

Improving Neighbor Discovery by Operating at the Quantum Scale

Shuaizhao Jin*, Xiangyun Meng[°], Daniel Lin-Kit Wong[#], Zixiao Wang⁺, Ben Leong⁺, Yabo Dong^{*}, Dongming Lu^{*}

* Zhejiang University, Hangzhou, China
 > University of Washington, USA
 # Carnegie Mellon University, USA
 + National University of Singapore, Singapore

Wireless sensor networks

Power is important

Duty-cycling adopted to save power

To support duty cycling

Need for **Neighbor discovery**

Neighbor discovery protocol

Neighbor discovery

We always prefer...

Lower discovery latency (fast discovery)

Less energy consumption (efficient discovery)

Neighbor discovery

Tradeoff between latency and energy

Given a duty cycle, how to reduce latency?

Intuition

Latency: Theory vs Practice

Existing work:

$$Latency = N_slot$$

In practice:

$$Latency = N_slot \times S_size$$

How far can we go in reducing latency simply by reducing the slot size?

Measurement study

Measurement study

Quantum Scale

Measurement study

Within Quantum scale, active slots overlap cannot guarantee discovery in one period!

Active slot modeling

Theoretical:

Active slot modeling

$$S = 2t_{TX} + t_D + \underbrace{t_{RX} + t_{PR}}_{t_L}$$
Pre slots
$$S = 2t_{TX} + t_L$$

Practical discovery cases

Discovery Failure

One-sided discovery

Mutual discovery

We treat one-sided and mutual discovery the same in practice

Latency with discovery failure

$$L_{theoretical} = N \times S$$

$$L_{actual} = N \times S + \Delta T$$

$$\bar{L}_{actual} = N \times S + P_{fail} \Delta T$$

Quantifying P_{fail}

Quantifying P_{fail}

Quantifying P_{fail}

$$P_{\text{fail}} = \begin{cases} \frac{2t_{\text{TX}} - t_{\text{L}} + 2t_{\text{PR}}}{2t_{\text{TX}} + t_{\text{L}}}, & t_{\text{L}} \leq t_{\text{TX}} \\\\ \frac{t_{\text{TX}} + 2t_{\text{PR}}}{2t_{\text{TX}} + t_{\text{L}}}, & t_{\text{L}} > t_{\text{TX}} \end{cases}$$

P_{fail} increases when slot size decreases!

What we have learned?

Key findings

Collisions between beacons have a nonnegligible effect on latency when operating at Quantum scale.

Synchronization can cause ΔT to become very large when the relative clock skew between a pair of nodes is small

Reduce Beacon density

Reduce synchronization

Introduce randomization

Our solutions

Reducing beacon density (based on Searchlight)

B-L-B

A	(B-	L-B)	P(L)	
1	ι	,	·· 、-/	

ABPL

Our solutions

Introducing randomization

Our solutions

Effect of ABPL and Randomization

Finished?

Not yet! we can do even better!

The limit of slot size

Further reduce slot size

ABPL

BL

Heterogeneous slots

Focused on listening

Probing considered harmful

With a 1ms slot size and 0.2ms preamble, $P_{fail} = 20\%$

Combining all probe slots

Spotlight

With 1% duty cycle, P_{fail} can be reduced from **20%** to **0.2%**

Spotlight

BL diagrams with pattern matrices M(m,n,a,b)

Spotlight with matrices M(m,2m,m,m)

> Achieve discovery guarantees

Spotlight achieve the best worst-case latency

> Worst-case latency is *mn* slots

Proof and details in paper!

Comparison with Nihao

Testbed

Experimental Setup

- > Use 20 nodes
- > Duty cycle 1% and 5%

Algorithm	Duty Cycle	Period	Active slots
		(slots)	
ABPL-r	1%	20,000	100BL+100L
B-Nihao	1%	$10,000(1+\alpha)^2$	1BL+199B+199L
Searchlight	1%	20,000	200BLB
Spotlight	1%	20,000	100B+100L
Spotlight-T	1%	20,000	100B+100L
ABPL-r	5%	800	20BL+20L
B-Nihao	5%	$400(1+\alpha)^2$	1BL+19B+19L
Searchlight	5%	800	40BLB
Spotlight	5%	800	20B+20L

Parameters for evaluated algorithms

Optimal amount of jitter

The jitter amount should be comparable to **preamble** length.

Comparison to the state-of-the-art

Comparison to the state-of-the-art

CDF for 2.5ms slot size at 1% duty cycle.

Comparison to the state-of-the-art

CDF for 1ms slot size at 1% duty cycle.

Performance at higher duty cycle

Performance at higher duty cycle

Summary

- Collisions between beacons and synchronization between nodes become more severe when operating at the Quantum scale.
- Reduce beacon density and introduce randomization to mitigate the collision and synchronization problem.
- We propose a new continuous-listening-based neighbor discovery algorithm called Spotlight.
- Evaluations with a practical sensor testbed show that Spotlight can achieve a 50% reduction in discovery latency over existing state-of-the-art protocols at the same energy consumption

Thank You!