
LinkGuardian
Mitigating the impact of packet corruption loss

with link-local retransmission

Raj Joshi, Qi Guo, Nishant Budhdev, Ayush Mishra, Mun Choon Chan, Ben Leong

Image Credit: Google Datacenters

Presenter Notes
Presentation Notes
Hello everyone, today I’m going to talk about link guardian and which is a system for mitigating…
This is a joint work with my colleagues Qi Nishant Ayush and my advisors Mun Choon and Ben at the National University of Singapore

https://www.google.com/about/datacenters/gallery/

What is corruption packet loss?

2

1100101 1101101

Corrupted (bit flips)

Ethernet Checksum
Fails

Dropped by the
Receiver MAC

Presenter Notes
Presentation Notes
A packet is essentially a sequence of bits and sometimes these bits can get corrupted and flip during packet transmission
When this happens, the Ethernet checksum fails and the packet is dropped by the receiving MAC

What causes packet corruption?

3

Support high link speeds (up to 400 Gbps)
over long distances (~100m)

Switch-to-switch Links - Opt ica l

Optical links – susceptible to corruption

Fiber Contaminat ion
Airborne dust particles

Fiber Bending Decaying Transmit ters

Photo Credits: Zhou et al., SIGCOMM 2017

Presenter Notes
Presentation Notes
In datacenter networks, switch-to-switch links tend to be optical because they support

However, optical links are susceptible to corruption due to various reasons. These include …

Corruption Packet Loss – Significant

Why do we care?

4

18%

Packet drops affected customers
due to corruption

[Zhou et a l., SIGCOMM’20]

Comparable to Congest ion Loss
Large-scale study

(350K links, 15 datacenters)
[Zhuo et al., SIGCOMM’17]

Presenter Notes
Presentation Notes
So, why do we care?
It turns out that, corruption packet loss can be significant in practice
A large-scale study by Microsoft …
Another study by AliBaba cloud …

Why do we care?

5

For la tency-sensitive flows
Increase in FCTs

For throughput-sensitive flows
Drop in throughput

Affects Application Performance
(like any packet loss)

Presenter Notes
Presentation Notes
And like any other packet loss it affects application performance by increasing the tail flow completion times for latency sensitive flows and causing a drop in throughput for throughput sensitive flows

How can we fix packet corruption?

6

Several hours to days
Physica l Repair

Until then

Effects of packet corruption
Mit iga te

Presenter Notes
Presentation Notes
Well, physical repair is the only way to truly fix packet corruption. But this can take between several hours to days
Until then, we can only mitigate the effects of packet corruption

Existing Solutions to Mitigate Packet Corruption

7

No network-wide
disruption

Localize Impact
No end-host changes
End-host Agnost ic

Avoid corrupting links
[e.g. NetPilot, CorrOpt]

End-to-end redundancy
[e.g. RAIL, CloudBurst]

to corruption loss ra te
Capacity Proport ional

Disabling the links
Network-wide disruption: re-routing of

1000’s of flows

Link-local redundancy
[e.g. Wharf]

Incur higher reduction in capacity even for
small corruption loss rate (e.g. 10-3)

Presenter Notes
Presentation Notes
Now, there are some existing solutions to mitigate packet corruption, each with its own drawbacks…
One line of work tends to avoid gray failure links by simply disabling the links. However, this leads to network-wide disruption by causing re-routing of 1000’s of flows
Another line of work uses end-to-end redundancy but requires changes to the end-hosts
A 3rd line of work uses link local redundancy. However, similar to the others, it also incurs higher reduction…

LinkGuardian

8

Within the network to recover corruption
pkt loss

Link-local Retransmission

Wireless Networks
Not explored in the context of

datacenter networks

Key Idea

Presenter Notes
Presentation Notes
LinkGuardian’s key idea is to do link-local retransmission within the network to recover from corruption packet loss
Now, link-local retransmission is not new and has been widely used in wireless networks. However, surprisingly, it has not been explored in the context of datacenter networks

Link-local ReTx in DC networks is non-trivial
A complete link-local ReTx scheme
– Detect the packets lost

– Hold on the transmission until lost packet is retransmitted

– Put packets back in order to continue transmission

9

Challenging:
- High link speeds
- Dataplane h/w contraints

Investigating whether a simple out-of-order retransmission
scheme could work in datacenter networks

