
CS2030S Recitation Problem Set 8

1

Monad Laws

A monad is a structure with at least two methods (of, flatMap) obeying three laws:

1. Left Identity Law

2. Right Identity Law

3. Associative Law

2

Functor Laws

A functor is a structure with at least 2 methods (of, map) obeying two laws:

1. Identity Morphism (basically mapping identity fn gives you the same functor)

2. Composition morphism (any 2 maps is the same as 1 map with applying both
function)

3

Question 1a

Complete the implementation of map using only flatMap so that the resulting Monad<T>
satisfies the functor laws.

Need the identity and composition morphisms.

public <R> Monad<R> map(Transformer<? super T, ? extends R> f) {
 return this.flatMap(XXX); // Need to satisfy Functor laws
}

4

Question 1a

public <R> Monad<R> map(Transformer<? super T, ? extends R> f) {
 return this.flatMap(XXX); // Need to satisfy Functor laws
}

Notice that

What type should be?

How can I use to produce ?

 = x -> Monad.of(f.transform(x))

Remember f.transform(x) f(x)

5

Question 1b

Prove that composition is preserved.

A: m.map(x -> f(x)).map(x -> g(x)) m.flatMap(x ->

Monad.of(f(x))).flatMap(x -> Monad.of(g(x)))
by implementation

B: m.flatMap(x -> Monad.of(f(x)).flatMap(x -> Monad.of(g(x))))
by associative law.

C: m.flatMap(x -> Monad.of(g(f(x))))

by left identity law.

6

Sequential, Concurrent, and Parallel

Sequential

Do things in order on one thread

Concurrent

Do things in order one at a time but over different threads

Parallel
Actually doing things at the same time

7

Reduce Sequential

T reduce(T e, BinaryOperator<T> f)

8

Reduce Parallel

T reduce(T e, BinaryOperator<T> f)

9

Reduce Parallel

<U> U reduce(U e, BiFunction<U,? super T,U> f, BinaryOperator<U> g)

10

Question 2a and 2b

What is the return value?

Stream.of(1, 2, 3, 4)
 .reduce(0, (a, x) -> (2 * a) + x, (a1, a2) -> a1 + a2);

Stream.of(1, 2, 3, 4)
 .parallel()
 .reduce(0, (a, x) -> (2 * a) + x, (a1, a2) -> a1 + a2);

Explain why there are differences

11

Reason

The accumulator is not associative

If associative,

Future Brian will show you on the white board why it's not.

12

Write estimatePi using Stream

Does parallelisation speed it up?
Show code

Overhead of creating new threads

13

