
CS2030S
Recitation 2

Brian Cheong

Office hours

Office hours
• Fridays 4pm — 5pm

Office hours
• Fridays 4pm — 5pm

• Ask about creating telegroup

• Can coordinate whether people coming, how many etc

Office hours
• Fridays 4pm — 5pm

• Ask about creating telegroup

• Can coordinate whether people coming, how many etc

• Venue: COM2-B1-03

• Walk past coolspot and go down staircase

• There’s a dungeon there, that’s my office (near LT19)

• labelled TA/GT cluster 3 and knock on the door

telegroup

A little bit side quest

• Compilers

A little bit side quest

• Compilers

• A Program that converts another program from one language into
another one

A little bit side quest

• Compilers

• A Program that converts another program from one language into
another one

• Latex into pdf, C source code into Assembly, source to javascript etc

A little bit side quest

• Compilers

• A Program that converts another program from one language into
another one

• Latex into pdf, C source code into Assembly, source to javascript etc

• Interpreter

A little bit side quest

• Compilers

• A Program that converts another program from one language into
another one

• Latex into pdf, C source code into Assembly, source to javascript etc

• Interpreter

• Takes in a program and executes it

A little bit side quest

• Compilers

• A Program that converts another program from one language into
another one

• Latex into pdf, C source code into Assembly, source to javascript etc

• Interpreter

• Takes in a program and executes it

• Your browser (javascript interpreter), JVM, computer processor

A little bit side quest

Dynamic binding

Dynamic binding
• When writing a Java program there are 2 processes

• Compilation javac

• Running/Execution java

Dynamic binding
• When writing a Java program there are 2 processes

• Compilation javac

• Running/Execution java

• These 2 programs run separately, so “see” things differently

• Compiler translates Java source code into JVM bytecode

• JVM interprets (runs/executes) the JVM bytecode produced

Compile-time

Compile-time
• Compiler can only see compile-time type

• When you declare a variable/field with a type

• that type is the compile-time type

Compile-time
• Compiler can only see compile-time type

• When you declare a variable/field with a type

• that type is the compile-time type

• Compiler wants to have type safe code as much as possible

• should not call methods that may not exist for that type (compile-type)

• Only allows invocation of methods that type has

Runtime-type

Runtime-type
• The actual type of the object that is on the heap

• Interpreter will know what is the actual type as it runs things
(compiler doesn’t have enough info)

Example

Example
• Animal a = new Dog();

Example
• Animal a = new Dog();

• Here, CTT(a) = Animal, RTT(a) = Dog

Dynamic binding steps

Dynamic binding steps
• Assuming b.foo(c)

Dynamic binding steps
• Assuming b.foo(c)

• During compilation

Dynamic binding steps
• Assuming b.foo(c)

• During compilation

• Find methods of CTT(b)

Dynamic binding steps
• Assuming b.foo(c)

• During compilation

• Find methods of CTT(b)

• Look for foo that accepts CTT(c) (CTT(c) is a subtype of the parameter)

Dynamic binding steps
• Assuming b.foo(c)

• During compilation

• Find methods of CTT(b)

• Look for foo that accepts CTT(c) (CTT(c) is a subtype of the parameter)

• If multiple methods match, take the most specific parameter (the “smaller” one)

Dynamic binding steps
• Assuming b.foo(c)

• During compilation

• Find methods of CTT(b)

• Look for foo that accepts CTT(c) (CTT(c) is a subtype of the parameter)

• If multiple methods match, take the most specific parameter (the “smaller” one)

• that foo is now the method descriptor (name, return type and parameter types)
that we have chosen [COMPILATION DONE]

Dynamic binding steps
• Assuming b.foo(c)

• During compilation

• Find methods of CTT(b)

• Look for foo that accepts CTT(c) (CTT(c) is a subtype of the parameter)

• If multiple methods match, take the most specific parameter (the “smaller” one)

• that foo is now the method descriptor (name, return type and parameter types)
that we have chosen [COMPILATION DONE]

