
PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

mPath: High-Bandwidth Data Transfers with
Massively-Multipath Source Routing

Yin Xu, Ben Leong, Daryl Seah, and Ali Razeen

Abstract—The capacity of access links has increased dramatically in recent times, and bottlenecks are moving deeper into the Internet
core. When bottlenecks occur in a core (or AS-AS peering) link, it is possible to use additional detour paths to improve the end-to-end
throughput between a pair of source and destination nodes. We propose and evaluate a new massively-multipath (mPath) source
routing algorithm to improve end-to-end throughput for high-volume data transfers. We demonstrate that our algorithm is practical by
implementing a system that employs a set of proxies to establish one-hop detour paths between the source and destination nodes.
Our algorithm can fully utilize the available access link bandwidth when good proxied paths are available, without sacrificing TCP-
friendliness, and achieves throughput comparable to TCP when such paths cannot be found. For 40% of our test cases on PlanetLab,
mPath achieved significant improvements in throughput. Among these, 50% achieved a throughput of more than twice that of TCP.

Index Terms—Multipath TCP, source routing, congestion control.

✦

1 INTRODUCTION

R ESEARCH has shown that there are often less-
congested paths than the direct one between two

end-hosts over the Internet [1, 2]. These alternative paths
through the Internet core were initially not exploitable
as bandwidth bottlenecks used to be in the “last mile”.
Over the past decade, bottlenecks have been observed
to be shifting away from the network edges due to
the growing capacity of access links [3]. As last mile
bandwidth is set to increase dramatically over the next
few years [4], we expect that this trend will acceler-
ate and end-to-end data transfers will be increasingly
constrained by core link bottlenecks. We now have the
opportunity to exploit path diversity and use multi-
ple paths concurrently to fully saturate the available
access link bandwidth for high-volume data transfers,
e.g. scientific applications [5] or inter-datacenter bulk
transfers [6].
While the idea of multipath routing is not new, pre-

viously proposed systems either require multi-homing
support [7] or the maintenance of an overlay with only a
small number of paths [8]. Our approach is to use a large
set of geographically-distributed proxies to construct and
utilize up to hundreds of detour paths [1] between
two arbitrary end-hosts. By adopting one-hop source
routing [9] and designing the proxies to be stateless, we
also require significantly less coordination and control
than previous systems [8, 10] and ensure that our system
would be resilient to proxy failures. Our system, which
we call mPath (or massively-multipath source routing),
is illustrated in Fig. 1.
There are a number of challenges in designing such a

system: (i) good alternative paths may not always exist,

• Yin Xu, Ben Leong and Daryl Seah are with the Department of Computer
Science, School of Computing at the National University of Singapore.

• Ali Razeen is with the Department of Computer Science at Duke Univer-
sity.

Query/

Response

Register

Access

Link

Access

Link

Direct Path

Registration

Server

Fig. 1. Massively-multipath source routing.

and in such cases the performance should be no worse
than a direct TCP connection; (ii) when good alterna-
tive paths do exist, we need to be able to efficiently
identify them and to determine the proportion of traffic
to send on each path; and (iii) Internet traffic patterns
are dynamic and unpredictable, so we need to adapt to
changing path conditions rapidly. Our key contribution,
which addresses these design challenges, is a combined
congestion control and path selection algorithm that can
identify bottlenecks, apportion traffic appropriately, and
inter-operate with existing TCP flows in a TCP-friendly
manner. The algorithm is a variant of the classic additive
increase/multiplicative decrease (AIMD) algorithm [11]
that infers shared bottlenecks from correlated packet
losses and uses an operation called load aggregation to
maximize the utilization of the direct path.
We model and analyze the performance of mPath to

show that our algorithm (i) is TCP-friendly, (ii) will max-
imize the utilization of the access link without under-
utilizing the direct path when there is free core link
capacity, and (iii) will rapidly eliminate any redundant
proxied paths. We validate our model with experiments
on Emulab.
We evaluate our system on PlanetLab with a set of 450

proxies to show that our algorithm is practical and can
achieve significant improvements in throughput over

PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

TCP for some 40% of the end-hosts. Among these, half
of them achieved more than twice the throughput of
TCP. In addition, when good proxied paths cannot be
found or the bottleneck is at a common access link,
mPath achieves throughput that is comparable to TCP
and stabilizes in approximately the same time.
The rest of this paper is organized as follows: in Sec-

tion 2, we describe the mPath algorithm and the design
of our system. In Section 3, we present a theoretical
model for our multipath congestion control algorithm. In
Section 4, we present our evaluation results on Emulab
and PlanetLab. Finally, we present an overview of related
work in Section 5 and conclude in Section 6.

2 SYSTEM DESIGN

In this section, we describe the design and implementa-
tion of the mPath source routing system. As illustrated
in Fig. 1, the network is composed of a set of proxies that
are tracked by a central registration server (RS). Proxies
in mPath are light-weight because they do not maintain
connection state. The destination address is embedded
in every data packet, so proxies can simply forward the
packets received to the destination node. The RS tracks
the active proxies in the system and returns a subset of
the proxies to a source node when it needs to initiate
a new mPath connection. We currently implement the
RS as a simple server application, but it can be easily
replaced with a distributed system for greater reliability
and/or scalability. The application at the end-hosts is
provided with a connection-based stream-like interface
similar to TCP to perform the data transfer, even though
the underlying protocols supporting this interface are
UDP-based and therefore connectionless. Depending on
the nature of the application supported, the proxies can
either be dedicated servers or mPath clients.
We use UDP instead of TCP for various practical

reasons. For one, mPath needs direct control over the
packet transmissions (and retransmissions) to implement
the congestion control algorithm that coordinates be-
tween the different mPath flows. Moreover, the use of
TCP would limit the scalability of the system since a
source node might need to communicate with hundreds
of proxies and the overhead of opening and maintaining
hundreds of TCP connections is excessive. Given that the
majority of hosts on the Internet are behind Network Ad-
dress Translators (NATs), it is also advantageous to use
UDP because the NAT hole punching process for UDP is
typically simpler, faster and more likely to succeed than
that for TCP [12].
A data transfer begins when the source node estab-

lishes a direct connection to the destination. Simulta-
neously, the source node also queries the RS to obtain
a list of available proxies. The data stream from the
application is packetized and the packets are initially
sent only on the direct path. When congestion is de-
tected on the direct path, packets are forwarded via
the proxies in an attempt to increase the throughput.

ACKs

Scheduler
& CM

Monitor
Proxy

Proxy

Proxy

Proxy

Receiver Reorder

Fig. 2. Overview of mPath.

Acknowledgments for the received data packets are sent
from the destination back to the source along the di-
rect path. A congestion manager and scheduler module
monitors the acknowledgments to determine the quality
of the various paths and controls the transmission and
retransmission of packets. Finally, packets are reordered
at the destination to produce the original data stream.
This process is illustrated in Fig. 2.
In general, the congestion control on the direct path

is similar to TCP. Modifications to the standard TCP
AIMD algorithm were made to coordinate between the
multiple paths and ensure that the combined paths do
not behave more aggressively than TCP in increasing
the overall congestion window. Also, we implemented
a simple algorithm to infer correlated losses between
the direct path and proxied paths, and a load aggregation
mechanism to aggregate traffic onto the direct path when
a shared bottleneck is detected. Our algorithm causes the
traffic on redundant proxied paths to converge to zero
over time. While the overall idea is relatively simple,
there are a number of implementation details required
to get the system to work in a practical setting. These
details are described in the following sub-sections.

