CS2030S Recitation Problem Set 6



Method reference

Let's assume class A and method h ,therefore A::h

e Static method:

o (a1,a9,...,a,) — A.h(ay,as,...ay,)
e Non-static method:

o (a1,a9,...,a,) — ai.h(az,...,ay)



Maybe

e What is a maybe?
o Maybe is a monad

e Whatis a monad?
o A monad is just a monoid in the category of endofunctors, what's the problem?

S



Maybe

o Ok thanks, but legit what is a monad
o Comes from a branch of abstract mathematics called category theory

o But for Software Engineers, just think of it as a box.



Maybe

e Ok but why do | need a box.
o We want to abstract out null checks.

o This "null" would be represented by the None .

e Now we can create APIs on Maybe to work on the value, generally,
o ifitis stilla Some do whatever we would've normally done

o ifitisa None then we just propogate the None

e This allows us to chain operations functional programming &



Maybe

o APIs (we'll use x as the value here)
o of : Creates a Maybe containing x, or None if x wasa null

o map : Takesin f : X — Y and applies on z to produce a Maybe containing
f(x) (context is preserved)

o filter :takesin f : X — B, turns Maybe intoa None if f(z) = false



Maybe

e More APIs
o flatMap : Takesin f : X — Maybe <Y > and applies on x to produce a
Maybe containing f(z) and composes it to produce a Maybe containing f(x)
(contexts are composed)

o orElse :Takesin f : () — X,if Some return x, else produce the value of the
producer ie f()

o ifPresent : Takesin f : X — void. Only if x is present then consume the .



Question 1 (finally)

Maybe<Internship> match(Resume r) {
if (r == null) {
return Maybe.none();
s

Maybe<List<String>> optlList = r.getListOfLanguages();
List<String> list;

if (optList.equals(Maybe.none())) {

list = List.of();
} else {

list = optList.get(); // cannot call
I3

if (list.contains("Java")) {

return Maybe.of(findInternship(list));
} else {

return Maybe.none();
I3



Question 1 (Observations)

if (r == null) {
return Maybe.none();
I3

o Notice that this will be handled by the of ?if r was null it would have correctly
created a None .

return Maybe.of(r)



Question 1 (Observations)

Maybe<List<String>> optList = r.getListOfLanguages();
List<String> list;

e Whatisthe type of r::getListOfLanguages ?
o Seems to be returning a Maybe sth

o Sign that we should use flatMap

return Maybe.of(r).flatMap(x —-> x.getListOfLanguages())

10



Question 1 (Observations)

if (optList.equals(Maybe.none())) {

list = List.of();
} else {

list = optList.get(); // cannot call
I3

e |t's a bit trickier here. Let's break down what's happening
o Since our previous getlListOfLanguages could be None , we want to make sure
we have an empty list. Else, we get the list from the Maybe<List>

o Not clear if we have to do anything right now.

return Maybe.of(r).flatMap(x —-> x.getListOfLanguages())

11



Question 1 (Observations)

if (list.contains("Java")) {

return Maybe.of(findInternship(list));
} else {

return Maybe.none();
I3

e \WWe need to see if the list has Java
o Asigntellingmetouse filter

o [f filter fails, it should give a None
e |f the Maybe<List> was a None we would return None as well.

e Asignistelingmeto filter andthen map becauseif we map a None we still get
a None

12



Question 1: Putting it all together

return Maybe.of(r)
.flatMap(x —> x.getListOfLanguages())
.filter(lst —> 1lst.contains("Java"))
.map(lst —> findInternship(1lst));

Look at how elegant this is. &
| W FP

13



Question 2

class A {
private int Xx;
public A(int x) {
this.x = x;

¥

public int get() {
// Line A
return this.x;

}

Draw the contents of the stack and heap at Line A.

A a = new A(5);
Producer<Integer> p = () —> a.get();
p.produce();

14



Question 2

e Remember that for stack and heap, we think of lambda functions as syntatic sugar for
anonymous classes.

e |n reality, not really anonymous classes
o This is due to the lexical this .

o this inlambda refers to the class containing the lambda.

o this in a lexically replaced anonymous class refers to the instance of the
anonymous class.

o |lexical this refersto the class containing the lambda.

15



Question 2

Producer<Integer> p = () —> a.get();

o Notice on thisline, a needs to be captured.
o Because a might be removed from the stack before p.produce is called.

16



Question 2

17



