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Monad Laws

A monad is a structure with at least two methods (of, flatMap) obeying three laws:

1. Left Identity Law

2. Right Identity Law

3. Associative Law
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Functor Laws

A functor is a structure with at least 2 methods (of, map) obeying two laws:

1. Identity Morphism (basically mapping identity fn gives you the same functor)

2. Composition morphism (any 2 maps is the same as 1 map with applying both
function)
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Question 1a

Complete the implementation of map using only flatMap  so that the resulting Monad<T>
satisfies the functor laws.

Need the identity and composition morphisms.

public <R> Monad<R> map(Transformer<? super T, ? extends R> f) {
  return this.flatMap(XXX); // Need to satisfy Functor laws
}
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Question 1a

public <R> Monad<R> map(Transformer<? super T, ? extends R> f) {
  return this.flatMap(XXX); // Need to satisfy Functor laws
}

Notice that 

What type should  be?

How can I use  to produce ?

 = x -> Monad.of(f.transform(x))

Remember f.transform(x) f(x)
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Question 1b

Prove that composition is preserved.

A: m.map(x -> f(x)).map(x -> g(x)) m.flatMap(x -> 

Monad.of(f(x))).flatMap(x -> Monad.of(g(x)))
by implementation

B: m.flatMap(x -> Monad.of(f(x)).flatMap(x -> Monad.of(g(x))))
by associative law.

C: m.flatMap(x -> Monad.of(g(f(x))))

by left identity law.
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Sequential, Concurrent, and Parallel

Sequential

Do things in order on one thread

Concurrent

Do things in order one at a time but over different threads

Parallel
Actually doing things at the same time
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Reduce Sequential

T reduce(T e, BinaryOperator<T> f)
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Reduce Parallel

T reduce(T e, BinaryOperator<T> f)
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Reduce Parallel

<U> U reduce(U e, BiFunction<U,? super T,U> f, BinaryOperator<U> g)
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Question 2a and 2b

What is the return value?

Stream.of(1, 2, 3, 4)
    .reduce(0, (a, x) -> (2 * a) + x, (a1, a2) -> a1 + a2);

Stream.of(1, 2, 3, 4)
    .parallel()
    .reduce(0, (a, x) -> (2 * a) + x, (a1, a2) -> a1 + a2);

Explain why there are differences
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Reason

The accumulator is not associative

If associative, 

Future Brian will show you on the white board why it's not.
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Write estimatePi  using Stream

Does parallelisation speed it up?
Show code

Overhead of creating new threads
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