Understanding Speciation in QUIC Congestion Control

Ayush Mishra, Sherman Lim, Ben Leong
National University of Singapore
The quick rise of QUIC

Userspace transport stack built over UDP

According to Sandvine, it contributes to

30% downstream traffic in EMEA
16% downstream traffic in North America
75% of Meta’s traffic

Standard with HTTP3
The QUIC Revolution

Reinvents many aspects of transport

New 0 RTT Handshake
Baked-in encryption
Multistreaming support
The QUIC Pragmatism

Most stacks stick to **standard** congestion control algorithms like CUBIC, Reno and BBR

These algorithms are **time-tested** and well understood
Speciation in CCA implementations in QUIC
Speciation in CCA implementations in QUIC

Possibility of Speciation
Speciation in CCA implementations in QUIC

30+ QUIC stacks

Currently there is no systematic way to test and validate QUIC implementations of standard congestion control algorithms.
Benchmarking QUIC CC implementations

Goals:

#1 Define and measure similarity between QUIC implementations and their reference kernel implementations

#2 Study interactions between different implementations

Performance Envelope

Throughput Ratios
Benchmarking QUIC CC implementations

Goals:

QUICbench
(open source)

Performance Envelope

Throughput Ratios
Defining Similarity

The fine-grained approach: Compare cwnd graphs

Problem:
Unrealistic goal for userspace implementations
Defining Similarity

The coarse-grained approach: Relative fairness

Problem:
Does not capture finer algorithmic differences
Middle ground:

Performance Envelope

Key insight: CCAs represent trade offs

Performance Envelope is a multi-dimensional metric

We chose throughput and delay as the two dimensions
Measuring the
Performance Envelope (PE)
Measuring the Performance Envelope (PE)

Sample every 10 RTTs

Convex Hull formed using 95th percentile points

5th percentile furthest points ignored to exclude outliers
Measuring the Performance Envelope (PE)

Throughput

Delay

Performance Envelope!
Performance Envelope (PE)

Conformance
The measure of similarity
defined as the ratio of points inside the overlapping region of the two PEs and the total number of sampled points

Throughput

Delay

QUIC stack X

Conformance

Reference implementation
Conformance
The measure of similarity
defined as the ratio of points inside the overlapping region of the two PEs and the total number of sampled points

Deviation
The measure of dissimilarity
defined as normalized distance between the centroids of the two PEs
Performance Envelope (PE)

Conformance
The measure of similarity
defined as the ratio of points inside the overlapping region of the two PEs and the total number of sampled points

Deviation
The measure of dissimilarity
defined as normalized distance between the centroids of the two PEs
Evaluation details

Sender machine

Receiver machine

<table>
<thead>
<tr>
<th>Organization</th>
<th>Stack</th>
<th>CUBIC</th>
<th>BBR</th>
<th>Reno</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Linux kernel</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Facebook</td>
<td>mvfst [3]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Microsoft</td>
<td>msquic [9]</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cloudflare</td>
<td>quiche [2]</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>

: Control flow (kernel)

: Test flow (from a QUIC stack)
Significant Speciation!

Example of low Conformance in BBR
20 Mbps, 50 ms RTT, 1 BDP Buffer

Example of low Conformance in Reno
20 Mbps, 50 ms RTT, 5 BDP Buffer
Rate-based vs. Window-based

Conformance deteriorates for window-based congestion control algorithms like CUBIC and Reno in deeper buffers.
Rate-based vs. Window-based

Conformance improves for rate-based congestion control algorithms like BBR in deeper buffers.

Small overlaps in 0.5 BDP Buffers

Larger overlaps in 5 BDP Buffers
Inter-stack fairness

Ran all possible pairs of implementations and plotted their **throughput ratio** on a heat map.

If stack X and stack Y compete, then stack X’s throughput ratio is

$$\frac{T_x}{T_x + T_y}$$

If the ratio is greater than 0.5, Stack X gets more throughput
Inter-stack fairness

1 BDP Buffer, 20 Mbps, 50 ms RTT
Inter-stack fairness

QUIC stacks in general outperform TCP implementations of standard congestion control algorithms.

1 BDP Buffer, 20 Mbps, 50 ms RTT
Inter-stack fairness

Facebook’s QUIC stack

MVFST BBR massively outperforms all other QUIC implementations
MVFST BBR

We found that MVFST BBR’s aggression was down to implementation level differences.

It applies an additional gain of 120%

Changing this to 100% improves conformance
Summary

We introduce the Performance Envelope, a new metric for measuring the similarity between implementations of standard congestion control algorithms.

We show that there is already significant speciation in QUIC implementations of CUBIC, BBR, and Reno.

We demonstrate that QUICbench can identify differences in implementations and help improve their conformance.
Future Work

Enhance the *Performance Envelope* metric and evaluate stacks over a variety of network conditions

Evaluate more QUIC stacks

Exporting and verifying key CCA parameters
Thank you!

Get in touch:
ayush@comp.nus.edu.sg