2.1 Proxy Probing

Given the large number of proxies, each mPath connec-
tion starts with a probing phase that uses data packets
to identify proxies that are unreachable, non-operational
or exhibit non-transitive connectivity [13]. As mPath is
tolerant of packet reordering and losses, it is acceptable
to use data packets in the probing process instead of
active probe packets.
Probing starts immediately after the source establishes

a direct connection to the destination and receives a
proxy list from the RS. To prevent path probing from
interfering with the data transfer process, we limit the
probing rate to one probe every 250 ms, which is approx-
imately the average inter-continental roundtrip time [14].
Sending one probe packet every RTT will not likely
interfere with the data transfer because the sender is
expected to forward tens or hundreds of packets in one
RTT. When the sender decides to probe a proxy, it will
randomly select a proxy from the proxy list and attempt
to forward a data packet through it to the destination. If
the sender receives an ACK for the data packet within
τ seconds, the proxy is considered usable and is added
to the available list, which is the set of proxies that can
be used to forward packets. On the other hand, if the
sender fails to receive an ACKwithin τ seconds after two

PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

consecutive probing attempts, the proxy will be marked
as unusable. Once all the proxies in the list have been
probed, mPath will request for more proxies from the
RS. Clearly, the threshold τ limits the maximum RTT
of the proxied paths in the system and controls the
tradeoff between the quality of the paths selected and the
size of the buffer required at the destination to handle
reordering. We show in Section 4.6 that a value of τ that
is two times of the direct path’s RTT yields a sufficiently
large number of good proxied paths and an acceptable
amount of reordering.

2.2 Sequence & Acknowledgment

TCP was designed for a single direct path and only needs
one sequence number to handle both ordering and the
detection of packet loss. In mPath, packet transmission
across multiple paths can result in significant reorder-
ing at the receiver. A single sequence number would
suffice to preserve ordering. However, having only one
sequence number would make it harder to detect packet
losses for individual paths, which is needed for proper
congestion control. We considered using SACK and the
scoreboard data structure proposed in mTCP [8] to
record information for all the paths. However, we found
this method to be inefficient in handling hundreds of
paths. Like MPTCP [7], we use two sequence numbers:
a stream sequence number and a path sequence number.
The stream sequence number is used to identify and
retransmit lost packets, while the path sequence number
is used to detect packet loss and control the congestion
window for each path.
Acknowledgments. When the destination successfully

receives a number of packets, an ACK packet is sent
back to the sender, which contains both the global stream
sequence number as well as a set of path entries for the
paths on which the receiver had received data packets.
Like TCP, the receiver cumulatively acknowledges the
receipt of packets by sending back the stream sequence
number of the earliest missing packet. In addition, each
ACK packet also contains a set of path entries, each
recording the largest sequence number seen and the
accumulated count of the packet losses observed on
the associated path. The path-level acknowledgment is
based on the latest packet received rather than the ear-
liest missing packet because we have decoupled stream
ordering from path packet losses and we can use new
sequence numbers for retransmissions. This also allows
mPath to retransmit lost packets on a different path.
The accumulated packet loss count is included to ensure
that the sender has a more accurate view of the packet
losses on each path. Given that there are occasional
losses of ACK packets, this allows the congestion control
algorithm to recover in the event that it wrongly infers
that there are data packet losses.
Negative Acknowledgments. The sender is notified

of the holes in the stream sequence with a stream-
level NACK (SNACK) packet and of holes in the path
sequence with a path-level NACK (PNACK) packet. As

holes in the stream sequence can be the result of reorder-
ing across multiple paths, SNACKs are not sent immedi-
ately when the holes are detected. Since only paths with
RTTs less than τ seconds are used as proxies, we wait up
to τ seconds for holes in the stream sequence to be filled
before sending a SNACK to avoid false positives. To
prevent an overflow of the receiver’s buffer arising from
the delayed retransmission requests, SNACKs will be
sent immediately if the receiver’s buffer is more than half
full. When the sender receives a SNACK, it retransmits
the required packets immediately but does not modify
the congestion window. Unlike SNACKs, PNACKs are
sent as soon as packet losses are detected. The sender
reacts to a PNACK according to the congestion control
algorithm and performs a quick retransmission with a
newly selected path.
ACK Aggregation. mPath sends ACKs, SNACKs and

PNACKs via the direct return path. We found that it is
quite common for ACKs to be lost when there is con-
gestion on the return path. If ACKs were sent for every
packet, mPath might experience greater ACK losses than
TCP because the number of ACK packets for mPath can
exceed the number of data packets sent on the direct path
if a large number of data packets are sent along proxied
paths. To reduce congestion, we reduce the rate at which
ACK packets are generated by aggregating up to 10
acknowledgments into a single ACK packet. To ensure
that acknowledgments are not delayed excessively, we
also limit the delay to no more than 10 ms.

2.3 Path Scheduling & Congestion Control

As the quality of proxied paths can vary significantly
and change over time, it is not possible to statically
determine the optimal set of paths. Previous work on
path selection is mostly based on active probing, i.e.
using ping [10] or traceroute [8], which incurs a large
overhead and does not yield accurate results for the en-
tire transmission period. Our approach to path selection
is to passively detect changes in path quality and to
dynamically react to these changes.
Proxied Path Creation. mPath first sends packets on

the direct path to the destination. In this state, the system
controls congestion, much like standard TCP, by em-
ploying a ‘slow-start’ phase and halving the congestion
window if loss is detected. However, in addition to
halving the congestion window, packet loss may also
trigger the creation of proxied paths. The number of new
proxied paths to be created when a loss is detected is
a proportion β of the direct path’s congestion window
(and limited by the number of paths in the available
list). We found that β = 0.25 achieves a good trade-
off between the time taken to find good proxies and
the utilization of the direct path. Proxies are chosen at
random from the unused proxies in the available list. If
all the available proxies have been used before, mPath
chooses the best proxy that it has observed thus far. For
each newly created proxied path i, mPath also maintains
a congestion window wi that is initially set to one.

PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

To prevent rapid and uncontrolled creation of proxied
paths, the system will only create new paths after all
existing paths have encountered loss.
Multipath AIMD. mPath eliminates bad paths and

exploits good paths by scaling congestion windows with
an additive increase/multiplicative decrease (AIMD) al-
gorithm [11]. Like TCP, a packet loss causes the con-
gestion window of the affected path to be halved. The
main difference between mPath and TCP is in how the
congestion windows are increased when ACKs are re-
ceived. During slow-start, the congestion window of the
direct path will increase by one for every ACK received.
In congestion control mode, cumulative ACKs received
will increase the congestion window of either the direct
path or the proxied paths. The congestion window of
the proxied paths is increased with probability P and
the congestion window of the direct path is increased
with probability 1 − P . The probability P is obtained
with the following formula:

P =
w0

W
ρ +

W − w0

W
(1)

where ρ is the proportion of proxied paths that have
not encountered loss, w0 is the congestion window of
the direct path, and W =

∑
wi is the total congestion

window (over all paths inclusive of the direct path). The
intuition is to use P to apportion the load between the di-
rect path and the proxied paths according to their states.
If some proxied paths have never encountered loss, we
would like to increase their congestion windows rapidly;
if all the proxied paths have encountered loss, then any
increase in the overall congestion window should be
divided between the direct and proxied paths according
to their estimated relative available bandwidths.
When we decide to increase the congestion window

of an existing proxied path, mPath selects an active
path that has recently received an ACK and increases
its congestion window by one. Paths that have never
encountered loss are given higher priority. If all the paths
have encountered loss, the addition goes to path i with
probability wi

P

wj
, where wj is the congestion window of

proxied paths that have recently received ACKs.
Shared Bottleneck Detection. We need to identify the

shared bottlenecks between proxied paths and the direct
path so that we can shift traffic to the direct path. We
use a simple but effective scheme to infer the existence
of such bottlenecks: mPath records the transmission time
for every packet sent and the loss detection time if an
ACK arrives indicating that packets were not received.
Each path then maintains a time range (“loss interval”)
indicating when the last lost packet was detected and
the time that the packet was sent on the path. If the loss
interval on the direct path overlaps with the loss interval
on a proxied path, we deduce that the packet losses are
correlated and the paths share a common bottleneck.
This is illustrated in Fig. 3.
Load Aggregation. Upon detecting the shared bottle-

neck, mPath will then move a proportion min(α, w0
P

wj
)

: Data packet

: Packet loss

: ACK packetDirect path

with correlated loss
Proxied path

Proxied path
without correlated loss

Time
Overlap in loss intervals

Loss interval

Fig. 3. Inference of correlated packet losses.

