
CS2030S Recitation Problem Set 9

Brian Cheong

1

ForkJoinPool

2

ForkJoinPool

Parallel divide and conquer

Break up the problem into smaller problems

Combine the results

Achieved with RecursiveTask<T>

3

RecursiveTask

fork : Add to the head of the deque (other dudes can pick it up from behind)

join : 2 cases: 1) if done read result 2) call compute

compute : execute task (which may or may not fork depending on size)

When thread is idle,

check if OWN deque empty if not take from head

steal work from the tail of other threads deque

4

Order of fork and join

After forking, join in reverse order

Because if not will need to do some pops and push to get to the subtask we

want

Less efficient if done this way

5

Question 1

Trace thru the events

What tasks get added to the deque?

Which worker executes which task?

Which worker steals which task?

Brian will now show the code and run a few times

6

Question 1

Output differs from run to run

all task except count = 4 will be sent to deque

whichever worker is free will execute the task (seemingly random)

When a worker waits on a join, it can go steal other work from other worker

7

Question 2

import java.util.concurrent.RecursiveTask;

class Fibonacci extends RecursiveTask<Integer> {
 private final int x;
 Fibonacci(int x) {

 this.x = x;
 }
 @Override

 protected Integer compute() {
 if (this.x <= 1) {
 return 1;

 }
 Fibonacci f1 = new Fibonacci(this.x - 1);
 Fibonacci f2 = new Fibonacci(this.x - 2);

 // decide the affects of the ordering of forking

 }
}

8

Question 2a

Code

f1.fork();
int a = f2.compute();

int b = f1.join();
return a + b;

Analysis

f1 is forked for other workers to

complete

f2 is completed by the current

thread

f1.join is like waiting for f1 to be

done in case it's not

9

Question 2b

Code

f1.fork();
int a = f1.join();

int b = f2.compute();
return a + b;

Analysis

f1 is forked for other workers to

complete

f1.join waits for the entire f1 to

finish

f2.compute is done by the current

thread

no parallelism

10

Question 2c

Code

int a = f1.compute();
int b = f2.compute();

return a + b;

Analysis

f1.compute is done on the current

thread

f2.compute is done sequentially

after f1 by the current thread

no parallelism

11

Question 2d

Code

f1.fork();
f2.fork();

int a = f2.join();
int b = f1.join();
return a + b;

Analysis

f1.fork allows other workers to

work on it

f2.fork allows other workers to

work on it as well but f2 is on the

head

f2.join gets the result from f2

f1.join gets the result from f1

allows f1 and f2 to run in parallel

12

Question 2e

Code

f1.fork();
f2.fork();

int a = f1.join();
int b = f2.join();
return a + b;

Analysis

f1.fork allows other workers to

work on it

f2.fork allows other workers to

work on it as well but f2 is on the

head

f1.join gets the result from f2

need to find f1 on the deque

f2.join gets the result from f2

allows f1 and f2 to run in parallel

but less efficient
13

That's all folks

It was an honour and
pleasure to teach all of you

14

That's all folks

It was an honour and

pleasure to teach all of you

all the best for exams

I'll miss you guys (maybe)

15