• Note how we don’t use runtime type at all

Dynamic binding steps

Dynamic binding steps
• During runtime

Dynamic binding steps
• During runtime

• We have the method descriptor from before

Dynamic binding steps
• During runtime

• We have the method descriptor from before

• Look for that EXACT descriptor in class of RTT(b) and
run that

Dynamic binding steps
• During runtime

• We have the method descriptor from before

• Look for that EXACT descriptor in class of RTT(b) and
run that

• If RTT(b) does not have have an implementation, look
for it’s inherited implementation

Q3b
• o1.equals(o2);

• o1.equals((Circle) o2);

• o1.equals(c2);

• c1.equals(o2);

• c1.equals((Circle) o2);

• c1.equals(c2);

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(o2); public class Circle {

 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(o2);

• CTT(o1) = Object

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(o2);

• CTT(o1) = Object

• CTT(o2) = Object

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(o2);

• CTT(o1) = Object

• CTT(o2) = Object

• Methods available =
boolean equals(Object)

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(o2);

• CTT(o1) = Object

• CTT(o2) = Object

• Methods available =
boolean equals(Object)

• CTT(o2) <: Object so it’s ok

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(o2);

• CTT(o1) = Object

• CTT(o2) = Object

• Methods available =
boolean equals(Object)

• CTT(o2) <: Object so it’s ok

• Method descriptor boolean
equals(Object)

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(o2);

• CTT(o1) = Object

• CTT(o2) = Object

• Methods available =
boolean equals(Object)

• CTT(o2) <: Object so it’s ok

• Method descriptor boolean
equals(Object)

• Implementation found in
circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(o2);

• CTT(o1) = Object

• CTT(o2) = Object

• Methods available =
boolean equals(Object)

• CTT(o2) <: Object so it’s ok

• Method descriptor boolean
equals(Object)

• Implementation found in
circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals((Circle) o2); public class Circle {

 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals((Circle) o2);

• CTT(o1) = Object

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals((Circle) o2);

• CTT(o1) = Object

• CTT((Circle) o2) = Circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals((Circle) o2);

• CTT(o1) = Object

• CTT((Circle) o2) = Circle

• Methods available = boolean
equals(Object)

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals((Circle) o2);

• CTT(o1) = Object

• CTT((Circle) o2) = Circle

• Methods available = boolean
equals(Object)

• CTT((Circle) o2) <: Object so
it’s ok

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals((Circle) o2);

• CTT(o1) = Object

• CTT((Circle) o2) = Circle

• Methods available = boolean
equals(Object)

• CTT((Circle) o2) <: Object so
it’s ok

• Method descriptor boolean
equals(Object)

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals((Circle) o2);

• CTT(o1) = Object

• CTT((Circle) o2) = Circle

• Methods available = boolean
equals(Object)

• CTT((Circle) o2) <: Object so
it’s ok

• Method descriptor boolean
equals(Object)

• Implementation found in
circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals((Circle) o2);

• CTT(o1) = Object

• CTT((Circle) o2) = Circle

• Methods available = boolean
equals(Object)

• CTT((Circle) o2) <: Object so
it’s ok

• Method descriptor boolean
equals(Object)

• Implementation found in
circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(c2); public class Circle {

 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(c2);

• CTT(o1) = Object

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(c2);

• CTT(o1) = Object

• CTT(c2) = Circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(c2);

• CTT(o1) = Object

• CTT(c2) = Circle

• Methods available =
boolean equals(Object)

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(c2);

• CTT(o1) = Object

• CTT(c2) = Circle

• Methods available =
boolean equals(Object)

• CTT(c2) <: Object so it’s ok

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(c2);

• CTT(o1) = Object

• CTT(c2) = Circle

• Methods available =
boolean equals(Object)

• CTT(c2) <: Object so it’s ok

• Method descriptor boolean
equals(Object)

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(c2);

• CTT(o1) = Object

• CTT(c2) = Circle

• Methods available =
boolean equals(Object)

• CTT(c2) <: Object so it’s ok

• Method descriptor boolean
equals(Object)

• Implementation found in
circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• o1.equals(c2);

• CTT(o1) = Object

• CTT(c2) = Circle

• Methods available =
boolean equals(Object)

