
CS2030S Recitation
Problem Set 1

Brian Cheong

About me

About me
Brian Cheong

About me
Brian Cheong

Studied CS in NUS for
UG

About me
Brian Cheong

Studied CS in NUS for
UG

Also a year 1

About me
Brian Cheong

Studied CS in NUS for
UG

Also a year 1

Previously a CS2030S
Lab TA for 3 years

About me
Brian Cheong

Studied CS in NUS for
UG

Also a year 1

Previously a CS2030S
Lab TA for 3 years

Email:

bskch@nus.edu.sg

mailto:bskch@nus.edu.sg

Flow of recitation

Flow of recitation
Please watch lecture before coming

Better use of time to watch lecture than to come for recitation
(trust me)

Flow of recitation
Please watch lecture before coming

Better use of time to watch lecture than to come for recitation
(trust me)

At least read through the questions

Flow of recitation
Please watch lecture before coming

Better use of time to watch lecture than to come for recitation
(trust me)

At least read through the questions

Let’s make this more interactive and discussion based

Flow of recitation
Please watch lecture before coming

Better use of time to watch lecture than to come for recitation
(trust me)

At least read through the questions

Let’s make this more interactive and discussion based

If anything is unclear please stop me and ask
or look super confused

Promises from me

Promises from me
I’ll try to give you an intuitive understanding of the material

Sometimes lectures may be too much info

Try to simplify to make it easier to understand

Promises from me
I’ll try to give you an intuitive understanding of the material

Sometimes lectures may be too much info

Try to simplify to make it easier to understand

Give you intuitions on how to approach questions

Promises from me
I’ll try to give you an intuitive understanding of the material

Sometimes lectures may be too much info

Try to simplify to make it easier to understand

Give you intuitions on how to approach questions

Will hold consultations (tbd) come if you need help

Some getting to know you questions

Some getting to know you questions
How many prior experience with statically typed languages?

Some getting to know you questions
How many prior experience with statically typed languages?

How many prior experience with Java?

Q1a
We have the following java program

Does this program follow the principle of information hiding?
Explain.

1 class BankAccount {

2 double balance;

3

4 BankAccount(double initBalance) {

5 this.balance = initBalance;

6 }

7 }

8

9 class Customer {

10 BankAccount account;

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1a
We have the following java program

Does this program follow the principle of information hiding?
Explain.

No
1 class BankAccount {

2 double balance;

3

4 BankAccount(double initBalance) {

5 this.balance = initBalance;

6 }

7 }

8

9 class Customer {

10 BankAccount account;

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1a
We have the following java program

Does this program follow the principle of information hiding?
Explain.

No

balance in BankAccount is publically accessible
1 class BankAccount {

2 double balance;

3

4 BankAccount(double initBalance) {

5 this.balance = initBalance;

6 }

7 }

8

9 class Customer {

10 BankAccount account;

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1a
We have the following java program

Does this program follow the principle of information hiding?
Explain.

No

balance in BankAccount is publically accessible
account in Customer is publically accessible too

1 class BankAccount {

2 double balance;

3

4 BankAccount(double initBalance) {

5 this.balance = initBalance;

6 }

7 }

8

9 class Customer {

10 BankAccount account;

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1a
We have the following java program

Does this program follow the principle of information hiding?
Explain.

No

balance in BankAccount is publically accessible
account in Customer is publically accessible too

Always try to keep fields private

1 class BankAccount {

2 double balance;

3

4 BankAccount(double initBalance) {

5 this.balance = initBalance;

6 }

7 }

8

9 class Customer {

10 BankAccount account;

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1b
We have the following java program

Does this program follow the principle of "Tell, Don’t Ask"? Explain.

1 class BankAccount {

2 double balance;

3

4 BankAccount(double initBalance) {

5 this.balance = initBalance;

6 }

7 }

8

9 class Customer {

10 BankAccount account;

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1b
We have the following java program

Does this program follow the principle of "Tell, Don’t Ask"? Explain.

No

1 class BankAccount {

2 double balance;

3

4 BankAccount(double initBalance) {

5 this.balance = initBalance;

6 }

7 }

8

9 class Customer {

10 BankAccount account;

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1b
We have the following java program

Does this program follow the principle of "Tell, Don’t Ask"? Explain.

