CS2030S Recitation Problem Set 8

Monad Laws

A monad is a structure with at least two methods (of, flatMap) obeying three laws:

1. Left Identity Law
o Vz, f : Monad.of(z).flatMap(y — f(y)) = f(=)
2.Right Identity Law
o Vmonad : monad.flatMap(x — Monad.of(z)) = monad

3. Associative Law
o Vmonad, f, g : monad.flatMap(x — f(x)).flatMap(y — g(y))
= monad.flatMap(z — f(x).flatMap(y — g(y)))

Functor Laws

A functor is a structure with at least 2 methods (of, map) obeying two laws:

1. ldentity Morphism (basically mapping identity fn gives you the same functor)
o Vfunctor : functor.map(z — x)
= functor

2. Composition morphism (any 2 maps is the same as 1 map with applying both
function)
o Vfunctor, f, g : functor.map(x — f(z)).map(y — g(y))
= functor, f, g : functor.map(z — g(f(x)))

Question 1a

Complete the implementation of map using only flatMap so that the resulting Monad<T>
satisfies the functor l[aws.

e Need the identity and composition morphisms.

public <R> Monad<R> map(Transformer<? super T, ? extends R> f) {
return this.flatMap(XXX); // Need to satisfy Functor laws

}

Question 1a

public <R> Monad<R> map(Transformer<? super T, ? extends R> f) {
return this.flatMap(XXX); // Need to satisfy Functor laws

}
e Noticethat f : T' — R

e What type should XXX be?
o XXX : T — Monad<R>

o How can luse f to produce XXX?
o XXX = x —> Monad.of(f.transform(x))

o Remember f.transform(x) = f(x)

Question 1b

Prove that composition is preserved.

e A: m.map(x —> f(x)).map(x —> g(x)) = m.flatMap(x —>
Monad.of(f(x))).flatMap(x —> Monad.of(g(x)))
by implementation

e B:= m.flatMap(x —> Monad.of(f(x)).flatMap(x —> Monad.of(g(x))))
by associative law.

e C:= m.flatMap(x —> Monad.of(g(f(x))))
by left identity law.

Sequential, Concurrent, and Parallel

e Sequential
o Do things in order on one thread

e Concurrent
o Do things in order one at a time but over different threads

o Parallel
o Actually doing things at the same time

Reduce Sequential

T reduce(T e, BinaryOperator<T> f)

.

(

(| f(e,al))
(| f(f(e,al),a2))

f(f(f(f(e,al),a2),a3)

f(f(f(f(e,al),a2),a3),ad)

Reduce Parallel

T reduce(T e, BinaryOperator<T> f)

f(

[em o

f(| f(f(e,al),a2)) f(| f(f(e,a5),a6) - |
f(f(f(f(e,al),a2),a3) H f(f(f(f(e,a5),a6),a7) H

f(f(f(f(f(e,al),a2),a3),ad) , f(f(f(f(e,as5),a6),a7),as))

Reduce Parallel

<U> U reduce(U e, BiFunction<U,? super T,U> f, BinaryOperator<U> g)

s [w]

f(| f(f(e,al),a2)) f(| f(f(e,a5),a6) - !
f(f(f(f(e,al),a2),a3) H f(f(f(f(e,a5),a6),a7) H

g f(f(f(f(e,al),a2),a3),ad) : f(f(f(f(e,a5),a6),a7),a8))

10

Question 2a and 2b

What is the return value?

Stream.of(1, 2, 3, 4)
.reduce(0, (a, x) — (2 x a) + X,

Stream.of(1, 2, 3, 4)
.parallel()
.reduce(0, (a, x) — (2 x a) + Xx,

Explain why there are differences

(al, a2) —> al + a2);

(al, a2) —> al + a2);

11

Reason

The accumulator is not associative

o If associative, f(f(a,b),c) = f(a, f(b,c))

e Future Brian will show you on the white board why it's not.

12

Write estimateP1i using Stream

e Does parallelisation speed it up?
o Show code

o Overhead of creating new threads

13