In this paper – first step

Presenter Notes
Presentation Notes
Doing link local retransmission in data center networks is nontrivial
A complete link local retransmission scheme would need to…
Now doing all of this in the data center context is challenging…
Therefore in this paper we take the first step towards this challenge by investigating whether…

In this talk

10

Potentia l “recovery de lay”:
out-of-order reTx scheme

Small measurement study

Evaluat ion Results

Design & Implementation
LinkGuardian

Insights

Presenter Notes
Presentation Notes
In this talk, we will first see a small measurement study to measure the potential recovery delay of an out of order retransmission scheme
Then we will see the design and implementation of link guardian which is based on the insights from this measurement study
Finally we will take a look at the evaluation results

Recovery Delay for out-of-order ReTx

11

Host 1 Host 2

sw1 sw3sw2 sw4

Simple out-of-order link-local ReTx scheme

Loss notify: 3

Retransmission: 3

3 124 3 124

Recovery Delay
Combined delay of

these 2 packet
transmissions

Corruption

Measurement Study
– 10 Gbps network with h/w timestamping on switches
* more details in the paper

Presenter Notes
Presentation Notes
Consider a simple network where the link between switch 2 and switch 3 is corrupting packets
Now, a simple link local retransmission scheme, would look like the following
Switch 2 adds sequence numbers to all the packets it sends and also buffers a copy of recently sent packets
Now, suppose pkt 3 gets corrupted and dropped, then switch 3 would detect it based on the sequence numbers
And then notify switch2 that packet 3 is missing
After this switch2 would retransmit packet 3 to switch 3
Now the recovery delay for this link local transmission scheme would be the combined delay..
We conduct a small measurement study to measure this recovery delay using a 10 gbps network with hardware time stamping on switches,
and using ping to generate packets and measure the rtt.

Measurement Study – potential recovery delay

12

Implication for latency-sensitive flows
– Smaller recovery delay  significantly reduce the increase in FCT due to packet loss

Link-local ReTx End-to-end (kernel)

Mean 2.59 32.73

50% 2.59 32.50

99% 2.60 44.00

Measured Recovery Delays in µs

10x lower

Presenter Notes
Presentation Notes
The table here shows the distribution of the measured recovery delays in us, for both link local and end to end retransmission
We see that the recovery delays for link local retransmission are at least 10 X lower than end to end recovery
This has a direct implication for latency sensitive flows.. Because a smaller recovery delay significantly reduces

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2

cw
nd

Tim e (m illiseconds)

CWND
DUP ACK

ReTx

Implication for Throughput-sensitive TCP flows

13

Duplicate ACKs

Does not immediately
react to loss

Reacts only after 3
subsequent data pkts

TCP’s Reordering Window

@10 Gbps: 3.69µs

Link-local recovery delay: 2.60µs
(measurements)

Reduces cwnd

We can retransmit a lost packet out-of-order within TCP’s reordering window:
 Prevent triple duplicate ACKs and thus reduction of cwnd

First assumes, reordering
and not loss

Presenter Notes
Presentation Notes
Now to understand the implications for throughput sensitive TCP flows, let’s look at this figure
.. which shows a snapshot of a TCP sender’s state when it experiences corruption packet loss
When corruption packet loss occurs, the subsequent packets trigger duplicate ACKs at the tcp receiver
We see that the sender does not immediately react to loss and reduce its congestion window, but it reacts only after 3 subsequent data packets are delivered
This is called tcp’s reordering window which at 10:00 gbps can be as small as 3.69 microseconds
However our measurement study shows that the link local recovery can be performed within 2.6 microseconds in the tail, which is less than the tcp’s reordering window.

Key Insight

14

By avoiding end-host
based loss recovery &

reduction of cwnd

Prevent performance
degradat ion

in the network dataplane

Fast out -of-order
Recovery for end-host TCP

Loss  reorder

Presenter Notes
Presentation Notes
So, to summarise, the key insight from our measurement study is that:
If we could do fast out-of-order recovery in the network dataplane, then we can masquerade the TCP loss events as reorder events for the end hosts. This can help us prevent performance degradation by avoiding end-host based recovery (which is slower) as well as prevent the reduction of congestion window.

