IMC 2022
Nice, France

Understanding Speciation in
QUIC Congestion Control

Ayush Mishra, Sherman Lim, Ben Leong

National University of Singapore

The quick rise of QUIC

Userspace transport stack built over UDP

According to Sandvine, it contributes to
30% downstream traffic in EMEA

16% downstream traffic in North America
75% of Meta’s traffic

Standard with HTTP3

The QUIC Revolution

Reinvents many aspects of transport

New O RTT Baked-in Multistreaming
Handshake encryption support

i

The QUIC Pragmatism

Congestion Avoidance and Control

Van Jacobson*

University of California

Most stacks stick to standard
congestion control algorithms
like CUBIC, Reno and BBR

Lawrence Berld
Berkeley]
van@helid

These algorithms are
time-tested and well
understood

1
f ‘86, the Internet had the first of what
of ‘congestion collapses’. During this M
\ é‘fuggg o Izmﬁ " ({ﬁpaffﬁﬁ Analysis of the Increase and Decrease
ted by yards and three Ops; . . .
2 Kbps to 40 bps. Mike Karels' and 1 Algorithms for Congestion Avoidance
by this sudden factor-of-thousand drop .
d embarked on an investigation of why in Computer Networks
n so bad. We wondered, in particular,
roduction
Background
ongestion in computer networks is b ing

CUBIC: A New TCP-Friendly High-Speed TCP Variant -

Sangtae Ha, Injong Rhee
Dept of Computer Science
Neorth Carolina State University
Raleigh, NC 27695

{sha2,rhee}@ncsu.edu

ABSTRACT
CUBIC is a congestion control protocol for TCP 1SS
sion eontrol protocol) and the current default TCP algo-

rithm in Linux. The protocol modifies the linear window
growth function of existing TCP standards to be a cubic
function in order to improve the se ility of TCP over

fast and long distance networks. It
uitable bandwidth allocations among flows with different
RTTs (round trip times) by making the window growth to

o achieves more eq-

be independent of RTT — thus those flows grow their conges-
tion window at the sar During steady state, CUBIC
increases the window sively when the window is
far from the saturation point. and the slowly when it & close

riant issue due to the increasing mismatch

Lisong Xu
Dept of Comp. Sci. and Eng.
University of Nebraska
Lincoln, Nebraska 68588

@cse.unl.ed X i
xu@cse.unl.edu Congestion-

Congestion

“high-speed” TCP variants are proposed (
HSTCP [15], STCP | HTCP [28] i}
wood [14], and BIC-TCP [30]). Recognizing this
with TCP, the Linux community responded quick]
plement a majority of these protecols in Linux ¢
them as part of its operating n 2

party testing and performand -al R
from version 2.6.8, it selected BIC-TCP as the defal
algorithm and the other TCP variants as optional

NEALCARDWELL |
YUCHUNG CHENG
C.STEPHEN GUNN |

, y all accounts, today’s Al
] nternet is not moving data
s well as it should. Most

What makes BIC-TCP stand out from other TC|
tihms is it bility. It uses a binary search algorith
the window erows to the mid-point between the |l

Modeling BBR’s Interactions with
Loss-Based Congestion Control

Ranysha Ware Matthew K. Mukerjee Srinivasan Seshan Justine Sherry
rware@cs.cmu.edu mukerjee@nefeli.io srini@cs.cmu.edu sherry@cs.cmu.edu
Carnegie Mellon University Nefeli Networks Carnegie Melion University Carnegie Mellon University
ABSTRACT nearly starving for bandwidth. This phenomena was first explored
BERis a new cong control als (CCA) deployed for Chromium 0 [11] and BBRV2 is expected to patch the problem (7]} 4
QUIC and the Linux kernel. As the default CCA for YouTube (which In residential capacity links (eg. 10-100Mbps) with deep buffers,

commands 11+% of Internet traffic), BER has rapidly become a major ~ tudies [4,9, 14, 16, 17) have generated conflicting reports on how

player in Internet congestion control. BER's fairness or friendliness to BBR shares bandwidth with competing Cubic and Reno flows.