15Mbps

5ms

10Mbps

100ms

8Mbps

90ms

8Mbps

30ms

15Mbps

5msSource

Proxy A

Destination

Fig. 4. An example of bottleneck oscillation.

of the proxied path’s remaining congestion window to
the direct path, where wj is the congestion window for
the proxied path that experienced correlated packet loss.
The upper bound w0

P

wj
guarantees that the congestion

window of the direct path will not be more than w0.
In other words, mPath will decrease proxied path i’s
congestion window wi to half for a normal loss on
that path, but decrease it to wi

2 (1 − min(α, w0
P

wj
)) for

a correlated packet loss and add wi

2 min(α, w0
P

wj
) back

to the congestion window of the direct path. We call
this operation load aggregation. We found that α = 0.5
achieves a good trade-off between the utilization of
good proxied paths and the direct path, and reduces the
utilization of bad paths relatively quickly.

We choose to gradually decrease the congestion win-
dow of a proxied path instead of dropping the path
completely in order to prevent bottleneck oscillation. We
illustrated this with an example in Fig. 4. In this example,
the transmission is initially limited by the 10 Mbps
core link bottleneck on the direct path. As new proxied
paths that can route around the core link bottleneck
are found (e.g. proxy A), the common access link with
capacity 15 Mbps will become the new bottleneck. When
a correlated packet loss is detected at the new bottleneck,
the naive approach of dropping proxy A completely
will cause the bottleneck to shift back to the core. If
mPath then uses proxy A (or some other good proxy)
to improve throughput, the bottleneck will eventually
shift back to the 15 Mbps access link and the system
will oscillate. By aggregating the congestion windows of
the proxied paths to the direct path, the stability of the
system is improved.

Handling Timeouts. Like TCP, mPath detects timeout
for all paths with a mechanism based on the estimated
RTT for each path. The direct path reacts to a timeout
by reverting to the slow-start state. However, when a
timeout occurs for a proxied path, we drop it instead of
reverting to slow-start since it is easy for mPath to either
find a replacement among the unused proxied paths

PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

or redistribute the load across existing paths. The path
can be dropped temporarily or permanently depending
on the historical contribution of the path. If the path’s
contribution to the throughput is significantly below
average compared to other proxied paths in its lifetime, it
will be marked as unavailable and dropped permanently.
Otherwise, it will only be dropped temporarily and may
be reused at a later time.

3 ANALYSIS OF MULTIPATH AIMD
In this section, we extend the classic Chiu and Jain
AIMD model [11] to analyze multipath AIMD. We show
that our algorithm (i) is TCP-friendly, (ii) maximizes the
utilization of the access link without under-utilizing the
direct path when there is free core link capacity, and (iii)
rapidly eliminates any redundant proxied paths.
Following the notation in [11], we obtain the multipath

model for a single user, which is illustrated in Fig. 5.
The user imposes a total load of x on the system, with a
load of xi on each path i. Path 0 refers to the direct
path, which has a core link capacity of Xgoal0 , while
paths 1 to n are the proxied paths available to the user.
Without loss of generality, we assume that k out of the
n proxied paths are limited by core (or AS-AS peering)
link bottlenecks, each with a capacity of Xgoali , 1 ≤ i ≤ k,
while the remaining paths from k + 1 to n are free of
congestion and can accept more load. The capacity at
the access link bottleneck is denoted with Xgoal. We also
define Y to be the feedback vector to the user, which is
a tuple comprising of binary feedback values yi for each
path i. A positive feedback (yi = 0) implies that there
is no packet loss on path i, while a negative feedback
(yi = 1) implies that congestion has occurred.
When a negative feedback is received, mPath will

halve the load on the associated path, and if it is a
correlated packet loss, mPath will perform load aggre-
gation. When a positive feedback is received, mPath
will increase the load by one with probability xi

P

n
i=0

xi
,

denoted by γi. Clearly, γi is less than 1 for each path i and∑n

i=0 γi = 1 at the access link bottleneck where all paths
are aggregated. Thus, for one mPath flow, the additive-
increase value on any path is always less than or equal
to that of TCP and the multiplicative-decrease value is
always equal to that of TCP. This implies that mPath is
TCP-friendly. In addition, because the behavior of mPath
will be similar to that of TCP at the access link, mPath
will compete for resources fairly and efficiently [11].
There are three scenarios under which a bottleneck

can occur: (i) the direct path is limited by a core link
bottleneck but there is insufficient free capacity on the
available proxied paths to saturate the access link; (ii)
the direct path is limited by a core link bottleneck and
enough free capacity via other paths can be found to
saturate the access link; or (iii) the bottleneck is entirely
at the access link.
(i) Core Link Bottleneck, Insufficient Capacity. The

first case is where the direct path experiences congestion

Feedback Y = (y0, y1, . . . , yi, . . . , yn)

xx0

x1

xn

xk

xk+1

ΣUser
Xgoal

Access link

.

.

.

.

.

.

Xgoal0

Xgoal1

Xgoalk

Fig. 5. Model for a single user using multiple paths.

on a core link and mPath cannot find a set of alternative
paths to fully saturate the common access link. Load
aggregation will ensure that any proxied paths sharing
the same core link bottleneck as the direct path will
eventually be dropped, i.e. only the proxied paths that
do not share a bottleneck with the direct path will be
retained. In the steady state, the congestion windows of
the active paths would be oscillating in a manner that
is equivalent to the semicoupled algorithm [7] for a = 1,
where a is a constant that determines the aggressiveness
of the congestion control algorithm. Raiciu et al. [7]
determined that only the paths with loss rates satisfying
the following condition will be used:

(1 − pr)
1

x̂
= pr

x̂r

2
(2)

where x̂ is the average load of the user, and pr and x̂r

are the loss rate and average load on path r respectively.
This condition follows from the intuition that paths must
either reach an equilibrium for the average increase
and decrease of their load or converge to zero and get
dropped. In other words, mPath will distribute as large
a load as possible to paths with low loss rates and drop
all the paths that have loss rates too high to satisfy
condition (2).
(ii) Core Link Bottleneck, Excess Capacity Sufficient.

The second case is where mPath is most effective. When
there is a bottleneck on the direct path and sufficient core
link capacity exists, the additive-increase phase will fully
saturate the access link by utilizing the free capacity on
proxied paths k + 1 to n. This occurs even with a small
additive-increase value of γi < 1, for k +1 ≤ i ≤ n, since
these paths experience minimal packet loss. On the other
hand, the congested paths 1 to k will experience packet
loss and their loads will undergo multiplicative decrease,
eventually converging to zero.
(iii) Access Link Bottleneck. Finally, if the flow is

limited by an access link bottleneck, using multiple
paths will not help. The proxied paths will experience
correlated packet losses with the direct path, and, over
time, load aggregation will move most of the traffic onto
the direct path and cause the load for all the proxied
paths to converge to zero.
We further analyze the performance of mPath for

scenarios (ii) and (iii) in more detail. We consider a
simple flow where there is only one proxied path, with
a core link capacity of Xgoalp , sharing a common access

PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

xx0

xp

ΣUser XgoalXgoal0

Xgoalp

Feedback Y = (y0, yp)

Fig. 6. Model of a shared access link bottleneck.

link with the direct path, as shown in Fig. 6. We define
the load at time t on the direct path’s core, proxied
path’s core and access link to be x0(t), xp(t) and x(t)
respectively. Depending on the feedback values received
at time t, given by Y (t) = (y0(t), yp(t)), mPath will derive
the loads at time t + 1 as follows:

1) Y (t) = (0, 0). When positive feedback is received
on both paths, the load on the direct and proxied
path is increased probabilistically:

x0(t + 1) = x0(t) + 1

with probability γ0 = x0(t)
x0(t)+xp(t)

xp(t + 1) = xp(t) + 1

with probability γp =
xp(t)

x0(t)+xp(t)

(3)