LinkGuardian

15

Runs normally when no
link is corrupting

Network w/
LinkGuardian

Monitor the links for
packet corrupt ion

Using existing techniques

Act ivate
LinkGuardian

LinkGuardian protocol
runs entire ly in the

dataplane

Link corrupting

Presenter Notes
Presentation Notes
Now, based on this key insight, we design link guardian and it works as following..

Buffer

LinkGuardian Protocol

16

Sender Switch Receiver Switch

seqNo=0 latestRxSeqNo=0

latestRxSeqNo=0

No Loss Scenario
(no pkt gets corrupted)

3 1245 3 1245

seqNo=5 latestRxSeqNo=5

PktGen

Periodic ACKs

latestRxSeqNo=5

Cumulative ACK

Presenter Notes
Presentation Notes
Now let’s look at the link guardian protocol

Since packet corruption is typically unidirectional..
Now the sender switch maintains a monotonically increasing sequence number while the receiver switch maintains the latest received sequence number
A copy of the latest received sequence number is also maintained by the sender switch
Now let’s look at the no loss scenario..
When packets are to be sent out, the sender adds sequence numbers to them and creates a copy of the packets for buffering
On receiving the packets the receiver switch updates the latest received sequence number, in this case to 5
The receiver switch uses the packet generator to generate periodic ACKs which read the latest received sequence number and update it on the sender switch.
This serves as a cumulative ACK and the sender switch knows that the receiver switch has received all the packets till sequence number 5
It then drops the buffered copies of the packets since they all have been successfully delivered
The packets on the receiver switch, do not stop and they simply continue ahead on their path

It first adds sequence numbers to these packets.
Then makes copy of these packets while transmitting them.

Buffer

LinkGuardian Protocol

17

Sender Switch Receiver Switch

seqNo=0 latestRxSeqNo=0

latestRxSeqNo=0

Loss Scenario
(pkt 4 gets corrupted)

3 1245 3 1245

seqNo=5 latestRxSeqNo=5

PktGen

Periodic ACKs

latestRxSeqNo=5

Loss
Detection

Loss notification pkt
(high priority)

ReTxRequests
4

4
6

High priority

Low priority

Packet sequence at TCP receiver

3 12546

Single Duplicate ACK

Presenter Notes
Presentation Notes
Now let’s look at the last scenario where packet number 4 gets corrupted..
In this case, everything works the same as before except that packet number 4 is corrupted and the receiver switch does not receive it
The receiver switch has a loss detection mechanism, which uses sequence numbers to determine that packet 4 has been lost
It then generates a loss notification packet and sends it with high priority to the sender switch
The sender switch maintains another data structure called retransmission requests
The loss notification packet updates this data structure as well as the latest received sequence number
This information tells the sender switch that the receiver switch has received everything until sequence number 5 except that it is requesting retransmission for sequence number 4
The receiver switch then drops all the buffered packets except packet number 4
Meanwhile at the receiver switch the packets 1 2 3 and 5 continue on their path
The receiver switch then retransmits packet number 4 using a high priority queue
This ensures that even if there is a subsequent packet 6, the retransmitted packet pre-empts it and the transmission completes within the TCP reordering window
The final packet sequence at the tcp receiver looks like the following, where only a single duplicate ack is triggered by packet number 5

… So this is how the link guardian protocol works at high level.

LinkGuardian Protocol

18

Comparing seq # of current
packet and the latestRxSeqNo

Loss de tect ion a t the
rece iver switch

Currently achieved through
recirculation

Packet buffering a t the
sender switch

Refer to the paper for more details

Presenter Notes
Presentation Notes
Now, the loss detection at the receiver switch works by comparing…

Evaluation
Implementation
– Intel Tofino ~900 lines of P4

Evaluation setup
– 10 Gbps 3-stage Clos network: Intel Tofino switches and Xeon servers

– Random generator on Tofino: emulate corruption packet loss (different rates)

– TCP flows: CUBIC and DCTCP

Compare
– No mitigation

– Mitigation using Wharf [NetCompute ’18]
• Provides link-local redundancy

19

Presenter Notes
Presentation Notes

We compare link guardian with doing no mitigation and doing mitigation using Wharf that provides link local redundancy

