
CS2030S Recitation Problem Set 6

1

Method reference

Let's assume class A and method h , therefore A::h

Static method:

Non-static method:

2

Maybe

What is a maybe?
Maybe is a monad

What is a monad?
A monad is just a monoid in the category of endofunctors, what's the problem?

3

Maybe

Ok thanks, but legit what is a monad

Comes from a branch of abstract mathematics called category theory

But for Software Engineers, just think of it as a box.

4

Maybe

Ok but why do I need a box.

We want to abstract out null checks.

This "null" would be represented by the None .

Now we can create APIs on Maybe to work on the value, generally,

if it is still a Some do whatever we would've normally done

if it is a None then we just propogate the None

This allows us to chain operations functional programming

5

Maybe

APIs (we'll use as the value here)

of : Creates a Maybe containing , or None if was a null

map : Takes in and applies on to produce a Maybe containing

 (context is preserved)

filter : takes in , turns Maybe into a None if

6

Maybe

More APIs

flatMap : Takes in and applies on to produce a

Maybe containing and composes it to produce a Maybe containing

(contexts are composed)

orElse : Takes in , if Some return , else produce the value of the
producer ie

ifPresent : Takes in . Only if is present then consume the .

7

Question 1 (finally)

Maybe<Internship> match(Resume r) {
 if (r == null) {
 return Maybe.none();
 }

 Maybe<List<String>> optList = r.getListOfLanguages();
 List<String> list;

 if (optList.equals(Maybe.none())) {
 list = List.of();
 } else {
 list = optList.get(); // cannot call
 }

 if (list.contains("Java")) {
 return Maybe.of(findInternship(list));
 } else {
 return Maybe.none();
 }
}

8

Question 1 (Observations)

 if (r == null) {
 return Maybe.none();
 }

Notice that this will be handled by the of ? if r was null it would have correctly
created a None .

return Maybe.of(r)

9

Question 1 (Observations)

 Maybe<List<String>> optList = r.getListOfLanguages();
 List<String> list;

What is the type of r::getListOfLanguages ?

Seems to be returning a Maybe sth

Sign that we should use flatMap

return Maybe.of(r).flatMap(x -> x.getListOfLanguages())

10

Question 1 (Observations)

 if (optList.equals(Maybe.none())) {
 list = List.of();
 } else {
 list = optList.get(); // cannot call
 }

It's a bit trickier here. Let's break down what's happening
Since our previous getListOfLanguages could be None , we want to make sure

we have an empty list. Else, we get the list from the Maybe<List>

Not clear if we have to do anything right now.

return Maybe.of(r).flatMap(x -> x.getListOfLanguages())

11

Question 1 (Observations)

 if (list.contains("Java")) {
 return Maybe.of(findInternship(list));
 } else {
 return Maybe.none();
 }

We need to see if the list has Java
A sign telling me to use filter

If filter fails, it should give a None

If the Maybe<List> was a None we would return None as well.

A sign is telling me to filter and then map because if we map a None we still get

a None

12

Question 1: Putting it all together

return Maybe.of(r)
 .flatMap(x -> x.getListOfLanguages())
 .filter(lst -> lst.contains("Java"))
 .map(lst -> findInternship(lst));

Look at how elegant this is.

I FP

13

Question 2

class A {
 private int x;
 public A(int x) {
 this.x = x;
 }
 public int get() {
 // Line A
 return this.x;
 }
}

Draw the contents of the stack and heap at Line A.

A a = new A(5);
Producer<Integer> p = () -> a.get();
p.produce();

14

Question 2

Remember that for stack and heap, we think of lambda functions as syntatic sugar for

anonymous classes.

In reality, not really anonymous classes
This is due to the lexical this .

this in lambda refers to the class containing the lambda.

this in a lexically replaced anonymous class refers to the instance of the
anonymous class.

lexical this refers to the class containing the lambda.

15

Question 2

Producer<Integer> p = () -> a.get();

Notice on this line, a needs to be captured.
Because a might be removed from the stack before p.produce is called.

16

Question 2

17