2) Y (t) = (1, 0). When only the direct path has
negative feedback, we obtain:

x0(t + 1) = x0(t)
2

xp(t + 1) = xp(t) + 1
(4)

3) Y (t) = (0, 1). When only the proxied path has
negative feedback, we obtain:

x0(t + 1) = x0(t) + 1

xp(t + 1) =
xp(t)

2

(5)

4) Y (t) = (1, 1). When negative feedback is received
on both paths, the loads will be halved and load
aggregation (with parameter α) will be performed
to shift part of the load from the proxied path to
the direct path:

x0(t + 1) = x0(t)
2 + α

xp(t)
2

xp(t + 1) = (1 − α)
xp(t)

2

(6)

Now assume that Xgoal is saturated at time t. This
implies that there will be shared loss (i.e. Y (t + 1) =
(1, 1)), which will cause the overall load to be halved
(x(t+1) = x(t)/2) and load aggregation to be performed
according to Equation (6). If bottleneck conditions do
not change and there are no other losses, it will take
approximately x(t)/2 time intervals for Xgoal to be sat-
urated again to produce another shared loss, since the
average increase for x(t) is 1 at each time interval, as
described by Equation (3). We can then deduce that after
k intervals of shared losses under these conditions, at
time u = t + (k − 1)x(t)/2 + 1, the loads would be:

x0(u) = x0(t)
2 + [1 − (1 − α)k]

xp(t)
2

xp(u) = (1 − α)k xp(t)
2

(7)

For scenario (ii), where the bottleneck is in the core and
sufficient capacity exists (i.e. Xgoalp is large), x0 and xp

would increase until either Xgoal or Xgoal0 is achieved.
If Xgoal is achieved first, correlated packet losses will be
detected and load will aggregate to the direct path at an
exponential rate until there are no more correlated losses
as described by Equation (7). This behavior ensures
that the direct path is never under-utilized. The overall
performance in this case is the same as that for a normal
TCP flow competing for resources constrained by the
access link bottleneck. If Xgoal0 is achieved first, mPath
has over-utilized the direct path and caused congestion,
so x0 will be halved and xp will increase (as described
by Equation (4)) until Xgoal is achieved. This means
that mPath will always maximize the utilization of the
access link without under-utilizing the direct path when
sufficient core link capacity is available.
For scenario (iii), where the access link is the bot-

tleneck, the proxied path is redundant. All losses will
occur at the shared access link and load aggregation
will always be performed to shift traffic to the direct
path. Thus, as described by Equation (7), the load of the
proxied path (xp) will be aggregated to the direct path
at an exponential rate until xp is reduced to zero (i.e. the
path is dropped).
Like the classic AIMD model [11], we assumed a

synchronous feedback/control loop and omitted the
RTTs of the paths in our analysis in order to keep the
model tractable. We can extend the model to consider
paths with different RTTs, but doing so will not shed
significantly more insight. An extension of the classic
AIMD model incorporating the RTTs [15], showed that
the system would simply be biased against paths with
longer RTTs. As mPath is a variant of AIMD, we can
expect similar results. We show in Section 4.1 that even
with paths of varying RTTs, mPath behaves as expected.

4 PERFORMANCE EVALUATION

We evaluated mPath by running experiments on both
Emulab and PlanetLab to show that mPath (i) behaves
in a manner consistent with the model described in
Section 3, (ii) is practical and can often achieve significant
improvements in throughput, and (iii) is scalable and
that end-hosts can be used as proxies. We also investi-
gated the tradeoffs associated with the choice of system
parameters.
In our experiments, we compared mPath with TCP by

sending continuous streams of randomly generated data.
However, we did not use the native implementation
of TCP due to two issues: (i) bias towards different
transport protocols (e.g. by firewalls or routing policies)
may skew the results; and (ii) PlanetLab limits the TCP
window size, which limits the maximum throughput
attainable. Therefore, we used an implementation of
TCP (New Reno) based on UDP, which is available in
UDT [16]. This implementation has been shown by its
authors to have similar performance to native TCP.

PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

20Mbps

5ms

10Mbps

30ms

5Mbps

100ms
5Mbps

60ms

20Mbps

5ms

Source

Proxy 3

Destination

Proxy 1

5Mbps

20ms

5Mbps

60ms

15Mbps

100ms

15Mbps

80ms

15Mbps

90msProxy 2

Fig. 7. An Emulab topology where mPath is able to find
good proxied paths.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

mPath (Overall)
Benchmark TCP

mPath (Direct path)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

mPath (Path 2)
mPath (Path 3)
mPath (Path 1)

C
o
n
g
es
ti
o
n
w
in
d
o
w

C
o
n
g
es
ti
o
n
w
in
d
o
w

Time (min)Time (min)

Fig. 8. Plot of congestion window over time for the
topology in Fig. 7.

4.1 Is our model accurate?

We first verify the behavior of mPath with a series of ex-
periments on Emulab, to show that mPath (i) can signif-
icantly improve throughput when there is sufficient core
capacity and automatically distribute load over the paths
according to the available path capacities, performs no
worse than TCP when (ii) there is insufficient capacity
in the core or (iii) the access link is the bottleneck, (iv) is
TCP-friendly, and (v) can dynamically adapt to changing
network conditions.
(i) Core Link Bottleneck, Excess Capacity Sufficient.

Our first set of experiments was conducted on a topology
containing a core link bottleneck as shown in Fig. 7. In
this topology, we created three proxied paths, with one
proxy sharing a 10 Mbps core link bottleneck and all
three proxies sharing a 20 Mbps access link bottleneck
along the direct path. We ran mPath for 30 minutes
and compared its performance to a TCP benchmark that
was run for the same duration. As expected, mPath
achieved an average throughput of 14.31 Mbps, and the
benchmark TCP flow achieved an average throughput
of 7.21 Mbps.
The congestion windows of the various paths (direct

path and three proxied paths) used by mPath are shown
in Fig. 8. The congestion windows of the proxied paths
are labeled according to the proxies that they pass
through. We also plot the congestion window for the
benchmark TCP flow and the overall mPath congestion
window over time for reference.
Initially, the three proxied paths compete for band-

width, with the congestion window of the direct path
increasing slowly to allow those of the proxied paths to

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10

mPath (Overall)
Benchmark TCP

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10

mPath (Direct path)
mPath (Proxied path)

C
o
n
g
es
ti
o
n
w
in
d
o
w

C
o
n
g
es
ti
o
n
w
in
d
o
w

Time (min)Time (min)

Fig. 9. Plot of congestion window over time for the
topology in Fig. 7 when only proxy 3 is used.

5Mbps

5ms

10Mbps

100ms

15Mbps

50ms
10Mbps

30ms

5Mbps

5msSource Proxy Destination

Fig. 10. An Emulab topology where the access link is the
bottleneck and the proxied path is useless.

fully expand. In the process, mPath detects the shared
bottleneck between path 1 and the direct path and
applies load aggregation, causing path 1 to be dropped
11 minutes into the transfer when its congestion window
is reduced to zero. This leaves the system in a stable
state where paths 2 and 3 efficiently exploit the access
link capacity that cannot be utilized by the direct path
alone. Path 2 carries more traffic because it has a larger
core link capacity. Observe that load aggregation also
ensures that the direct path is fully utilized throughout
the transfer, handling a load of about 7 Mbps.

(ii) Core Link Bottleneck, Insufficient Capacity. To
investigate how mPath performs when there is insuffi-
cient core link capacity to saturate the access link, we
use the topology shown in Fig. 7 but with proxy 1 and 2
removed. That is, we have a 20 Mbps access link, a
10 Mbps core link bottleneck on the direct path and a
5 Mbps alternative path via proxy 3. Our results from
running mPath and TCP individually for 10 minutes are
shown in Fig. 9. Clearly, mPath can still effectively utilize
all available capacity on both direct and proxied paths.