No

Customer asks for the balance from BankAccount in the
withdraw method and does the computation

1 class BankAccount {

2 double balance;

3

4 BankAccount(double initBalance) {

5 this.balance = initBalance;

6 }

7 }

8

9 class Customer {

10 BankAccount account;

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1b
We have the following java program

Does this program follow the principle of "Tell, Don’t Ask"? Explain.

No

Customer asks for the balance from BankAccount in the
withdraw method and does the computation

Customer should tell BankAccount to do the withdraw

internally

1 class BankAccount {

2 double balance;

3

4 BankAccount(double initBalance) {

5 this.balance = initBalance;

6 }

7 }

8

9 class Customer {

10 BankAccount account;

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1b
We have the following java program

Does this program follow the principle of "Tell, Don’t Ask"? Explain.

No

Customer asks for the balance from BankAccount in the
withdraw method and does the computation

Customer should tell BankAccount to do the withdraw

internally
similar situation for deposit

1 class BankAccount {

2 double balance;

3

4 BankAccount(double initBalance) {

5 this.balance = initBalance;

6 }

7 }

8

9 class Customer {

10 BankAccount account;

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1b
We have the following java program

Does this program follow the principle of "Tell, Don’t Ask"? Explain.

No

Customer asks for the balance from BankAccount in the
withdraw method and does the computation

Customer should tell BankAccount to do the withdraw

internally
similar situation for deposit

Don’t get internals of your fields and do computations for it

1 class BankAccount {

2 double balance;

3

4 BankAccount(double initBalance) {

5 this.balance = initBalance;

6 }

7 }

8

9 class Customer {

10 BankAccount account;

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1b
We have the following java program

Does this program follow the principle of "Tell, Don’t Ask"? Explain.

No

Customer asks for the balance from BankAccount in the
withdraw method and does the computation

Customer should tell BankAccount to do the withdraw

internally
similar situation for deposit

Don’t get internals of your fields and do computations for it

Try to push the computation within the class of the respective

field

1 class BankAccount {

2 double balance;

3

4 BankAccount(double initBalance) {

5 this.balance = initBalance;

6 }

7 }

8

9 class Customer {

10 BankAccount account;

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1b
We have the following java program

Does this program follow the principle of "Tell, Don’t Ask"? Explain.

No

Customer asks for the balance from BankAccount in the
withdraw method and does the computation

Customer should tell BankAccount to do the withdraw

internally
similar situation for deposit

Don’t get internals of your fields and do computations for it

Try to push the computation within the class of the respective

field
Pushing withdraw computation within BankAccount

1 class BankAccount {

2 double balance;

3

4 BankAccount(double initBalance) {

5 this.balance = initBalance;

6 }

7 }

8

9 class Customer {

10 BankAccount account;

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1c
Fix the code

class BankAccount {

double balance;

BankAccount(double initBalance) {

this.balance = initBalance;

}

}

class Customer {

BankAccount account;

Customer() {

this.account = new BankAccount(0);

}

public void deposit(double amount) {

this.account.balance += amount;

}

public boolean withdraw(double amount) {

if (this.account.balance >= amount) {

this.account.balance -= amount;

return true;

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

Q1c
Fix the code

private double balance;

private BankAccount account;

 1 class BankAccount {

 2

 3

 4 BankAccount(double initBalance) {

 5 this.balance = initBalance;

 6 }

 7 }

 8

 9 class Customer {

10

11

12 Customer() {

13 this.account = new BankAccount(0);

14 }

15

16 public void deposit(double amount) {

17 this.account.balance += amount;

18 }

19 public boolean withdraw(double amount) {

20 if (this.account.balance >= amount) {

21 this.account.balance -= amount;

22 return true;

Q1c
Fix the code

public void deposit(double amount) {

this.balance += amount;

}

public boolean withdraw(double amount) {

if (this.balance >= amount) {

this.balance -= amount;

return true;

}

return false;

}

 1 class BankAccount {

 2 private double balance;

 3

 4 BankAccount(double initBalance) {

 5 this.balance = initBalance;

 6 }

 7

 8

 9

10

11

12

13

14

15

16

17

18

19 }

20

21 class Customer {

22 private BankAccount account;

Q1c
Fix the code

 1 class BankAccount {

 2 private double balance;

