorithm 10 (Minimal-Path Spanning Tree) Determine the set of neighboring nodes
that have minimal path length to the root.

e If there is only one node in the set, choose that node as the parent.

o If there is more than one node in the set, choose the node that is closest in geo-
metric distance to » as the parent.

These algorithms will produce minimal spanning trees (in terms of either path length or hops)
rooted at extremal nodes. The expected advantage of these trees is that a packet is will be able to
traverse the entire tree in a small number of hops or path length. The actual routing performance is
related to D, the diameter of the network. The disadvantage of such trees is that when the network
density is high, some intermediate nodes may end up with a large number of children. Since each
child has an associated hull, the amount of state stored per node will therefore be proportional to
network density, and not constant.

To keep the amount of state stored at each node constant and independent of network density, we
can reduce the number of children at each node while still avoiding intersections of the convex
hulls as far as possible with the following variants of the above algorithms as follows:

Algorithm 11 (Sparse Minimal-Depth Spanning Tree) Given a global ordering for
node identifiers, find the set of neighboring nodes with a higher priority that is at the
same number of hops from the root.

e If this set is non-empty, then:

— If there is only one node in the set, choose that node as the parent.

— If there is more than one node in the set, choose the node that is closest in
geometric distance as the parent.
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e Else, if there are no neighboring nodes at the same number of hops from the root,
pick the node that is closest in geometric distance from the set of nodes that are
one hop nearer to the root as the parent.

Algorithm 12 (Sparse Minimal-Path Spanning Tree) Given a global ordering for
node identifiers, find the set of neighboring nodes with a higher priority that is at the
same number of hops from the root.

e If this set is non-empty, then:
— If there is only one node in the set, choose that node as the parent.

— If there is more than one node in the set, choose the node that is closest in
geometric distance as the parent.

e Else, if there are no neighboring nodes at the same number of hops from the root,
pick the node that has the shortest path to the root as the parent.

The distributed spanning tree algorithms described above are very strict, i.e. given a network con-
figuration, each spanning tree is uniquely specified. One drawback of having a strict specification
is that whenever a node joins or leaves the network, all the trees will often need to re-configured.
Since the criteria for correctness for a distributed spanning tree are relatively relaxed, the following
“lazy” variants can be used to reduce the need for topological updates:

Algorithm 13 (Lazy Minimal-Depth Spanning Tree) Assume we have a global or-
dering for node identifiers.

e If current parent is closer to the root in hop count, or at the same number of hops
from the root and has a higher priority node identifier, do nothing.

e If there is only one node in the set, choose that node as the parent.

e If there is more than one node in the set, choose the node that is closest in geo-
metric distance to » as the parent.

Algorithm 14 (Lazy Sparse Minimal-Depth Spanning Tree) Assume we have a global
ordering for node identifiers.

e If current parent is closer to the root in hop count, or is at the same number of
hops from the root and has a higher priority node identifier, do nothing.

e Find the set of neighboring nodes that has a lower hop count to the root or that
are of equal hop count and a higher priority. Select the node in this set that is
closest in geometric distance as the parent.

The key drawback of these “lazy” variants is that the resulting trees will likely have more inter-
secting convex hulls because the trees formed have less structure. Sample spanning trees formed
with the various tree building algorithms are shown in Figure A-1. We see from these figures that
the trees produced by these two “lazy” algorithms are somewhat similar in structure.
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Figure A-1: Sample trees generated by the various distributed spanning tree algorithms.

A.2.2 TreeTraversal Heuristics

Tree Traversal Ordering. The tree traversal algorithm is correct if we impose a strict global
ordering on all the nodes in the system: when a node has to pick the next node to forward a packet
during tree traversal, it simply picks the next neighbor according to this global ordering.

However, we observe that a global ordering is not necessary for correctness. Any consistent order-
ing for each source-destination pair will work. Hence, we investigated the effect of the following
neighbor orderings on GDSTR routing performance:

1. Minimal-Distance: Order the neighboring nodes in ascending order in terms of their dis-
tance from the destination point.

2. Smallest-Angle: Order the neighboring nodes in ascending order in terms of the angle that
they make relative to the imaginary line between a node and the destination. The idea is that
we want to try the nodes that are in approximately the right direction first.

3. Smallest-Area: Order the neighboring nodes in ascending order according to the areas of
their convex hulls, i.e., try the nodes that have smaller hulls first.
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4. Minimal-Height: Order the neighboring nodes in ascending order according to their height,
i.e., try the nodes with hulls that have a smaller number of hops to the leaves first!.