(iii) Access Link Bottleneck. For this scenario, we
designed a simple topology where the access link is
the only bottleneck in the system, as shown in Fig. 10,
and ran mPath and TCP individually for 10 minutes.
The results in Fig. 11 show that mPath and TCP pro-
duce similar patterns for their congestion windows and
achieve about the same throughput: 4.36 Mbps for mPath
and 4.40 Mbps for TCP. Some traffic is sent along the
proxied path at first, but this drops significantly when
mPath determines it is of no benefit and the proxied
path’s congestion window is aggregated to the direct
path. This example verifies that when a good proxies
are not available due to an access link bottleneck, mPath
behaves much like TCP.

PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

 0

 50

 100

 150

 200

 0 2 4 6 8 10

mPath (Overall)
Benchmark TCP

 0

 50

 100

 150

 200

 0 2 4 6 8 10

mPath (Direct path)
mPath (Proxied path)

Time (min)Time (min)

C
o
n
g
es
ti
o
n
w
in
d
o
w

C
o
n
g
es
ti
o
n
w
in
d
o
w

Fig. 11. Plot of congestion window over time for the
topology in Fig. 10.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120

TCP-1 TCP-2

mPath TCP-3

mPath (Overall)
mPath (Proxied path)

TCP-1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120

TCP-1 TCP-2

mPath TCP-3

TCP-2
TCP-3

mPath (Direct path)

C
o
n
g
es
ti
o
n
w
in
d
o
w

C
o
n
g
es
ti
o
n
w
in
d
o
w

Time (min)Time (min)

Fig. 12. Plot of congestion window over time with com-
peting mPath and TCP flows for the topology in Fig. 7.

(iv) TCP-friendliness. We ran another experiment on
the topology in Fig. 7 to evaluate mPath in the presence
of competing TCP flows. We started a TCP flow (TCP-1)
in the background, after which we started mPath to ob-
serve its influence on TCP-1. Next, TCP-1 is terminated
and another TCP flow (TCP-2) is started to observe how
mPath reacts to the new flow. Finally, mPath is stopped
completely and a third TCP flow (TCP-3) is started to
provide us with a benchmark for two competing TCP
flows. After starting/stopping a flow, we give the system
20 minutes to stabilize before making the next change.
The congestion windows of the various flows over time
are shown in Fig. 12.

We found that running mPath in parallel with TCP
causes the TCP congestion window to drop by about
25% on average, which is better than the TCP-3 bench-
mark which causes a 50% drop as expected. When TCP-1
is terminated, the direct path for mPath quickly soaks up
all the excess bandwidth freed by the departure of TCP-
1. When TCP-2 is started, it is able to achieve a steady
state congestion window that is equivalent to that for
TCP-1. The congestion windows of the proxied paths
remain fairly stable throughout because they do not
share the core link bottleneck with the direct path. These
results show that, in the presence of good proxied paths,
mPath can achieve an overall throughput surpassing that

20Mbps

5ms

10Mbps

30ms

5Mbps

100ms

5Mbps

60ms

20Mbps

5ms

Source

Proxy 3

Destination

Proxy 1

5Mbps

20ms

5Mbps

60ms

15Mbps

100ms

15Mbps

80ms
15Mbps

90ms

Proxy 2

A1
A2

A3

R1
R4

R3

B1
B2

B3

R2

8Mbps

5ms

15Mbps

5ms
6Mbps

5ms

Fig. 13. An Emulab topology to investigate how mPath
reacts to changing path conditions.

 0

 5

 10

 15

 0 10 20 30 40 50 60

TCP from A1 to B1

TCP from A2 to B2

TCP from
A3 to B3

mPath (Overall)
mPath (Direct path)

mPath (Path 2)
mPath (Path 3)
mPath (Path 1)

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

Time (min)

Fig. 14. Plot of throughput over time with interfering TCP
flows on proxied path 2 for the topology in Fig. 13.

of TCP while remaining TCP-friendly.

(v) Adapting to changing proxied path conditions. To
show that mPath can dynamically adapt to congestion
on the proxied paths, we created a new topology by
adding some new nodes to the topology in Fig. 7, as
shown in Fig. 13. Under this new scenario, path 2 of the
mPath flow is disrupted by incrementally introducing
three TCP flows that all use the path segment R3 to
R4 to reduce the available capacity of the segment. The
results are shown in Fig. 14. The mPath flow is given 15
minutes to stabilize before we start the first TCP flow
from A1 to B1, which has an access link capacity of
6 Mbps. In this state, proxied path 2 still has sufficient
capacity to allow mPath to saturate the access link.
After another 15 minutes, we add a second TCP flow
with an access link capacity of 8 Mbps from A2 to
B2. Now path 2 does not have sufficient capacity and
mPath automatically redistributes some load to path 3.
mPath’s overall throughput in the steady state drops
from 12.0 Mbps to 11.4 Mbps. When the final TCP flow
from A3 to B3 is started, the segment R3 to R4 becomes
highly congested and causes significant packet losses on
path 2. This leads to path 2 being dropped completely
within 2 minutes and an overall drop in the steady state
throughput of mPath from 11.4 Mbps to 10.6 Mbps.

PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

TCP-1 TCP-2

mPath TCP-3

mPath (Overall)
mPath (Proxied path)

TCP-1

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

TCP-1 TCP-2

mPath TCP-3

TCP-2
TCP-3

mPath (Direct path)

Time (min)Time (min)

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

Fig. 15. Plot of throughput against time for
the path from pads21.cs.nthu.edu.tw to
planetlab1.cs.uit.no.

4.2 Does mPath work over the Internet?

To evaluate the performance of mPath over the In-
ternet, we ran a series of experiments on PlanetLab
using approximately 450 proxies. In this section, we
present results from two representative experiments that
demonstrate mPath (i) can improve throughput while
maintaining TCP-friendliness when good proxied paths
exist and (ii) performs no worse than TCP when a good
proxied path cannot be found.

Performance with good proxied paths. The first
experiment follows the same procedure as that of
the Emulab experiment for TCP-friendliness described
in Section 4.1. The only difference is that we now
give mPath an additional 20 minutes to stabilize,
since we now have significantly more proxied paths
and it might take longer for good proxied paths to
be found. The results from running this experiment
on PlanetLab nodes pads21.cs.nthu.edu.tw and
planetlab1.cs.uit.no are shown in Fig. 15.

We observed similar behavior as that for the earlier
corresponding Emulab experiment. In both cases, mPath
achieves a relatively large increase in throughput. How-
ever, when TCP-1 terminates, the increase in throughput
occurs on the proxied paths, rather than on the direct
path as observed on Emulab. This is because the sender
is given exclusive access to the topology in Emulab,
while many users may have flows passing through
the same core link bottleneck on the Internet for the
PlanetLab experiment. Flows that pass through the same
link will be given a share of the freed bandwidth when
a flow leaves. In this case, stopping the flow of TCP-1
will only increase mPath’s share of the direct path by
a small amount. However, stopping TCP-1 also frees
up bandwidth on the access link, which can then be
used to increase the congestion windows of the proxied
paths. Since the direct path is unable to supply enough
bandwidth to fully utilize the access link, the proxied
paths will take up most of the slack.

To better understand the improvement in throughput
achieved by mPath, we did traceroutes for the direct and

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80

Probed
Used

Available
Active

Time (min)

P
at
h
co
u
n
t

Fig. 16. Plot of proxied path usage over time.

proxied paths used in the experiment. The default route
from pads21.cs.nthu.edu.tw to planetlab1.
cs.uit.no used a direct path from 211.79.48.190
to 109.105.98.41, which is a route across the In-
dian Ocean to Europe. We found that the prox-
ied paths that contributed most to the through-
put did not intersect with this route. In particu-
lar, most of the proxied paths used crossed the Pa-
cific Ocean, continental America, and the Atlantic
Ocean before reaching Europe. To some extent, this is
not surprising because the Earth is round and there are
generally two ways to connect any two points on the
planet: clockwise and anti-clockwise.
We also examined how mPath finds and uses the

proxies in the system to establish a stable set of prox-
ied paths. Fig. 16 is a plot of the distribution of the
proxies over time. The probing phase to determine the
available proxies completes relatively quickly and takes
approximately 2 minutes to build an available list of
approximately 400 proxies out of the 450 registered
proxy nodes. mPath attempts to use all the available
proxies in 75 minutes while maintaining an active set
of between 10 to 20 proxies at any one time. Comparing
these results with the evolution of throughput in Fig. 15,
it is clear that the system finds a good working set of
proxies long before it tries out all the available proxies.
In fact, enough good proxied paths were found almost
immediately after starting the transfer.
Performance without good proxied paths. In the sec-

ond experiment, we used a pair of nodes (planetlab2
.cs.ucla.edu and planetlab2.unl.edu) for which
mPath failed to find any good proxied paths. The
throughput achieved in this experiment is shown in
Fig. 17. For this pair of nodes, we found that all the
proxied paths experienced a bottleneck at the same
access link. We can see from Fig. 17 that the throughput
achieved by mPath and TCP are similar. mPath achieves
its steady state throughput within 2 minutes and spends
only about 12 minutes assessing the 450 available proxies
before giving up.