 3

 4 BankAccount(double initBalance) {

 5 this.balance = initBalance;

 6 }

 7

 8 public void deposit(double amount) {

 9 this.balance += amount;

10 }

11

12 public boolean withdraw(double amount) {

13 if (this.balance >= amount) {

14 this.balance -= amount;

15 return true;

16 }

17 return false;

18 }

19 }

20

21 class Customer {

22 private BankAccount account;

Q2a
Consider the following code

1 class Vector2D {

2 private double x;

3 private double y;

4

5 public Vector2D(double x, double y) {

6 this.x = x;

7 this.y = y;

8 }

9

10 public void add(Vector2D v) {

11 this.x = this.x + v.x;

12 this.y = this.y + v.y;

13 // line A

14 }

15 }

Stack Heap

Stack
Made of frames

Heap

Stack
Made of frames

The bindings between variable names
and its value

Heap

Stack
Made of frames

The bindings between variable names
and its value

1 call 1 frame created

Heap

Stack
Made of frames

The bindings between variable names
and its value

1 call 1 frame created

Call finishes? Frame is removed

Heap

Stack
Made of frames

The bindings between variable names
and its value

1 call 1 frame created

Call finishes? Frame is removed

Heap
Where objects that are created live

Stack
Made of frames

The bindings between variable names
and its value

1 call 1 frame created

Call finishes? Frame is removed

Heap
Where objects that are created live

Objects contain information of that
instance

mainly fields (more to come)

Stack
Made of frames

The bindings between variable names
and its value

1 call 1 frame created

Call finishes? Frame is removed

Heap
Where objects that are created live

Objects contain information of that
instance

mainly fields (more to come)

Why need the heap? why not everything
in the stack?

Objects can "live" on after stack frame

removed

Q2a
Now we have the following statements in the main method. What does the stack and heap diagram look
like?

Vector2D v1 = new Vector2D(1, 1);

Vector2D v2 = new Vector2D(2, 2);

v1.add(v2);

1 class Vector2D {

2 private double x;

3 private double y;

4

5 public Vector2D(double x, double y) {

6 this.x = x;

7 this.y = y;

8 }

9

10 public void add(Vector2D v) {

11 this.x = this.x + v.x;

12 this.y = this.y + v.y;

13 // line A

14 }

15 }

Q2a
Stack

1 call, 1 frame

Stack if FILO

Q2a
Stack

1 call, 1 frame

main method

Stack if FILO

Q2a
Stack

1 call, 1 frame

main method

add method

Stack if FILO

Q2a
Stack

1 call, 1 frame

main method

add method

Stack if FILO

Grows upwards

Q2a
Stack

1 call, 1 frame

main method

add method

Stack if FILO

Grows upwards

which is first? main? add?

Q2a
Stack

1 call, 1 frame

main method

add method

Stack if FILO

Grows upwards

which is first? main? add?
main then add

Q2a
Stack

1 call, 1 frame

main method

add method

Stack if FILO

Grows upwards

which is first? main? add?
main then add

What are the bindings in each

frame?

Q2a
Stack

1 call, 1 frame

main method

add method

Stack if FILO

Grows upwards

which is first? main? add?
main then add

What are the bindings in each

frame?
what variables are there

Q2a
Stack Heap

What objects are created?

Q2a
Stack

For each variable what is the value?
Heap

What objects are created?

Q2a
Stack

For each variable what is the value?

Is the value a primitive(int, bool,
etc)?

Heap

What objects are created?

Q2a
Stack

For each variable what is the value?

Is the value a primitive(int, bool,
etc)?

Just put it in the box

Heap

What objects are created?

Q2a
Stack

For each variable what is the value?

Is the value a primitive(int, bool,
etc)?

Just put it in the box

Is it referring (pointing) to an
object?

Heap

What objects are created?

Q2a
Stack

For each variable what is the value?

Is the value a primitive(int, bool,
etc)?

Just put it in the box

Is it referring (pointing) to an
object?

Draw arrow to the object in the

heap

Heap

What objects are created?

Q2a
Stack

For each variable what is the value?

Is the value a primitive(int, bool,
etc)?

Just put it in the box

Is it referring (pointing) to an
object?