• CTT(c2) <: Object so it’s ok

• Method descriptor boolean
equals(Object)

• Implementation found in
circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(o2); public class Circle {

 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(o2);

• CTT(c1) = Circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(o2);

• CTT(c1) = Circle

• CTT(o2) = Object

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(o2);

• CTT(c1) = Circle

• CTT(o2) = Object

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(o2);

• CTT(c1) = Circle

• CTT(o2) = Object

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

• CTT(o2) <: Object  
but CTT(o2) </: Circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(o2);

• CTT(c1) = Circle

• CTT(o2) = Object

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

• CTT(o2) <: Object  
but CTT(o2) </: Circle

• Method descriptor boolean
equals(Object)

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(o2);

• CTT(c1) = Circle

• CTT(o2) = Object

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

• CTT(o2) <: Object  
but CTT(o2) </: Circle

• Method descriptor boolean
equals(Object)

• Implementation found in circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

• c1.equals(o2);

• CTT(c1) = Circle

• CTT(o2) = Object

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

• CTT(o2) <: Object  
but CTT(o2) </: Circle

• Method descriptor boolean
equals(Object)

• Implementation found in circle

Q3b
• c1.equals((Circle) o2); public class Circle {

 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals((Circle) o2);

• CTT(c1) = Circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals((Circle) o2);

• CTT(c1) = Circle

• CTT((Circle) o2) = Circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals((Circle) o2);

• CTT(c1) = Circle

• CTT((Circle) o2) = Circle

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals((Circle) o2);

• CTT(c1) = Circle

• CTT((Circle) o2) = Circle

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

• CTT(o2) <: Object  
and CTT((Circle) o2) <: Circle 
take more specific

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals((Circle) o2);

• CTT(c1) = Circle

• CTT((Circle) o2) = Circle

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

• CTT(o2) <: Object  
and CTT((Circle) o2) <: Circle 
take more specific

• Method descriptor boolean
equals(Circle)

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals((Circle) o2);

• CTT(c1) = Circle

• CTT((Circle) o2) = Circle

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

• CTT(o2) <: Object  
and CTT((Circle) o2) <: Circle 
take more specific

• Method descriptor boolean
equals(Circle)

• Implementation found in circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals((Circle) o2);

• CTT(c1) = Circle

• CTT(o2) = Circle

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

• CTT(o2) <: Object  
and CTT((Circle) o2) <: Circle 
take more specific

• Method descriptor boolean
equals(Circle)

• Implementation found in circle

Q3b
• c1.equals(c2); public class Circle {

 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(c2);

• CTT(c1) = Circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(c2);

• CTT(c1) = Circle

• CTT(c2) = Circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(c2);

• CTT(c1) = Circle

• CTT(c2) = Circle

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(c2);

• CTT(c1) = Circle

• CTT(c2) = Circle

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

• CTT(o2) <: Object  
and CTT(c2) <: Circle 
take more specific

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(c2);

• CTT(c1) = Circle

• CTT(c2) = Circle

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

• CTT(o2) <: Object  
and CTT(c2) <: Circle 
take more specific

• Method descriptor boolean
equals(Circle)

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(c2);

• CTT(c1) = Circle

• CTT(c2) = Circle

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

• CTT(o2) <: Object  
and CTT(c2) <: Circle 
take more specific

• Method descriptor boolean
equals(Circle)

• Implementation found in circle

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

public class Circle {
 private Point centre;
 private int radius;

 public Circle(Point centre, int radius) {
 this.centre = centre;
 this.radius = radius;
 }

 @Override
 public boolean equals(Object obj) {
 System.out.println("equals(Object) called");
 if (obj == this) {
 return true;
 }
 if (obj instanceof Circle) {
 Circle circle = (Circle) obj;
 return (circle.centre.equals(centre) && circle.radius == radius);
 } else {
 return false;
 }
 }

 public boolean equals(Circle circle) {
 System.out.println("equals(Circle) called");
 return circle.centre.equals(centre) && circle.radius == radius;
 }
}

Q3b
• c1.equals(c2);