Speciation In
CCA implementations in QUIC

" o h @ Y

(q0)

Q. (] (] (]
s \ [BER | } QUIC S

:% y € Y Q@ ‘4

o

Kernel

Speciation In
CCA implementations in QUIC

f

Possibility of

Speciation

Speciation In
CCA implementations in QUIC

30+ QUIC stacks

Currently there is no systematic way to

test and validate QUIC implementations
of standard congestion control
algorithms

Benchmarking QUIC CC implementations

Goals:
#1 Define and measure #2 Study interactions
similarity between QUIC between different
iImplementations and their implementations

reference kernel
implementations

Performance Throughput

Envelope Ratios

Benchmarking QUIC CC implementations

Goals:

QUICbench

(open source)

Performance Throughput
Envelope Ratios

Defining Similarity

The fine-grained approach: Compare cwnd graphs

Reference
implementation

Problem:
Unrealistic goal

QUIC stack X’s

implementation for UserSpace

implementations

cwnd

time

10

Defining Similarity

The coarse-grained approach: Relative fairness

Problem:
o Does not
£ capture finer
2 a!gorlthmlc
differences

Reference QUIC 1 QUIC 2
Implementation 11

Middle ground:
Performance Envelope

Key insight: CCAs represent trade offs

Performance Envelope is a
multi-dimensional metric

We chose throughput and delay as the two
dimensions

throughput

delay

Measuring the

Performance Envelope (PE)

i,

time

throughput

delay

Measuring the

Performance Envelope (PE)

Sample every
10 RTTs

Convex Hull
formed using 95"
percentile points

>

5t percentile
furthest points
® ignored to exclude
outliers

Throughput

Delay

Measuring the

Performance Envelope (PE)

Performance
Envelope!

Delay

Throughput

Performance Envelope (PE)

QUIC stack X
Conformance
The measure of
similarity
defined as the ratio of Conformance

points inside the
overlapping region of the
two PEs and the total
number of sampled points

Throughput

Reference
implementation

Delay

16

Performance Envelope (PE)

Throughput

QUIC stack X

Reference
implementation

Delay

Deviation

The measure of
dissimilarity

defined as normalized
distance between the
centroids of the two PEs

Performance Envelope (PE)

Throughput

QUIC stack X

/"

O Deviation

Reference
implementation

Delay

Deviation

The measure of
dissimilarity

defined as normalized
distance between the
centroids of the two PEs

Evaluation detalls

Sender machine Receiver machine
4) 4)
Quic Quic
iperf3 sender receiver iperf3 Organization Stack CUBIC BBR Reno

- Linux kernel v v v

Facebook mvfst [3] v v v

Google chromium [4] v v X

Microsoft msquic [9] v X X

kQUICbench QuICbench) Cloudflare quiche [2] v X v

v

== - Control flow (kernel)
== : Test flow (from a QUIC stack)

Significant Speciation!

16 -
o mvfst-bbr
184 a chromium-bbr ﬂ; Facebook H TCP
v tcp-bbr . A
__ 16) _ 124 Sedges, a Kernel
Z 141 =
a 2 8-
612+ 5
5] 3 6+ i
£ v - b
£ 10 F o, @ Cloudflare
« mvfst-reno
8 2 - ¥ tcp-reno
n B quiche-reno
6 0

20 25 30 35 40 45 50
Queuing Delay (ms) TCP

Kernel
Example of low

Conformance in BBR
20 Mbps, 50 ms RTT, 1 BDP Buffer

T T T T T T T
100 125 150 175 200 225 250
Queuing Delay (ms)

Example of low
Conformance in Reno
20 Mbps, 50 ms RTT, 5 BDP Buffer

20

Rate-based vs. Window-based

Conformance
deteriorates for
window-based
congestion control
algorithms like CUBIC
and Reno in deeper
buffers

Throughput (Mbps)

16 -

14 -

12

10 ~

20 Mbps, 50 ms RTT, Reno

m quiche-reno
v ftcp-reno
« mvfst-reno

20 Mbps, 50 ms RTT, Reno

6 Facebook

LR

I TCP
A dKernel
= 10
E 6 1 » |
E

4 -

+ mvfst-reno

- \ ¥ tcpreno

6&\0‘6 ‘ B quiche-reno

N R

Queuing Delay (ms)

Large overlaps in
0.5 BDP Buffers

100 125 150 175 200 225 250
Queuing Delay (ms)

—) Smaller overlaps in

5 BDP Buffers

21

Rate-based vs. Window-based

20 Mbps, 50 ms RTT, Reno 20 Mbps, 50 ms RTT, Reno
Conformance ol abook = :
improves for rate- 15 1 4 cvomumber B
" ©15.0 - Oogle —
based congestion R
control algorithms like S R ol
BBR in deeper sl <C® A
W e = 8
buffers o] (&Y v b

Queuing Delay (ms) Queuing Delay (ms)

Small overlaps in - Larger overlaps in
0.5 BDP Buffers 5 BDP Buffers

22

Inter-stack fairness

Ran all possible pairs of implementations and plotted their
throughput ratio on a heat map.