Draw arrow to the object in the

heap

Heap

What objects are created?

the object v1 refers to

Q2a
Stack

For each variable what is the value?

Is the value a primitive(int, bool,
etc)?

Just put it in the box

Is it referring (pointing) to an
object?

Draw arrow to the object in the

heap

Heap

What objects are created?

the object v1 refers to

the object v2 refers to

Q2a
Steps:

Q2a
Steps:

Go through code, create frames/objects/variables when needed

Q2a
Steps:

Go through code, create frames/objects/variables when needed

Method call? create frame on stack

Q2a
Steps:

Go through code, create frames/objects/variables when needed

Method call? create frame on stack
Method call finished? Remove stack frame

Q2a
Steps:

Go through code, create frames/objects/variables when needed

Method call? create frame on stack
Method call finished? Remove stack frame

new keyword? create object instance on heap

Q2a
Steps:

Go through code, create frames/objects/variables when needed

Method call? create frame on stack
Method call finished? Remove stack frame

new keyword? create object instance on heap

update variables/fields when needed

Q2a
Steps:

Go through code, create frames/objects/variables when needed

Method call? create frame on stack
Method call finished? Remove stack frame

new keyword? create object instance on heap

update variables/fields when needed
Final result at line A is the stack and heap diagram

Q2b
Supposed the representation of x and y have been changed to a
double array

How would things change?

class Vector2D {

private double x;

private double y;

:

}

Q2b
Supposed the representation of x and y have been changed to a
double array

How would things change?

class Vector2D {

private double[] coord2D;

:

}

Q2b
Just go through wherever x and y is used and update
accordingly

Q2b
Just go through wherever x and y is used and update
accordingly

Note that for add there’s 2 ways of doing

Q2b
Just go through wherever x and y is used and update
accordingly

Note that for add there’s 2 ways of doing

Create a new array

Q2b
Just go through wherever x and y is used and update
accordingly

Note that for add there’s 2 ways of doing

Create a new array
Update the existing array

class Vector2D {

private double x;

private double y;

public Vector2D(double x, double y) {

this.x = x;

this.y = y;

}

public void add(Vector2D v) {

this.x = this.x + v.x;

this.y = this.y + v.y;

// line A

}

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

class Vector2D {

private double[] coord2D;

public Vector2D(double x, double y) {

this.x = x;

this.y = y;

}

public void add(Vector2D v) {

this.x = this.x + v.x;

this.y = this.y + v.y;

// line A

}

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

this.x = x;

this.y = y;

this.x = this.x + v.x;

this.y = this.y + v.y;

 1 class Vector2D {

 2 private double[] coord2D;

 3

 4 public Vector2D(double x, double y) {

 5

 6

 7 }

 8

 9 public void add(Vector2D v) {

10

11

12 // line A

13 }

14 }

class Vector2D {

private double[] coord2D;

public Vector2D(double x, double y) {

this.x = x;

this.y = y;

}

public void add(Vector2D v) {

this.x = this.x + v.x;

this.y = this.y + v.y;

// line A

}

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

this.coord2D = new double[] {x, y};

 1 class Vector2D {

 2 private double[] coord2D;

 3

 4 public Vector2D(double x, double y) {

 5

 6 }

 7

 8 public void add(Vector2D v) {

 9 this.x = this.x + v.x;

10 this.y = this.y + v.y;

11 // line A

12 }

13 }

class Vector2D {

private double[] coord2D;

public Vector2D(double x, double y) {

this.coord2D = new double[] {x, y};

}

public void add(Vector2D v) {

this.x = this.x + v.x;

this.y = this.y + v.y;

// line A

}

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

this.x = this.x + v.x;

this.y = this.y + v.y;

 1 class Vector2D {

 2 private double[] coord2D;

 3

 4 public Vector2D(double x, double y) {

 5 this.coord2D = new double[] {x, y};

 6 }

 7

 8 public void add(Vector2D v) {

 9

10

11 // line A

12 }

13 }

this.coord2D[0] += v.coord2D[0];

this.coord2D[1] += v.coord2D[1];

 1 class Vector2D {

 2 private double[] coord2D;

 3

 4 public Vector2D(double x, double y) {

 5 this.coord2D = new double[] {x, y};

 6 }

 7

 8 public void add(Vector2D v) {

 9

10

11 // line A

12 }

13 }

this.x = this.x + v.x;

this.y = this.y + v.y;