4.3 How often and how well does mPath work?

We investigated the throughput achieved by mPath
for approximately 500 source-destination pairs (distinct
from the proxies) on PlanetLab and compared it to

PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30

mPath (Overall)
Benchmark TCP

mPath (Direct path)
mPath (Proxied path)

Time (min)

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

Fig. 17. Plot of throughput against time for
the path from planetlab2.cs.ucla.edu to
planetlab2.unl.edu.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

Same continent
All

Different continent

C
u
m
u
la
ti
v
e
d
is
tr
ib
u
ti
o
n

Ratio of throughput (mPath/TCP)

Fig. 18. Cumulative distribution of the ratio of mPath
throughput to TCP throughput for 500 source-destination
pairs.

the throughput achieved by TCP. Fig. 18 shows the
cumulative distribution of the ratio of the throughput
achieved by mPath to that of TCP over all the node pairs
tested. Each data point was obtained by running mPath
for 30 minutes followed by TCP for another 30 minutes
on each pair of nodes.
We found that mPath performs at most 20% worse

than TCP for a small number of node pairs, which
we believe can be attributed to the natural temporal
variance of the available bandwidth on the Internet due
to congestion and cross-traffic. To verify this, we ran
a large number of TCP flows back-to-back for 30 min-
utes on random node pairs and plot the ratio between
these two flows in Fig. 18 as “TCP benchmark”. The
line provides us with a benchmark for what would be
considered performance equivalent to TCP. In this light,
we consider mPath to have achieved an improvement
over TCP if it achieves a distribution that is to the right
of this benchmark line. We see that about 40% of the
node pairs seem to achieve an non-trivial improvement
in throughput, with about half of these pairs achieving
more than twice the throughput achieved by TCP. This
is a significant proportion and it verifies our hypothesis
that many of the bottlenecks for the direct paths are
in the core, at least for PlanetLab nodes. From our
observations, we found that the remaining 60% of node
pairs could not improve their throughput using mPath,
possibly because they were limited by their access links.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0 50 100 150 200 250 300 350 >350

90th Percentile
Mean

Median
10th Percentile

R
at
io

o
f
th
ro
u
g
h
p
u
t
(m

P
at
h
/
T
C
P
)

RTT (ms)

Fig. 19. Plot of ratio of mPath throughput to TCP through-
put against RTT.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

Good proxied paths not found
Good proxied paths found

C
u
m
u
la
ti
v
e
d
is
tr
ib
u
ti
o
n

Time to stabilize (min)

Fig. 20. Cumulative distribution of the time taken for
mPath to stabilize.

Even for cases where mPath seems to perform more
poorly than TCP, the distribution is still on the right
of the TCP benchmark line, suggesting that even when
network conditions deteriorate, mPath is likely able to
ameliorate the degradation.

Intuitively, the distance between the sender and re-
ceiver would have a significant impact on how much
mPath can improve the throughput. We expect that if
the sender and receiver are very close (e.g. in the same
AS), the throughput gains would only be marginal. This
is evident in Fig. 18, where we plot the improvement
ratio of node pairs that have been categorized according
to whether they are located on the same continent or on
different continents. From these results, it is clear that the
pairs located on different continents can achieve larger
improvements and this conforms with our intuition. In
addition, we plot the throughput improvement ratio
against the direct RTT between the sender and receiver
(for 500 node pairs) in Fig. 19. As expected, node pairs
with a higher RTT have a greater chance of benefiting
from mPath and this suggests that mPath should use
proxied paths more aggressively if the direct path RTT
is larger, but this remains as future work.

To determine how quickly mPath can find a good set
of proxies, we plot the time taken for mPath to reach
its steady state throughput in Fig. 20. We see that if
good proxied paths exist, mPath can find them within
5 minutes for 80% of the node pairs. If good proxied
paths cannot be found, mPath gives up within 1 or 2

PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

1
10
50

100
200

All

C
u
m
u
la
ti
v
e
d
is
tr
ib
u
ti
o
n

Ratio of throughput (mPath/TCP)

Fig. 21. Cumulative distribution of the ratio of mPath
throughput to TCP throughput when different numbers of
proxies are provided by the RS.

minutes 90% of the time.
Based on these results, we see that the practicality

of using mPath largely depends on the location of
the bottleneck and the duration of transmission. If the
bottleneck is at the core, and the transmission takes
longer than mPath’s stabilization time, we can expect
the throughput improvements shown earlier. On the
other hand, if the bottleneck is at the access link, or if
the transmission duration is too short, throughput gains
with mPath will be marginal (if any). This suggests that
mPath is only suitable for high-volume data transfers.

4.4 How many proxies are minimally required?

We are also interested in the number of candidate proxies
required for mPath to find a good proxy set. In this
experiment, we limited the size of proxy lists returned by
the RS and compared the throughput achieved by mPath
to TCP. The sizes of proxy sets investigated are 1, 10, 50,
100, 200, and all the available proxies (approximately
450). As shown in Fig. 21, the performance of mPath
improves up till about 50 proxies, after which the per-
formance gains of having more available proxies become
negligible. This suggests that the RS should provide
source nodes with at least 50 proxies. As these results
are for a system where only one mPath flow is active, it
is possible that more proxies will be required in practice.

4.5 Is mPath scalable?

Since mPath is expected to support a large number of
users, we want to understand how the performance of
mPath will scale as the number of users in the system
increases. We used 200 PlanetLab nodes (distinct from
the proxies), partitioned them into 100 disjoint pairs of
senders and receivers, and ran experiments with 1, 50
and 100 pairs of nodes transmitting to each other simul-
taneously. By using four different random partitions, we
obtained 400 data points for each of the three scenarios.
These results are shown in Fig. 22.
Since mPath is useful only if it improves the through-

put for a node pair significantly, we focus on the pro-
portion of node pairs for which mPath can achieve

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

100 pairs
50 pairs

1 pair

C
u
m
u
la
ti
v
e
d
is
tr
ib
u
ti
o
n

Ratio of throughput (mPath/TCP)

Fig. 22. Cumulative distribution of mPath throughput to
TCP throughput with n disjoint source-destination pairs
transmitting simultaneously when proxies and end-hosts
are distinct nodes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

200 pairs
100 pairs

50 pairs

C
u
m
u
la
ti
v
e
d
is
tr
ib
u
ti
o
n

Ratio of throughput (mPath/TCP)

Fig. 23. Cumulative distribution of mPath throughput
to TCP throughput with n disjoint source-destination
pairs transmitting simultaneously when the end-hosts are
themselves proxies.

throughput that is at least twice that of TCP. We had
shown earlier that when there is only one user, about
20% of the source-destination pairs can achieve twice
the throughput of TCP. As shown in Fig. 22, for 50 and
100 concurrent users, this number drops to about 10%
of the users. This can be explained as follows: mPath
consumes the unused bandwidth of proxies to improve
throughput and users who are concurrently sending or
receiving data would compete for this same bandwidth.
If the amount of unused bandwidth is kept constant,
then as the number of concurrent users increases, the
number of users who see an improvement in throughput
would decrease. Hence, the scalability of mPath depends
on the amount of unused bandwidth available in the
system, as expected. As we are limited by the PlanetLab
nodes available, we are not able to conduct larger scale
experiments to study this in greater detail.

