CS2030S
Recitation 2

Brian Cheong

Office hours

Office hours

 Fridays 4pm — S5pm

Office hours

 Fridays 4pm — S5pm
* Ask about creating telegroup

* Can coordinate whether people coming, how many etc

Office hours

 Fridays 4pm — 5pm
* Ask about creating telegroup

* Can coordinate whether people coming, how many etc
* Venue: COM2-B1-03

 Walk past coolspot and go down staircase

 There’s a dungeon there, that’s my office (near LT19)

e |abelled TA/GT cluster 3 and knock on the door

telegroup

A little bit side quest

A little bit side quest

« Compilers

A little bit side quest

« Compilers

* A Program that converts another program from one language into
another one

A little bit side quest

« Compilers

* A Program that converts another program from one language into
another one

e [atex into pdf, C source code into Assembly, source to javascript etc

A little bit side quest

« Compilers

* A Program that converts another program from one language into
another one

e [atex into pdf, C source code into Assembly, source to javascript etc

* Interpreter

A little bit side quest

« Compilers

* A Program that converts another program from one language into
another one

e [atex into pdf, C source code into Assembly, source to javascript etc
* Interpreter

 Takes in a program and executes it

A little bit side quest

Compilers

* A Program that converts another program from one language into
another one

e [atex into pdf, C source code into Assembly, source to javascript etc
Interpreter
 Takes in a program and executes it

* Your browser (javascript interpreter), JVM, computer processor

Dynamic binding

Dynamic binding
 When writing a Java program there are 2 processes

 Compilation javac

 Running/Execution java

Dynamic binding
 When writing a Java program there are 2 processes
 Compilation javac

 Running/Execution java

 These 2 programs run separately, so “see” things differently
 Compiler translates Java source code into JVM bytecode

 JVM interprets (runs/executes) the JVM bytecode produced

Compile-time

Compile-time

 Compiler can only see compile-time type
 When you declare a variable/field with a type

* that type Is the compile-time type

Compile-time

 Compiler can only see compile-time type
 \When you declare a variable/field with a type
* that type Is the compile-time type
 Compiler wants to have type safe code as much as possible
* should not call methods that may not exist for that type (compile-type)

* Only allows invocation of methods that type has

Runtime-type

Runtime-type

* The actual type of the object that is on the heap

* Interpreter will know what is the actual type as it runs things
(compiler doesn’t have enough info)

Example

Example

e Animal a = new Dog();

Example

e Animal a = new Dog();

 Here, CTT(a) = Animal, RTT(a) = Dog

Dynamic binding steps

Dynamic binding steps

 Assuming b.foo(c)

Dynamic binding steps

 Assuming b.foo(c)

* During compillation

Dynamic binding steps

 Assuming b.foo(c)
* During compillation

 Find methods of CTT(b)

Dynamic binding steps

 Assuming b.foo(c)
* During compilation
 Find methods of CTT(b)

* ook for £oo that accepts CTT(c) (CTT(c) is a subtype of the parameter)

Dynamic binding steps

 Assuming b.foo(c)
* During compilation
 Find methods of CTT(b)
* ook for £oo that accepts CTT(c) (CTT(c) is a subtype of the parameter)

* |[f multiple methods match, take the most specific parameter (the “smaller” one)

Dynamic binding steps

 Assuming b.foo(c)
* During compillation
 Find methods of CTT(b)
* ook for £oo that accepts CTT(c) (CTT(c) is a subtype of the parameter)
* |[f multiple methods match, take the most specific parameter (the “smaller” one)

* that foo is now the method descriptor (hame, return type and parameter types)
that we have chosen [COMPILATION DONE]

Dynamic binding steps

 Assuming b.foo(c)
* During compillation
 Find methods of CTT(b)
* ook for £oo that accepts CTT(c) (CTT(c) is a subtype of the parameter)
* |[f multiple methods match, take the most specific parameter (the “smaller” one)

* that foo is now the method descriptor (hame, return type and parameter types)
that we have chosen [COMPILATION DONE]

