SQR

In-network packet loss recovery from link failures for high-reliability datacenter networks

Ting Qu^{1, 2} Raj Joshi² <u>Mun Choon Chan²</u> Ben Leong² Deke Guo¹ Zhong Liu¹

Data centers around the world

Low latency is a key requirement

Low latency for short messages

Better app performance & user experience

Improve Flow Completion Time (FCT)

- DCTCP (sigcomm'10)
- D³ (sigcomm'11)
- HULL (nsdi'12)
- pFabric (sigcomm'13)
- PASE (sigcomm'14)
- TIMELY (sigcomm'15)
- FUSO (atc'16)

. . .

- Homa (sigcomm'18)
- HPCC (sigcomm'19)

But very few work specifically address how link failures impact FCT

Link failures are common

- Gill et al. [1] reported:
 - Link failure are common and can cause loss of a large number of small packets.
 - The 95th percentile value of link failure is 136 times per day during their measurement period.

[1] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding network failures in data centers: measurement, analysis, and implications. In Proceedings of SIGCOMM.

Link failure management

Host-based pkt loss recovery can lead to much longer flow completion time (FCT) for short flows

Link failure case

Link detection time 30us (F10, NSDI'13)

+

route reconfiguration time 730us = 760us (ShareBackup, sigcomm'18)

Long FCT under link failure

Host based recovery is a major contributor to the large increase in FCT

Why does host-based recovery increase FCT significantly?

- Packet losses in the TCP three-way handshake
 - Wait at least 1s and retransmit
- · Packet losses in the middle of a cwnd
 - Fast retransmission: 1RTT (100s of us)
- · Packet losses at the tail of a cwnd
 - Retransmission timeout: several ms

Our solution: SQR

The network is the "right" place to perform packet loss recovery

How does SQR keeps FCT low when there is link failure?

Objective:

• Mask the effect of packet loss from the end-points during link failure detection time and route reconfiguration time (route failure time).

Key idea:

 Continuously cache recently sent packet in the switch for a duration equal to the route failure time

Is it feasible to cache pkts on switch?

Where and how to cache?

- An a witch dataplane, the packets can only be stored in the
- packet auffer Withinutees stand out paickets ginta (Base). possible.
- No BQE today readily provides the queuing discipline required to realize packets caching with a fixed time.
- BQE does not support custom packet scheduling algorithms.

Egres Port Queues

Solution

- Keep recent copies of transmitted packets by cloning and then recirculating cloned packets to BQE.
- Supported by the Portable Switch Architecture (PSA)
- Packets are cached for durations sufficiently long to detect link failure and perform route recovery.
- Resend cached packets to new route when it is available.

Challenges

- □ "Aging" of packets
- Load balancing of circulating packets
- Handle packet reordering

Delay timer

Transmit packet if this is the first/original packet

BQE	Egress pipeline
Caching queue	Is delay duration is enough?
	Make a CopyentEgressTstamp – StartEgressTstamp ;
-	
•	

Packet is dropped if it has been cached greater than link detection time

Dynamic queue selection

mirroring

Packets from same flow can be cached on different queues

Packet order logic

Packet order logic

Packet order logic

Why it works

- No packet loss
 - ✓ Cache a copy of sent packets for a duration at least equal to the route failure time
 - \checkmark Pkt is sent to backup port if new route is ready
- Packets in order
 - ✓ Recover lost pkts based on pkt tag
- Minimize egress processing delays on other flows going through the switch
 - \checkmark Select caching queue from multiple ports
 - ✓ Dynamic least loaded port selection
- Complements existing methods of link failure detection and route reconfiguration

Evaluation

- Hardware Testbed
 - Barefoot Tofino switch
 - Intel Xeon servers equipped with Intel X710 NICs

• Trace

SQR masks link failures from end-point transport

SQR achieves low FCT under link failure

Overhead: Buffer size

Steady-state packet buffer consumption with 30us link failure detection time

Conclusion

- Design SQR an In-Network packet loss recovery method which keeps FCT low for latency-sensitive flows when there is link failure.
- Eliminate packet loss during link failures and enables handing-off flows seamlessly to alternative paths.
- SQR can be implemented on any programmable ASIC based on Portable Switch Architecture (PSA)

Impact of SQR Traffic

Overhead: Egress processing