5. Random: Order the neighboring nodes in some arbitrary (but fixed) order.

The neighboring nodes referred to above are the neighboring nodes that are neighbors in the as-
sociated hull tree, with convex hulls that contain the destination node. Nodes that are immediate
neighbors but which are not neighbors in the hull tree or which have hulls that do not contain the
destination node are not traversed.

Tree Choosing Heuristics When a packet switches from greedy forwarding to tree traversal and
there are multiple trees, a node will have to decide which hull tree to use for tree traversal mode. In
principle, any tree will work, but as explained in Section 3.3, it is critical to choose the correct tree
to achieve good routing performance. For GDSTR, there are two possible scenarios: (i) at least
one hull tree has a convex hull that contains the destination and (ii) none of the hull trees have a
convex hull that contains the destination. For GDSTR II, only the former matters because in the
latter case, GDSTR II can conclude that a packet is undeliverable.

We define the height of a node as the maximal number of hops from the node to the descendant
node that is farthest down the tree; similarly, we define the depth of a node as its hop count from
the root of the tree.

The following are the tree choosing heuristics when there are more than one hull trees that contain
the destination that we evaluated:

1. Minimal Distance: Choose the tree for which the child node with a hull containing the
destination is nearest to the destination point in geometric distance.

2. Minimal Angle: Choose the tree for which the child node with a hull containing the des-
tination makes the smallest angle relative to the imaginary line between a node and the
destination.

3. Minimal Area: Choose the tree for which the child node with a hull containing the destina-
tion has a hull with the smallest area.

4. Minimal Height: Choose the tree for which the child node with a hull containing the desti-
nation has the lowest height.

5. Nearest Destination: Choose the tree whose root that is nearest to the destination in terms
of geometric distance.

6. Nearest Root: Choose the tree which has a root that is nearest to the forwarding node in
terms of geometric distance.

To implement this heuristic, as convex hull information is aggregated back up a tree, we compute the height of
each node in the tree. We define the height of a node as the maximal number of hops from the node to the descendant
node that is farthest down the tree; similarly, we define the depth of a node as its hop count from the root of the tree.
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The following are the tree choosing heuristics when none of the hull trees contain the destination
point that we evaluated (applicable to GDSTR only):

1. Minimal Angle: Choose the tree for which the parent node makes the smallest angle relative
to the imaginary line between a node and the destination.

2. Minimal Depth: Choose the tree for which the forwarding node is at the minimal depth,
i.e., fewest hops from the root.

3. Minimal Distance: Choose the tree that has a parent node that is nearest to the destination
point in geometric distance.

4. Nearest Destination: Choose the tree whose root that is nearest to the destination in terms
of geometric distance.

5. Nearest Root: Choose the tree which has a root that is nearest to the forwarding node in
terms of geometric distance.

For comparison, we also evaluated the simple strategy of choosing from the set of available trees
at random (which we call Random).

When none of the hull trees contain the destination point, GDSTR will forward packet to the
parent node in some tree. Our objective is to find a heuristic that will produce the best choice for
the parent node. Some of these heuristics take into account the position of the parent relative to the
destination, while others take into account the structure of the tree. For example, by choosing the
tree with the minimal depth, we surmise it will take fewer hops for a packet to traverse the tree if
the destination is to be found in a distant branch of the hull tree.

A.3 Evaluation Methodology

The dimensionality of the GDSTR design space is too high for us to probe the entire space. In
addition to the hull maintenance/tree traversal algorithm, the spanning tree algorithm, the node
traversal ordering and hull tree choosing heuristics, there are other system parameters like the
number of hull trees, and the value of r, the maximum size for the convex hulls, that may interact
to affect relative routing performance. The actual topology of the underlying network is also likely
to affect the relative performance of the various design choices or heuristics.

Our goal is to explore a new approach to geographic routing using hull trees and not attempt to
fine-grained optimization of routing performance, so we do not attempt to completely characterize
the entire design space. Instead we adopt the following simple approach: we vary each design
parameter in turn and systematically derive a set of choices that we believe is “optimal” and run
further simulations varying one choice at a time while holding the other choices constant. The
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process then allows us to conclude that our design choices are optimal subject to the variation of
one parameter.