Using client nodes as proxies is one potential way
of improving the scalability of mPath. To evaluate the
feasibility of this approach, we devised an experiment
where 450 PlanetLab nodes are used as proxies and
50, 100 and 200 source-destination pairs are randomly
selected from these proxies to concurrently send/receive
data. As shown in Fig. 23, mPath is still able to improve
the throughput for some node pairs. For 50 and 100

PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

mPath (Overall)
mPath (Good proxied paths)

mPath (Direct path)

Load aggregation factor α

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

Fig. 24. Plot of throughput against load aggregation factor
α.

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

mPath (Overall)
mPath (Proxied paths)

mPath (Direct path)

New path creation factor β

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

Fig. 25. Plot of throughput against new path creation
factor β.

pairs, about 10% of the pairs can achieve at least twice
the throughput of TCP. This drops to a very small
number for 200 pairs, but this is not entirely surprising
as this means that some 400 out of the 450 proxies
are sending/receiving data. Since these proxies do not
have much unused bandwidth to be exploited, mPath is
unlikely to be able to use them to improve throughput.
Our results suggests that if the number of users con-
currently sending/receiving data is less than 50% of the
total number of proxies, it is feasible to use client nodes
as proxies.

4.6 How should the parameters be tuned?

mPath is characterized by the parameters α, β and τ . In
this section, we investigate the tradeoffs for each of these
parameters. We investigate the effect of α on Emulab
because of the controlled environment and the effect of
β and τ on PlanetLab because it was not practical to
create hundreds of proxies on Emulab.
Load Aggregation (α). The first parameter, α, is the

proportion of the congestion window moved from a
proxied path to the direct path when a correlated packet
loss is detected. If α is too large, it may result in low uti-
lization of good proxied paths and reduced throughput;
if α is too small, it may take a long time for bad proxied
paths to converge to zero and cause the direct path to
be under-utilized. As shown in Fig. 24, our experiments
indicate that α > 0.75 would lead to a decrease in overall
throughput. We also found that when α ≤ 0.25, mPath

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

TCP
mPath with τ=1*RTT0

mPath with τ=1.5*RTT0
mPath with τ=2*RTT0
mPath with τ=4*RTT0

mPath without RTT limitation

C
u
m
u
la
ti
v
e
d
is
tr
ib
u
ti
o
n

Buffer size (MB)

Fig. 26. Cumulative distribution of the maximum buffer
size required for different maximum proxied path RTTs τ .

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

mPath with τ=1*RTT0
mPath with τ=1.5*RTT0

mPath with τ=2*RTT0
mPath with τ=4*RTT0

mPath without RTT limitationC
u
m
u
la
ti
v
e
d
is
tr
ib
u
ti
o
n

Number of usable proxies detected

Fig. 27. Cumulative distribution of the number of usable
proxies detected for different maximum allowable proxied
path RTTs τ .

would take more than 30 minutes to eliminate the bad
proxied paths. Thus, we set α = 0.5.
Proxied Path Creation (β). Next, we investigate

β, the number of new paths created as a fraction
of the direct path congestion window when loss is
detected. This number trades off the time taken by
mPath to find a good proxy set against the utiliza-
tion of the direct path. Using a pair of nodes ob-
served to have good proxied paths (planetlab6.
goto.info.waseda.ac.jp to planetlab2.wiwi.
hu-berlin.de), we perform data transfers lasting 30
minutes and plot the throughput achieved against β in
Fig. 25. The graph shows that when β ≥ 0.5, the utiliza-
tion of the direct path decreases, and when β > 0.75,
there is even a slight drop in the overall throughput. We
also found that when β < 0.25, the time taken to find
good proxies increases significantly, and that beyond
β = 0.25, there is no substantial reduction in this time.
Therefore, we set β = 0.25.
Maximum Allowable Proxied Path RTT (τ). Intu-

itively, the maximum allowable RTT for the proxied
paths is directly related to packet reordering and the
number of proxied paths that can be used, and these
factors will affect the achieved throughput. Fig. 26 shows
the effect of τ on the maximum buffer size required at
the receiver. Clearly, increasing τ results in greater re-
ordering and thus larger buffering requirements. Fig. 27
shows the number of usable proxied paths as we increase
τ . We pick τ = 2 × RTT0 because this provides a

PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

sufficient number of proxies and because we found that
increasing it beyond this value did not yield significant
improvements in throughput.

5 RELATED WORK

In this section, we provide an overview of prior work in
the literature related to mPath.
Bandwidth Bottlenecks: Bottlenecks are commonly

thought to occur at the access links. Akella et al. were
the first to dispute this assumption, by highlighting that
nearly half of the Internet paths they investigated had
a non-access link bottleneck with an available capacity
of less than 50 Mbps [3]. Hu et al. suggested that
bottlenecks exist everywhere, at access links, peering
links or even inside ASes [2]. Our experience with mPath
seems to corroborate their findings.
Detour Routing: The benefits of detour routing using

an overlay network has been demonstrated by many
researchers [1, 2]. Anderson et al. built a resilient over-
lay network (RON) [10] based on detour routing and
showed that it could recover from a significant num-
ber of outages and path failures. mTCP [8], built over
RON, attempts to improve throughput by exploiting
multiple paths but has scalability issues arising from the
maintenance of the RON overlay. An overlay network
is also used by Skype [17] to improve the latencies of
VOIP. mPath differs from these systems in that it aims
to maximize throughput by using hundreds of light-
weight proxies to do one-hop source routing instead of
depending on an overlay network [8, 10]. Gummadi et
al. were the first to propose one-hop source routing as a
means to address RON’s scalability issues [9].
Multi-homing and Multipath TCP: Another common

mechanism that can provide path diversity is multi-
homing [18], but it needs to be supported by the ISPs
at the network-layer. Multipath TCP (MPTCP) [7] was
developed to support multipath TCP over multi-homing
and has been proposed for use in intra-datacenter bulk
transfers [19]. The design of MPTCP is similar to mPath,
e.g. the separation of the connection-level and subflow-
level sequence numbers and a coupled congestion con-
trol algorithm to take into account shared bottlenecks
and to maintain TCP-friendliness. The major difference
between mPath and MPTCP is that MPTCP seeks only to
allocate traffic optimally over a fixed (and small) set of
available paths, while mPath needs to solve two separate
problems simultaneously: (i) identify good proxied paths
out of several hundred paths; and (ii) allocate the opti-
mal amount of traffic to the good proxied paths. Also,
mPath can exploit, but does not require, multi-homing.
Parallel TCP and Split TCP: mPath also differs from

Parallel TCP [20, 21] and Split TCP [22]. Parallel TCP was
proposed to increase throughput by exploiting multiple
TCP flows at the expense of TCP-friendliness. In mPath,
we strictly adhere to the AIMD mechanism to maintain
TCP-friendliness and achieve greater throughput by sim-
ply routing around core link bottlenecks. Split TCP in-
creases throughput by exploiting the pipeline parallelism

of multiple low-latency segments, which, unlike mPath,
requires buffering of data at the proxies and breaks end-
to-end guarantees.
Path Selection: Previous work on selecting good paths

from a large pool includes random-k [9] and the earliest
divergence rule [23]. mTCP’s path selection method of
using traceroute to select disjoint paths is not adaptive
and has been shown to be unscalable [8]. We believe
that our approach of dynamically assessing path quality
and adaptively adding and dropping paths depending
on their performance will be more scalable in practice.
Congestion Control: The AIMD [11, 24] algorithm

employed in TCP is easily implemented and works
well in achieving fair bandwidth distribution between
competing flows. Our congestion control algorithm is
a variant of AIMD that uses information from mul-
tiple paths in a correlated manner. This is similar to
Congestion Manager [25], where congestion control is
performed for multiple applications for a single host.
In mTCP [8], congestion control is performed for each

individual path without coordination among the paths.
We found that this strategy is overly aggressive when
there are a large number of paths. It has been shown that
coordinated congestion control is better [26, 7], so we
also adopted a coordinated approach. mPath is similar in
many ways to the multi-path TCP algorithms proposed
and analyzed by Raicui et al. and we verified that our
algorithm satisfies all the requirements proposed in [7].
Our key innovation is a load aggregation mechanism
that attempts to maximize the utilization on the direct
path and causes the congestion windows for redundant
proxied paths to converge to zero.
There have also been a number of theoretical works on

multipath congestion control algorithms based on fluid
models [27] and control theory [28]. However, Raiciu et
al. simulated these algorithms and found that they do
not work well in practice [7].