• CTT(c1) = Circle

• CTT(c2) = Circle

• Methods available = boolean
equals(Object) and boolean
equals(Circle)

• CTT(o2) <: Object  
and CTT(c2) <: Circle 
take more specific

• Method descriptor boolean
equals(Circle)

• Implementation found in circle

Problem Set 2

Liskov Substitution Principle

Liskov Substitution Principle
• Let be a property provable about objects of type

. Then should be true for objects of type where
ϕ(x) x

T ϕ(y) S
S <: T

Liskov Substitution Principle
• Let be a property provable about objects of type

. Then should be true for objects of type where
ϕ(x) x

T ϕ(y) S
S <: T

• In english, if you have some property (user-defined) for
a class/type

Liskov Substitution Principle
• Let be a property provable about objects of type

. Then should be true for objects of type where
ϕ(x) x

T ϕ(y) S
S <: T

• In english, if you have some property (user-defined) for
a class/type

• It’s subtypes should maintain that property

Example

Example
• Notes example (Restaurant)

Example
• Notes example (Restaurant)

• Every restaurant should be open from 12pm to 10pm

Example
• Notes example (Restaurant)

• Every restaurant should be open from 12pm to 10pm

• lunch one violates since it closes at 2pm

Example
• Notes example (Restaurant)

• Every restaurant should be open from 12pm to 10pm

• lunch one violates since it closes at 2pm

• 24hr one is ok

Example
• Notes example (Restaurant)

• Every restaurant should be open from 12pm to 10pm

• lunch one violates since it closes at 2pm

• 24hr one is ok

• (is restaurant) ^ (12pm <= time <= 10pm) —> Open

Example
• Notes example (Restaurant)

• Every restaurant should be open from 12pm to 10pm

• lunch one violates since it closes at 2pm

• 24hr one is ok

• (is restaurant) ^ (12pm <= time <= 10pm) —> Open

• if predicate is false, then anything can happen (doesn’t have to be
closed or open)

Q1a

Q1a
• Rectangle class

• Rectangle::getArea is expected to return product of
height and width

Q1a
• Rectangle class

• Rectangle::getArea is expected to return product of
height and width

• Design a class Square that inherits from Rectangle

• New constraint: all 4 sides are always of the same length

Q1a
• Rectangle class

• Rectangle::getArea is expected to return product of
height and width

• Design a class Square that inherits from Rectangle

• New constraint: all 4 sides are always of the same length

• Create class Square with a single constructor method

Q1a

class Square {

}

public class Rectangle {
 private double width;
 private double height;

 public Rectangle(double width, double height) {
 this.width = width;
 this.height = height;
 }

 public double getArea() {
 return this.width * this.height;
 }

 @Override
 public String toString() {
 return "Width: " + this.width + " Height: " +
this.height;
 }
}

Q1a

class Square extends Rectangle {

}

public class Rectangle {
 private double width;
 private double height;

 public Rectangle(double width, double height) {
 this.width = width;
 this.height = height;
 }

 public double getArea() {
 return this.width * this.height;
 }

 @Override
 public String toString() {
 return "Width: " + this.width + " Height: " +
this.height;
 }
}

Q1a

class Square extends Rectangle {
 public Square(double length) {

 }
}

public class Rectangle {
 private double width;
 private double height;

 public Rectangle(double width, double height) {
 this.width = width;
 this.height = height;
 }

 public double getArea() {
 return this.width * this.height;
 }

 @Override
 public String toString() {
 return "Width: " + this.width + " Height: " +
this.height;
 }
}

Q1a

class Square extends Rectangle {
 public Square(double length) {
 super(length, length);
 }
}

public class Rectangle {
 private double width;
 private double height;

 public Rectangle(double width, double height) {
 this.width = width;
 this.height = height;
 }

 public double getArea() {
 return this.width * this.height;
 }

 @Override
 public String toString() {
 return "Width: " + this.width + " Height: " +
this.height;
 }
}