As the underlying evaluation topology, we use the sets of networks with 25 to 500 nodes randomly
scattered over a 10 x 10 unit square, described in Section 4.1. For each density, we generate 200
networks, and then route 20,000 packets using each algorithm between randomly chosen pairs of
source and destination nodes. The performance measurements presented are the average over the
200 times 20,000 data points.

In our evaluation, we focus on evaluating routing performance with two hull trees and we do not
limit the value of r, the maximum size for the convex hulls. We measure routing performance with
respect to two metrics: (1) path stretch, and (ii) hop stretch. Path stretch is the ratio of the total
path length to the shortest path (in Euclidean distance) between two nodes; hop stretch is the ratio
of the number of hops on the route between two nodes to the number of hops in the shortest path
(in terms of hops).

We measure maintenance costs with respect to the following metrics:

e Storage required at each node

e Size of broadcast message
For each of these metrics, we not only consider the average values over many trials, but we also
note the maximal value over all trials. The latter is important since we are working with trees, and
one of the issues with trees is that the distribution of such characteristics is likely to be highly non-
uniform. A small number of nodes in tree-like systems will tend to have significantly higher than
average loads and hence we want to ensure that our final algorithm does not consume an inordinate

amount of resources for such loads. It is unacceptable if the consumption for most loads is low,
but a few of the nodes are so overloaded that they break down.

A.4 Results for GDSTR

We found that the optimal combination of parameter choices for GDSTR is as follows:

e Spanning tree algorithm: Minimal-Depth
e Traversal ordering: Negligible effect, any fixed ordering will work
e Tree Choosing (Hull Trees do not contain destination): Nearest Destination

e Tree Choosing (Hull Trees contain destination): Negligible effect, any random choice
among the trees with a convex hull that contains the destination works.
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Figure A-2: Effect of the spanning tree algorithm on GDSTR routing performance.

Spanning tree algorithm. The effect of the spanning tree algorithm on GDSTR routing perfor-
mance is shown in Figure A-2. These results show that while the sparse minimal-depth spanning
tree yields noticeably worse routing performance compared to the other spanning trees, the other
spanning tree algorithms seem to yield comparable routing performance. The minimal-depth tree
seems to yield the best stretch overall. Also, not considering the sparse minimal-depth spanning
tree, the peak difference in the routing performance of the different spanning tree algorithms is
less than 3%. It is interesting to note that even a random tree will yield relatively good routing
performance.

While the lazy variants of the spanning tree algorithms also yield good routing performance, we
found that they do so only in the case of point-to-point routing to a existing destination node in the
network. To evaluate the performance of GDSTR under a scenario where non-deliverable packets
are common, we also route 20,000 packets with undeliverable destinations for each network. We
take the average number of hops taken by these packets before GDSTR terminates and concludes
that they are undeliverable, and divide this number by the average of the minimal hop paths be-
tween two randomly chosen nodes in the network. We refer to the resulting ratio as undeliverable
stretch. The corresponding results are shown in Figure A-3.

We see from these results that lazy variants require a packet to visit more nodes before GDSTR can
conclude that it is undeliverable for dense networks. This arises from the fact that the lazy variants
will generate hull trees with more intersecting convex hulls. When a destination falls within the
intersection of two or more convex hulls, the traversed subtree is increased in size and it takes more
hops to completely traverse the tree.

In Figure A-4, we plot the storage requirements for the various spanning tree algorithms. The
sparse minimal-depth tree imposes a somewhat higher requirement on the nodes, and a slightly
lower maximal requirement. This is expected because the sparse minimal-depth tree limits the
degree of each node in the tree, but increases the depth of the tree and the number of non-leaf nodes.
As for the remaining spanning tree algorithms, they seem to have similar storage requirements.
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Figure A-4: Effect of the spanning tree algorithm on GDSTR storage requirement.

In Figure A-5, we plot the maximum size of the broadcast messages. From these results, we
see that the average size of the messages for the deterministic trees (minimal-depth, minimal-
path and sparse minimal-path) are somewhat constant at higher network densities, while that for
the remaining trees increases with network density. This is due to the increase in the number of
conflict hulls at higher network densities.

Traversal Ordering. In our simulations, we found that traversal ordering does not have any notice-
able effect on routing performance. The results are not presented here since the plots for different
traversal orderings are visually indistinguishable.