Mitigate impact on throughput-sensitive flows

20

Loss rate  0
(baseline) 10-5 10-4 10-3 10-2

CUBIC 9.49 9.48 7.28 3.43 1.33

+ Wharf n/a 9.13 9.13 9.13 7.91

+ LinkGuardian 9.47 9.47 9.47 9.46 9.28

TCP Throughput in Gbps

Wharf: FEC redundancy overhead for all packets
LinkGuardian: retransmits only the lost packets

* similar results for DCTCP (see paper)

Presenter Notes
Presentation Notes

Whereas, among the mitigation techniques, link guardian achieves higher throughput than Wharf for all the loss rates
This is because, Wharf adds FEC redundancy overhead..

Mitigate impact on latency-sensitive flows

21

Loss rate  0 10-3

Baseline Loss Loss + LinkGuardian

min 113 193 143

mean 197 707 375

50% 180 419 258

90% 311 2421 424

95% 315 3216 455

99% 329 4192 3540

FCT distribution (in 𝜇𝜇s) for 45KB “affected” DCTCP flows

* more results in the paper

↓ ~85%↑ 10x

Presenter Notes
Presentation Notes
Now, for latency sensitive flows, the table here shows the FCT distribution in microseconds …

We see that at the 95th percentile, a corruption loss rate of 10 to the power -3 can increase the flow completion time by about 10X.
However, link guardian mitigates this by reducing the increase in FCT by about 85%

Overheads
Packet buffering at the sender switch
– Packet buffer: 5.44 KB (3-4 packets) @10 Gbps

Periodic ACK packets
– Link capacity overhead: 1%

22

Overall, the overheads for LinkGuardian remain low.

Presenter Notes
Presentation Notes
In our current implementation, the packet buffering at the sender switch requires packet buffer of only 3 to 4 packets while running at 10 gbps
Whereas, the periodic ack packets incur a link capacity overhead of about 1%

Extra data: Sequence number headers: 0.2%

Future directions
Scalability
– Currently, works for a 100 Gbps link, as long as individual TCP flows <= 10 Gbps

– Investigate: can support individual TCP flows > 10 Gbps

Preserve packet ordering (ordered in-network retransmission)
– Beneficial for end-point transports that may not be reordering tolerant (e.g. RDMA)

Buffering packet copies without recirculation
– Next gen programmable switches (Intel Tofino2) provide primitives with which this

seems plausible

23

Conclusion
Packet Corruption Loss
– Can be significant in datacenter networks. Affects application network performance

24

for end-host TCP
Loss  reorder

By avoiding end-host based
recovery & reduction of cwnd

Prevent performance
degradat ion

in the network dataplane

Fast out -of-order
Recovery

LinkGuardian

Preliminary results  promising approach for mitigating pkt corruption

Thank you!

25

Credits: This presentation template was created by Slidesgo, including icons by Flaticon.
Flaticon icons by: Becris, Vectors Market, Flat Icons, Maxim Basinski Premium, Darius Dan, noomtah, iconixar, Kiranshastry,
Bombasticon Studio, fjstudio, Vectorslab, Chattapat, Freepik, Andy Horvath, itim2101, Pavel Kozlov, srip, Icongeek26,
mangsaabguru, kank, and Pixel perfect.

https://slidesgo.com/
https://www.flaticon.com/

	LinkGuardian�Mitigating the impact of packet corruption loss with link-local retransmission
	What is corruption packet loss?
	What causes packet corruption?
	Why do we care?
	Why do we care?
	How can we fix packet corruption?
	Existing Solutions to Mitigate Packet Corruption
	LinkGuardian
	Link-local ReTx in DC networks is non-trivial
	In this talk
	Recovery Delay for out-of-order ReTx
	Measurement Study – potential recovery delay
	Implication for Throughput-sensitive TCP flows
	Key Insight
	LinkGuardian
	LinkGuardian Protocol
	LinkGuardian Protocol
	LinkGuardian Protocol
	Evaluation
	Mitigate impact on throughput-sensitive flows
	Mitigate impact on latency-sensitive flows
	Overheads
	Future directions
	Conclusion
	Thank you!