Q1b

public void setHeight(double height) {
 this.height = height;
}

public void setWidth(double width) {
 this.width = width;
}

Q1b
• We have 2 setters for height and

width within Rectangle
public void setHeight(double height) {
 this.height = height;
}

public void setWidth(double width) {
 this.width = width;
}

Q1b
• We have 2 setters for height and

width within Rectangle

• Property:
public void setHeight(double height) {
 this.height = height;
}

public void setWidth(double width) {
 this.width = width;
}

Q1b
• We have 2 setters for height and

width within Rectangle

• Property:

• w = last width set

public void setHeight(double height) {
 this.height = height;
}

public void setWidth(double width) {
 this.width = width;
}

Q1b
• We have 2 setters for height and

width within Rectangle

• Property:

• w = last width set

• h = last height set

public void setHeight(double height) {
 this.height = height;
}

public void setWidth(double width) {
 this.width = width;
}

Q1b
• We have 2 setters for height and

width within Rectangle

• Property:

• w = last width set

• h = last height set

• then getArea() must return w * h

public void setHeight(double height) {
 this.height = height;
}

public void setWidth(double width) {
 this.width = width;
}

Q1b
• We have 2 setters for height and

width within Rectangle

• Property:

• w = last width set

• h = last height set

• then getArea() must return w * h

• Why is this undesirable for Square?

public void setHeight(double height) {
 this.height = height;
}

public void setWidth(double width) {
 this.width = width;
}

Q1b

public void setHeight(double height) {
 this.height = height;
}

public void setWidth(double width) {
 this.width = width;
}

Q1b
• Why is this undesirable for Square?

public void setHeight(double height) {
 this.height = height;
}

public void setWidth(double width) {
 this.width = width;
}

Q1b
• Why is this undesirable for Square?

• Now we can have set the height
and width independently for
Square

public void setHeight(double height) {
 this.height = height;
}

public void setWidth(double width) {
 this.width = width;
}

Q1b
• Why is this undesirable for Square?

• Now we can have set the height
and width independently for
Square

• Violates the other property that
Square must have 4 sides of equal
length

public void setHeight(double height) {
 this.height = height;
}

public void setWidth(double width) {
 this.width = width;
}

Q1c
@Override
public void setHeight(double height) {
 super.setHeight(height);
 super.setWidth(height);
}

@Override
public void setWidth(double width) {
 super.setHeight(width);
 super.setWidth(width);
}

Q1c
• By LSP, anywhere that expects

Rectangle, we can put a Square
@Override
public void setHeight(double height) {
 super.setHeight(height);
 super.setWidth(height);
}

@Override
public void setWidth(double width) {
 super.setHeight(width);
 super.setWidth(width);
}

Q1c
• By LSP, anywhere that expects

Rectangle, we can put a Square

• Imagine a method that takes in a
Rectangle

• It will expect properties of rectangle

@Override
public void setHeight(double height) {
 super.setHeight(height);
 super.setWidth(height);
}

@Override
public void setWidth(double width) {
 super.setHeight(width);
 super.setWidth(width);
}

Q1c
• By LSP, anywhere that expects

Rectangle, we can put a Square

• Imagine a method that takes in a
Rectangle

• It will expect properties of rectangle

• If we pass in Square this no longer works

@Override
public void setHeight(double height) {
 super.setHeight(height);
 super.setWidth(height);
}

@Override
public void setWidth(double width) {
 super.setHeight(width);
 super.setWidth(width);
}

Q1c
• By LSP, anywhere that expects

Rectangle, we can put a Square

• Imagine a method that takes in a
Rectangle

• It will expect properties of rectangle

• If we pass in Square this no longer works

• We fixed 4 sides being same but violated
other property

@Override
public void setHeight(double height) {
 super.setHeight(height);
 super.setWidth(height);
}

@Override
public void setWidth(double width) {
 super.setHeight(width);
 super.setWidth(width);
}

Q1d
• So then does it make sense for Rectangle to inherit from Square

Q1d
• So then does it make sense for Rectangle to inherit from Square

• No

Q1d
• So then does it make sense for Rectangle to inherit from Square

• No

• Square has a constraint that all 4 sides must be of equal length

Q1d
• So then does it make sense for Rectangle to inherit from Square

• No

• Square has a constraint that all 4 sides must be of equal length

• Rectangle relaxes this constraint

Q1d
• So then does it make sense for Rectangle to inherit from Square

• No

• Square has a constraint that all 4 sides must be of equal length

• Rectangle relaxes this constraint

• Better for Square and Rectangle to not inherit from each other at all

Q2a

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

Q2a
• Which statements are allowed?