 Note how we don’t use runtime type at all

Dynamic binding steps

Dynamic binding steps

* During runtime

Dynamic binding steps

* During runtime

 \We have the method descriptor from before

Dynamic binding steps

* During runtime

 \We have the method descriptor from before

 Look for that EXACT descriptor in class of RTT(b) and
run that

Dynamic binding steps

* During runtime

 \We have the method descriptor from before

 Look for that EXACT descriptor in class of RTT(b) and
run that

e |f RTT(b) does not have have an implementation, look
for it’s inherited implementation

o1.equals(02);
o1.equals((Circle) 02);
o1.equals(c?2);
c1.equals(o?2);
c1.equals((Circle) 02);

c1.equals(c?);

pub

P
P

P

}

@
P

}

P

}

3b

Llic class Circle {
rivate Point centre;
rivate int radius;

ublic Circle(Point centre, int radius) {
this.centre = centre;

this.radius = radtius;

Override

ublic boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;

return (circle.centre.equals(centre) && circle.radius

} else {
return false;

}

ublic boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radtius

== radius);

radius;

Q3b

* 01.equals(02); public class Circle {

private Point centre;
private int radtius;

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

* 01.equals(02); public class Circle {

private Point centre;
private int radtius;

e CTT(o1) = Object

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

* 01.equals(02); public class Circle {

private Point centre;
private int radtius;
® I I — .
C (01) ObJeCt public Circle(Point centre, int radius) {
this.centre = centre;
this.raduius radius;

« CTT(02) = Object }

@Override
public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

* 01.equals(02); public class Circle {

private Point centre;
private int radtius;
® I I — .
C (01) ObJeCt public Circle(Point centre, int radius) {
this.centre centre;
this.raduius radius;

« CTT(02) = Object }

@Override

: I public boolean equals(Object obj) {
* Methods available = System.out.println("equals(Object) called");

boolean equals(Object) if (obj == this) {

return true;
}
if (obj instanceof Circle) {

Circle circle = (Circle) obj;

return (circle.centre.equals(centre) && circle.radius == radius);
} else {

return false;

}

}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

* 01.equals(02); public class Circle {

private Point centre;
private int radtius;
® — .
CTT(O1) ObJeCt public Circle(Point centre, int radius) {
this.centre centre;
this.raduius radius;

« CTT(02) = Object }

@Override

: I public boolean equals(Object obj) {
* Methods available = System.out.println("equals(Object) called");

boolean equals(Object) if (obj == this) {

return true;

}
_ _ if (obj instanceof Circle) {
e CTT(02) <: Object so it’'s ok Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;
}
}

Q3b

* 01.equals(02); public class Circle {

private Point centre;
private int radtius;

e CTT(o1) = Object

public Circle(Point centre, int radius) {

this.centre = centre;
_ this.radius = radius;
« CTT(02) = Object }
@Override
: public boolean equals(Object obj) {
° MethOdS avallable — System.out.println("equals(Object) called");
' if (obj == this) {
boolean equals(Object) etuin true:
}
_ . if (obj instanceof Circle) {
e CTT(02) <: Object so it’'s ok Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
: t false;
» Method descriptor boolean oo e
equals(Object) }

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

* 01.equals(02); public class Circle {

private Point centre;
private int radtius;

e CTT(o1) = Object

public Circle(Point centre, int radius) {

this.centre = centre;
_ this.radius = radius;
« CTT(02) = Object }
@Override
: public boolean equals(Object obj) {
° MethOdS avallable — System.out.println("equals(Object) called");
' if (obj == this) {
boolean equals(Object) etuin true:
}
_ . if (obj instanceof Circle) {
e CTT(02) <: Object so it’'s ok Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
: t false;
» Method descriptor boolean oo e
equals(Object) }

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");

. |mp|ementati0n found in } return circle.centre.equals(centre) & circle.radius == radius;
circle }