If stack X and stack Y compete, then stack X's throughput ratio is

Ty
I+1,

If the ratio is greater than 0.5, Stack X gets more throughput

Inter-stack fairness

By Dt
‘-"f & Dy Oy
sy g e, /” KA g}?"g “ehe
Cyp (‘b r@/)o 0‘6’(‘0‘6’ bb r""?(/b’br@”o

mvfst cubic . -..--..‘
mvfst bbr‘

mvfst newreno -.
msquic cubic -.
chromium cubic .
chromium bbr -..-....-‘
chromium bbr v2 -. .--...-‘
quiche cubic -.‘
quiche reno -.‘

tcp cubic -
. |

tcp bbr -

SEe EE

1 BDP Buffer, 20 Mbps, 50 ms RTT

o
o

oney indybnoayl

o
»

24

Inter-stack fairness

mvfst cubic -

mvfst bbr —. ...=...

mvfst newreno -

———

chromium cubic -

QUIC stacks in
general
outperform TCP
iImplementations

chromium bbr -

chromium bbr v2 -

oney indybnoayl

auiche cubic - [[of standard
auiche reno - [NS congestion control
algorithms

tcp cubic |
tcp bbr
tcp reno - .

1 BDP Buffer, 20 Mbps, 50 ms RTT 25

Inter-stack fairness

G C/)

My be /?) .5-300/;; %
.S‘(br, ey, Y
O;St 6‘6‘1’1“@ Mo (/6, (‘(lb/’)? b R 6,-- v ‘lbf ’a o

] | | | | | I

mvfst cubic -
mvfst bbr

mvfst newreno -
msquic cubic -
chromium cubic -
chromium bbr -
chromium bbr v2 -
quiche cubic -

quiche reno -

1 BDP Buffer, 20 Mbps, 50 ms RTT

Facebook’s
QUIC stack

0 l MVFST IBBR

massively

_i
o6 5 outperforms all
3 other QUIC
04 3 Implementations
0.2

26

MVFST BBR

We found that MVFST BBR’s (conformance = 0.0)
aggression was down to
implementation level differences. *° o

17.5 1 &« modified mvfst

12.5 4

It applies an additional gain of

Throughput (Mbps)

1200/0 7.5 1 ’
,
. : : 25 L o - - s TCP
Changing this to 100% improves Kernel
conformance

Modified Mvfst

(conformance = 0.8) .

Summary

We introduce the Performance Envelope, a new metric for
measuring the similarity between implementations of standard
congestion control algorithms

We show that there is already significant speciation in QUIC
implementations of CUBIC, BBR, and Reno

We demonstrate that QUICbench can identify differences in
implementations and help improve their conformance

Future Work

Enhance the Performance Envelope metric and evaluate stacks
over a variety of network conditions

Evaluate more QUIC stacks

Exporting and verifying key CCA parameters

Thank you!

Read the paper:

Get in touch:
ayush@comp.nus.edu.sg

Understanding Speciation in QUIC Congestion Control

Ayush Mishra, Sherman Lim, and Ben Leong

National University of Singapore

ABSTRACT
The QUIC standard is expected to replace TCP in HTTP 3.0. While
QUIC implements a number of the standard features of TCP differ-
ently, most QUIC stacks re-implement standard congestion control
algorithms. This is because these algorithms are well-understood
and time-tested. However, there is currently no systematic way
to ensure that these QUIC congestion control protocols are imple-
mented correctly and predict how these different QUIC implemen-
tations will interact with other congestion control algorithms on
the Internet.

To address this gap, we present QUIChench, which, to the best

easily modify and push updates to their QUIC stacks. While this
flexibility could potentially allow QUIC to become a more secure
alternative to TCP, the converse is also true: it also makes it easier
to make mistakes.

The QUIC standard, as described by its many prescriptive IETF
RFCs and drafts today [5]. implements a protocol that is different
from TCP. However, existing QUIC stacks [1] still implement the
classic congestion control algorithms (CCA) used by TCP ir EQd
of inventing new ones. There is a good reason for this. CBS. c
congestion control algorithms are well understood, predictable,
and already have good track records of convergence and stability

	Understanding Speciation in QUIC Congestion Control
	The quick rise of QUIC
	The QUIC Revolution
	The QUIC Pragmatism
	Speciation in �CCA implementations in QUIC
	Speciation in �CCA implementations in QUIC
	Speciation in �CCA implementations in QUIC
	Benchmarking QUIC CC implementations
	Benchmarking QUIC CC implementations
	Defining Similarity
	Defining Similarity
	Middle ground: �Performance Envelope
	Measuring the �Performance Envelope (PE)
	Measuring the �Performance Envelope (PE)
	Measuring the �Performance Envelope (PE)
	�Performance Envelope (PE)
	�Performance Envelope (PE)
	�Performance Envelope (PE)
	Evaluation details
	Significant Speciation!
	Rate-based vs. Window-based
	Rate-based vs. Window-based
	Inter-stack fairness
	Inter-stack fairness
	Inter-stack fairness
	Inter-stack fairness
	MVFST BBR
	Summary
	Future Work
	Thank you!