 1 class Vector2D {

 2 private double[] coord2D;

 3

 4 public Vector2D(double x, double y) {

 5 this.coord2D = new double[] {x, y};

 6 }

 7

 8 public void add(Vector2D v) {

 9

10

11 // line A

12 }

13 }

this.coord2D = new double[] {

this.coord2D[0] + v.coord2D[0],

this.coord2D[1] + v.coord2D[1]

}

 1 class Vector2D {

 2 private double[] coord2D;

 3

 4 public Vector2D(double x, double y) {

 5 this.coord2D = new double[] {x, y};

 6 }

 7

 8 public void add(Vector2D v) {

 9

10

11

12

13 // line A

14 }

15 }

class Vector2D {

private double[] coord2D;

public Vector2D(double x, double y) {

this.coord2D = new double[] {x, y};

}

public void add(Vector2D v) {

this.coord2D = new double[] {

this.coord2D[0] + v.coord2D[0],

this.coord2D[1] + v.coord2D[1]

}

// line A

}

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

Q2b
Would the program fragment (in main)
still be valid?

Vector2D v1 = new Vector2D(1, 1);

Vector2D v2 = new Vector2D(2, 2);

v1.add(v2);

Q2b
Would the program fragment (in main)
still be valid?

Yes, all the changes are "internal"

Vector2D v1 = new Vector2D(1, 1);

Vector2D v2 = new Vector2D(2, 2);

v1.add(v2);

Q2b
Would the program fragment (in main)
still be valid?

Yes, all the changes are "internal"

client on the "outside" doesn’t see the
changes

Vector2D v1 = new Vector2D(1, 1);

Vector2D v2 = new Vector2D(2, 2);

v1.add(v2);

Q2b
Would the program fragment (in main)
still be valid?

Yes, all the changes are "internal"

client on the "outside" doesn’t see the
changes

Hidden behind abstraction barrier

Vector2D v1 = new Vector2D(1, 1);

Vector2D v2 = new Vector2D(2, 2);

v1.add(v2);

Q3a
Study the following code

public class Point {

 private double x;

 private double y;

 public Point(double x, double y) {

 this.x = x;

 this.y = y;

 }

}

 private Point centre;

 private int radius;

 public Circle(Point centre, int radius) {

 this.centre = centre;

 this.radius = radius;

 }

 @Override

 public boolean equals(Object obj) {

 System.out.println("equals(Object) called");

 if (obj == this) {

 return true;

 }

 if (obj instanceof Circle) {

 Circle circle = (Circle) obj;

 return (circle.centre.equals(centre) && circle.rad

 } else {

 return false;

 }

 }

 public boolean equals(Circle circle) {

 System.out.println("equals(Circle) called");

 return circle.centre.equals(centre) && circle.radius

}

Q3a
With the following code fragment, what is the return value of c1.equals(c2)

Circle c1 = new Circle(new Point(0, 0), 10);

Circle c2 = new Circle(new Point(0, 0), 10);

Object o1 = c1;

Object o2 = c2;

23 return circle.centre.equals(centre) && circle.ra

5 this.centre = centre;

6 this.radius = radius;

7 }

8 @Override

9 public boolean equals(Object obj) {

10 System.out.println("equals(Object) called");

11 if (obj == this) {

12 return true;

13 }

14 if (obj instanceof Circle) {

15 Circle circle = (Circle) obj;

16 return (circle.centre.equals(centre) && circle

17 } else {

18 return false;

19 }

20 }

21 public boolean equals(Circle circle) {

22 System.out.println("equals(Circle) called");

24 }

25 }

Q3a
With the following code fragment, what is the return value of c1.equals(c2)

Returns false

Circle c1 = new Circle(new Point(0, 0), 10);

Circle c2 = new Circle(new Point(0, 0), 10);

Object o1 = c1;

Object o2 = c2;

23 return circle.centre.equals(centre) && circle.ra

5 this.centre = centre;

6 this.radius = radius;

7 }

8 @Override

9 public boolean equals(Object obj) {

10 System.out.println("equals(Object) called");

11 if (obj == this) {

12 return true;