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

Q2a
• Which statements are allowed?

• s.print();

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

Q2a
• Which statements are allowed?

• s.print();

• p.print();

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

Q2a
• Which statements are allowed?

• s.print();

• p.print();

• s.getArea();

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

Q2a
• Which statements are allowed?

• s.print();

• p.print();

• s.getArea();

• p.getArea();

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

Q2a
• Which statements are allowed?

• s.print();

• p.print();

• s.getArea();

• p.getArea();

• Why does the compiler not allow some of these
statements?

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

Q2a
• Which statements are allowed?

• s.print();

• p.print();

• s.getArea();

• p.getArea();

• Why does the compiler not allow some of these
statements?

• Preserve type safety
Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

Q2a
• Which statements are allowed?

• s.print();

• p.print();

• s.getArea();

• p.getArea();

• Why does the compiler not allow some of these
statements?

• Preserve type safety

• Compiler doesn’t know RTT
Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

Q2a
• Which statements are allowed?

• s.print();

• p.print();

• s.getArea();

• p.getArea();

• Why does the compiler not allow some of these
statements?

• Preserve type safety

• Compiler doesn’t know RTT

• Only knows about the CTT methods

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

Q2a
• Which statements are allowed?

• s.print();

• p.print();

• s.getArea();

• p.getArea();

• Why does the compiler not allow some of these
statements?

• Preserve type safety

• Compiler doesn’t know RTT

• Only knows about the CTT methods

• Only allow methods that is guaranteed to exist for that
compile type

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

Q2b
• Ok then can we implement as an

abstract class then?

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public abstact class Shape {
 public double getArea();
}

public abstract class Printable {
 public void print();
}

Q2b
• Ok then can we implement as an

abstract class then?

• No, java doesn’t allow classes to
inherit from multiple classes

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public abstact class Shape {
 public double getArea();
}

public abstract class Printable {
 public void print();
}

Q2c
• Ok then can we have another

interface that extends both Shape
and Printable?

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

public interface PrintableShape
 extends Printable, Shape {
}

Q2c
• Ok then can we have another

interface that extends both Shape
and Printable?

• Yeah

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

public interface PrintableShape
 extends Printable, Shape {
}

Q2d

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

public interface PrintableShape
 extends Printable, Shape {
}

A B

C

Q2d
• Ok why multiple interface can but multiple

classes cannot?

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

public interface PrintableShape
 extends Printable, Shape {
}

A B

C

Q2d
• Ok why multiple interface can but multiple

classes cannot?

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

public interface PrintableShape
 extends Printable, Shape {
}

A B

C

Q2d
• Ok why multiple interface can but multiple

classes cannot?

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

public interface PrintableShape
 extends Printable, Shape {
}

A B

C

Q2d
• Ok why multiple interface can but multiple

classes cannot?

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

public interface PrintableShape
 extends Printable, Shape {
}

A B

C

Q2d
• Ok why multiple interface can but multiple

classes cannot?

• What if A and B both have an
implementation of some method foo Circle c = new Circle(new Point(0,0), 10);

Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

public interface PrintableShape
 extends Printable, Shape {
}

A B

C

Q2d
• Ok why multiple interface can but multiple

classes cannot?

• What if A and B both have an
implementation of some method foo

• Which does C inherit?

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

public interface PrintableShape
 extends Printable, Shape {
}

A B

C

Q2d
• Ok why multiple interface can but multiple

classes cannot?

• What if A and B both have an
implementation of some method foo

• Which does C inherit?

• If interface there is no implementation so
its fine, a concrete class has to implement

Circle c = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

public interface Shape {
 public double getArea();
}

public interface Printable {
 public void print();
}

public interface PrintableShape
 extends Printable, Shape {
}

A B

C

Thank you see you next
week :)