Tree Choosing Heuristic. When GDSTR has to be switch to tree traversal mode, a node can
either find that some of the hull trees contain the destination or that none of its hull trees contains
the destination. In the latter, the logical thing is to forward a packet down the hull tree to a child
node that has a convex hull containing the destination. It turns out that if there are several hull trees
that satisfy this condition, the choice of hull tree does not have any noticeable effect on routing
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Figure A-6: Effect of the tree choosing heuristic (when none of the hull trees contain the destination) on
GDSTR routing performance.

performance and the results are not presented here since the plots for different traversal orderings
are visually indistinguishable. In the latter, the choice of hull tree has a significant effect as shown
in Figure A-6. We see that optimal routing performance is achieved by choosing the hull tree with
a root node that is closest to the destination. It turns out that with this heuristic a packet will be
forwarded in the correct general direction most often and hence achieves the best performance.

A.5 Results for GDSTR 11

We found that the optimal combination of parameter choices for GDSTR is as follows:

e Spanning tree algorithm: Minimal-Path
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Figure A-7: Effect of the spanning tree algorithm on GDSTR II routing performance.

e Traversal ordering: Minimal Height, has a marginal effect.

e Tree Choosing (Hull Trees contain destination): Minimal Distance

Spanning tree algorithm. The effect of the spanning tree algorithm on GDSTR routing perfor-
mance is shown in Figure A-7. Again, the sparse minimal-depth tree yields significantly worse
path and hop stretch performance, while the difference between the other spanning tree algorithms
is relatively small.

The undeliverable stretch for the various spanning tree algorithms is shown in Figure A-8. Like
for GDSTR, the sparse minimal-depth tree yields markedly worse performance than the other
algorithms and the minimal-depth tree seems to yield the best performance. Comparing Figures A-
7 and A-3, we see that the undeliverable stretch for GDSTR II is higher than that of GDSTR for
dense networks. This is not unexpected since GDSTR II is similar to GDSTR without conflict
hulls. In these experiments, the majority of the packet destinations are within the boundaries of
the network. In cases where the majority of packet destinations lies outside the boundaries of the
network, it is likely that GDSTR II will yield significantly better performance, since each node
in the network has a view of the boundaries and can conclude immediately that such packets are
undeliverable. The conflict hulls for GDSTR allow nodes to conclude that a packet is undeliverable
only if the destination falls within a convex hull, packets with destinations that fall outside the
boundaries of the network will still only terminate at the root. This drawback can however be
easily overcome by having the root node broadcast the hull of the entire network down a hull tree.

The storage requirements per node and the size of broadcast messages for GDSTR II are shown
in Figures A-9 and A-10, respectively. These figures show that the spanning tree algorithm has
a marginal effect on the storage requirements and broadcast message size. The mean storage
requirement for GDSTR 1I is higher than GDSTR, whole the maximum storage requirement is
lower. This is not surprising since with GDSTR 11, all nodes (including the leaf nodes) will have
convex hulls that cover all the nodes in the network. In contrast, with GDSTR, leaf nodes will
store almost no state and have only a partial view of the network.
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Traversal Ordering. The effect of tree traversal ordering is shown in Figure A-11. The minimal
height heuristic seems to be the best choice, but the overall effect is small and seen only for the
networks with average node degrees between 5 and 9.

Tree Choosing Heuristic. The effect of tree traversal ordering is shown in Figure A-12. The
minimal height heuristic seems to be the best choice, but the overall effect is small and seen only
for the networks with average node degrees between 5 and 9.

A.6  Summary

In summary, the routing performance of GDSTR is slightly better than that for GDSTR II. The
difference in the simulation study above may not be large, but we found that the difference in
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Figure A-11: Effect of the tree traversal ordering on GDSTR II routing performance.

routing performance is magnified as the network size increases. Also for data-centric applications,
it is likely that packets will often be routed to destinations that do not correspond to specific nodes.
In such cases, the undeliverable stretch is the more important criterion and hence GDSTR is again
the preferred algorithm. The storage requirements for GDSTR are slightly lower and the GDSTR
message sizes are slightly smaller than those for GDSTR 1I.

Hence, while GDSTR is somewhat more complicated than GDSTR II and involves the maintenance
of conflict hulls, it is preferable over GDSTR II. Our simulations show that the optimal spanning
tree algorithm is the minimal-depth tree and the only heuristic that has a significant effect on
routing performance is the choice of tree hull when a node finds that none of its child nodes have
convex hulls that contain the destination. In such cases, the hull tree with a root nearest to the
destination should be picked.
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