13 }

14 if (obj instanceof Circle) {

15 Circle circle = (Circle) obj;

16 return (circle.centre.equals(centre) && circle

17 } else {

18 return false;

19 }

20 }

21 public boolean equals(Circle circle) {

22 System.out.println("equals(Circle) called");

24 }

25 }

Q3a
With the following code fragment, what is the return value of c1.equals(c2)

Returns false

"same" center, but it’s actually 2 diff Point
instances (brian draw diagram)

Circle c1 = new Circle(new Point(0, 0), 10);

Circle c2 = new Circle(new Point(0, 0), 10);

Object o1 = c1;

Object o2 = c2;

23 return circle.centre.equals(centre) && circle.ra

5 this.centre = centre;

6 this.radius = radius;

7 }

8 @Override

9 public boolean equals(Object obj) {

10 System.out.println("equals(Object) called");

11 if (obj == this) {

12 return true;

13 }

14 if (obj instanceof Circle) {

15 Circle circle = (Circle) obj;

16 return (circle.centre.equals(centre) && circle

17 } else {

18 return false;

19 }

20 }

21 public boolean equals(Circle circle) {

22 System.out.println("equals(Circle) called");

24 }

25 }

Q3a
With the following code fragment, what is the return value of c1.equals(c2)

Returns false

"same" center, but it’s actually 2 diff Point
instances (brian draw diagram)

circle.centre.equals(centre) is false

Circle c1 = new Circle(new Point(0, 0), 10);

Circle c2 = new Circle(new Point(0, 0), 10);

Object o1 = c1;

Object o2 = c2;

23 return circle.centre.equals(centre) && circle.ra

5 this.centre = centre;

6 this.radius = radius;

7 }

8 @Override

9 public boolean equals(Object obj) {

10 System.out.println("equals(Object) called");

11 if (obj == this) {

12 return true;

13 }

14 if (obj instanceof Circle) {

15 Circle circle = (Circle) obj;

16 return (circle.centre.equals(centre) && circle

17 } else {

18 return false;

19 }

20 }

21 public boolean equals(Circle circle) {

22 System.out.println("equals(Circle) called");

24 }

25 }

Q3a
With the following code fragment, what is the return value of c1.equals(c2)

Returns false

"same" center, but it’s actually 2 diff Point
instances (brian draw diagram)

circle.centre.equals(centre) is false

Default Object::equals is only true iff same
EXACT instance of object

Reminder: if starts with capital, classname. start

with small letter is instance

Circle c1 = new Circle(new Point(0, 0), 10);

Circle c2 = new Circle(new Point(0, 0), 10);

Object o1 = c1;

Object o2 = c2;

23 return circle.centre.equals(centre) && circle.ra

5 this.centre = centre;

6 this.radius = radius;

7 }

8 @Override

9 public boolean equals(Object obj) {

10 System.out.println("equals(Object) called");

11 if (obj == this) {

12 return true;

13 }

14 if (obj instanceof Circle) {

15 Circle circle = (Circle) obj;

16 return (circle.centre.equals(centre) && circle

17 } else {

18 return false;

19 }

20 }

21 public boolean equals(Circle circle) {

22 System.out.println("equals(Circle) called");

24 }

25 }

Q3a
With the following code fragment, what is the return value of c1.equals(c2)

Returns false

"same" center, but it’s actually 2 diff Point
instances (brian draw diagram)

circle.centre.equals(centre) is false

Default Object::equals is only true iff same
EXACT instance of object

Reminder: if starts with capital, classname. start

with small letter is instance

How can we make this return true?

Circle c1 = new Circle(new Point(0, 0), 10);

Circle c2 = new Circle(new Point(0, 0), 10);

Object o1 = c1;

Object o2 = c2;

23 return circle.centre.equals(centre) && circle.ra

5 this.centre = centre;

6 this.radius = radius;

7 }

8 @Override

9 public boolean equals(Object obj) {

10 System.out.println("equals(Object) called");

11 if (obj == this) {

12 return true;

13 }

14 if (obj instanceof Circle) {

15 Circle circle = (Circle) obj;

16 return (circle.centre.equals(centre) && circle

17 } else {

18 return false;

19 }

20 }

21 public boolean equals(Circle circle) {

22 System.out.println("equals(Circle) called");

24 }

25 }

Thank you
See y’all next week :)