6 CONCLUSION

We propose mPath, a practical massively-multipath
source routing algorithm, that (i) is TCP-friendly, (ii)
will maximize the utilization of the access link without
under-utilizing the direct path when there is free core
link capacity, and (iii) will rapidly eliminate any redun-
dant proxied paths. This is achieved with a modified
AIMD congestion control algorithm that uses loss inter-
vals to infer shared bottlenecks and incorporates a load
aggregation mechanism to maximize direct path usage.
Multipath routing is currently not widely used in prac-

tice due to the lack of infrastructure support and limited
availability of multi-homing, which existing solutions
depend on. Since mPath only requires stateless proxies to
enable efficient multipath data transfers, we believe it is
a more practical solution given the state of existing net-
work infrastructure. Another factor that has traditionally
hindered the adoption of multipath routing is the lack
of use cases. However, recent work on using multipath

PRE-PRINT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

solutions to transfer bulk data between datacenters [6,
19] shows that there are useful applications for multipath
routing, and mPath can potentially be applied to these
and other scenarios as well.

ACKNOWLEDGMENTS

This work was supported by the Singapore Ministry of
Education grant T208A2101.

REFERENCES

[1] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and
G. Zahorjan, “Detour: Informed Internet Routing and Transport,”
IEEE MICRO, pp. 50–59, 1999.

[2] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locating
Internet Bottlenecks: Algorithms, Measurements, and Implica-
tions,” in Proceedings of SIGCOMM ’04, Sep. 2004.

[3] A. Akella, S. Seshan, and A. Shaikh, “An Empirical Evaluation
of Wide-area Internet Bottlenecks,” in Proceedings of IMC ’03, Oct.
2003.

[4] iN2015 Infocomm Infrastructure, Services and Technology De-
velopment Sub-Committee, “Totally Connected, Wired and Wire-
less,” Jun. 2006.

[5] G. Kola and M. Livny, “DiskRouter: A Flexible Infrastructure
for High Performance Large Scale Data Transfers,” UW–Madison,
Tech. Rep. CS-TR-2004-1518, 2003.

[6] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-
Datacenter Bulk Transfers with NetStitcher,” in Proceedings of
SIGCOMM ’11, Aug. 2011.

[7] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multi-
path tcp,” in Proceedings of NSDI ’11, Mar. 2011.

[8] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang,
“A Transport Layer Approach for Improving End-to-end Perfor-
mance and Robustness Using Redundant Paths,” in Proceedings of
USENIX ’04, Jun. 2004.

[9] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and
D. Wetherall, “Improving the Reliability of Internet Paths with
One-hop Source Routing,” in Proceedings of OSDI ’04, Dec. 2004.

[10] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Re-
silient Overlay Networks,” in Proceedings of SOSP ’01, Oct. 2001.

[11] D. M. Chiu and R. Jain, “Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks,”
Computer Networks and ISDN Systems, vol. 17, no. 1, pp. 1–14, 1989.

[12] D. Seah, W. K. Leong, Q. Yang, B. Leong, and A. Razeen,
“Peer NAT proxies for peer-to-peer applications,” in Proceedings
of NetGames ’09, Nov. 2009.

[13] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Sto-
ica, “Non-transitive connectivity and DHTs,” in Proceedings of
WORLDS ’05, Dec. 2005.

[14] Stanford Linear Accelerator Center, “The PingER project,”
http://www-wanmon.slac.stanford.edu/cgi-wrap/pingtable.pl.

[15] Y. R. Yang, M. S. Kim, X. Zhang, and S. S. Lam, “Two Problems
of TCP AIMD Congestion Control,” Department of Computer
Sciences, UT Austin, Tech. Rep. TR-00-13, 2000.

[16] Y. Gu and R. L. Grossman, “UDT: UDP-based Data Transfer for
High-speed Wide Area Networks,” Comput. Netw., vol. 51, no. 7,
pp. 1777–1799, 2007.

[17] W. Kho, S. A. Baset, and H. Schulzrinne, “Skype relay calls: Mea-
surements and experiments,” in Proceedings of IEEE INFOCOM
’08, Apr. 2008.

[18] A. Akella, J. Pang, B. Maggs, S. Seshan, and A. Shaikh, “A Com-
parison of Overlay Routing and Multihoming Route Control,” in
Proceedings of SIGCOMM ’04, Sep. 2004.

[19] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving Datacenter Performance and Robustness
with Multipath TCP,” in Proceedings of SIGCOMM ’11, Aug. 2011.

[20] H. Sivakumar, S. Bailey, and R. Grossman, “PSockets: The Case
for Application-level Network Striping for Data Intensive Appli-
cations using High Speed Wide Area Networks,” in Proceedings of
SC ’00, Nov. 2000.

[21] T. Hacker, B. Athey, and B. Noble, “The End-to-end Performance
Effects of Parallel TCP Sockets on a Lossy Wide-area Network,”
in IPDPS ’02, 2002, pp. 434–443.

[22] R. Jain and T. J. Ott, “Design and implementation of split TCP in
the linux kernel,” Ph.D. dissertation, Newark, NJ, USA, 2007.

[23] T. Fei, S. Tao, L. Gao, and R. Guerin, “How to Select a Good
Alternate Path in Large Peer-to-peer Systems,” in Proceedings of
IEEE INFOCOM ’06, Apr. 2006.

[24] Y. Gu, X. Hong, and R. Grossman, “An Analysis of AIMD
Algorithms with Decreasing Increases,” in Proceedings of GridNets
’04, Oct. 2004.

[25] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An Integrated
Congestion Management Architecture for Internet Hosts,” in Pro-
ceedings of SIGCOMM ’99, Sep. 1999.

[26] P. Key, L. Massouli, and D. Towsley, “Path selection and multipath
congestion control,” in Proceedings of IEEE INFOCOM ’07, May
2007.

[27] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley,
“Multi-Path TCP: A Joint Congestion Control and Routing
Scheme to Exploit Path Diversity in the Internet,” IEEE/ACM
Transactions on Networking, vol. 14, no. 6, pp. 1260–1271, 2006.

[28] W.-H. Wang, M. Palaniswami, and S. H. Low, “Optimal flow con-
trol and routing in multi-path networks,” Perform. Eval., vol. 52,
pp. 119–132, Apr. 2003.

Yin Xu is pursuing his Ph.D. in Computer Sci-
ence at the National University of Singapore. He
received his Bachelor’s degree in Computer Sci-
ence in 2008 at Fudan University of China. His
research interests include distributed systems
and computer networking.

Ben Leong is an Assistant Professor of Com-
puter Science at the School of Computing, Na-
tional University of Singapore. He received his
Ph.D., M.Eng. and S.B. degrees from the Mas-
sachusetts Institute of Technology in 2006, 1997
and 1997 respectively. His research interests
are in the areas of computer networking and
distributed systems.

Daryl Seah is pursuing his Ph.D. in Computer
Science at the National University of Singapore.
He received his Bachelor’s degree in Computer
Science in 2008 at the National University of
Singapore. His research interests include dis-
tributed systems and computer networking.

Ali Razeen is pursuing his Ph.D. in Computer
Science at Duke University. He obtained his
Bachelor’s degree in Computer Science from
the National University of Singapore in 2011.
His current research interests include distributed
systems and networking.