Q3b

 01.equals(0?2);
e CTT(o1) = Object

« CTT(02) = Object

@Override
: public boolean equals(Object obj) {
° MethOdS avallable — System.out.println("equals(Object) called");
' if (obj == this) {
boolean equals(Object) etuin true:
}
_ . if (obj instanceof Circle) {
e CTT(02) <: Object so it’s ok Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
: t false;
» Method descriptor boolean oo e
equals(Obiject) ;

* Implementation found in
circle

Q3b

 o1.equals((Circle) 02); oublic class Circle {

private Point centre;
private int radtius;

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

 o1.equals((Circle) 02); oublic class Circle {

private Point centre;
private int radtius;

e CTT(0o1) = Object

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

public class Circle {
private Point centre;
private int radtius;

» o1.equals((Circle) 02);

e CTT(0o1) = Object

public Circle(Point centre, int radius) {

th@s.centre = centre;
» CTT((Circle) 02) = Circle | [e-radius = radius;
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;
}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

 o1.equals((Circle) 02); oublic class Circle {

private Point centre;
private int radtius;

e CTT(0o1) = Object

public Circle(Point centre, int radius) {

th@s.centre = centre;
» CTT((Circle) 02) = Circle | [e-radius = radius;
_ @Override
 Methods available = boolean public boolean equals(Object obj) {
: System.out.println("equals(Object) called");
equals(Object) {f (obj == this) {

return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;
}

}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

 o1.equals((Circle) 02); oublic class Circle {

private Point centre;
. Obi private int radtius;
e CIT(01) = ect
()) public Circle(Point centre, int radius) {
this.centre centre;

. C'IT((CerIe) 02) _ Circle \ this.raduius radius;

_ @Override
 Methods available = boolean public boolean equals(Object obj) {
: System.out.println("equals(Object) called");
equals(Object) if (obj == this) {

return true;

}
« CTT((Circle) 02) <: Object so if (obj instanceof Circle) {
y Circle circle = (Circle) obj;
it's ok return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

 o1.equals((Circle) 02); oublic class Circle {

private Point centre;
private int radtius;

e CTT(0o1) = Object

public Circle(Point centre, int radius) {

th@s.cenﬁre = centre;
- CTT((Circle) 02) = Circle , e-radius = radius;
_ @Override
 Methods available = boolean public boolean equals(Object obj) {
: System.out.println("equals(Object) called");
equals(Object) if (obj == this) {
return true;
. . }
« CTT((Circle) 02) <: Object so if (obj instanceof Circle) {
y Circle circle = (Circle) obj;
it’s ok return (circle.centre.equals(centre) && circle.radius == radius);
} else {
_ return false;
 Method descriptor boolean }
. }
equals(Object)

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

 o1.equals((Circle) 02); oublic class Circle {

private Point centre;
private int radtius;

e CTT(0o1) = Object

public Circle(Point centre, int radius) {

th@s.cenﬁre = centre;
- CTT((Circle) 02) = Circle , e-radius = radius;
_ @Override
 Methods available = boolean public boolean equals(Object obj) {
: System.out.println("equals(Object) called");
equals(Object) if (obj == this) {
return true;
. . }
« CTT((Circle) 02) <: Object so if (obj instanceof Circle) {
y Circle circle = (Circle) obj;
it’s ok return (circle.centre.equals(centre) && circle.radius == radius);
} else {
_ return false;
 Method descriptor boolean }
. }
equals(Object)

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");

o |mp|ementati0n found Iin \ return circle.centre.equals(centre) && circle.radius == radius;
circle }

Q3b

» o1.equals((Circle) 02);
* CTT(o1) = Object

 CTT((Circle) 02) = Circle

_ @Override
e Methods available = boolean public boolean equals(Object obj) {
: System.out.println("equals(Object) called");
equals(Object) {f (obj == this) {
return true;
. . h
« CTT((Circle) 02) <: Object so if (obj instanceof Circle) {
y Circle circle = (Circle) obj;
It's Ok return (circle.centre.equals(centre) && circle.radius == radius);
} else {
_ return false;
 Method descriptor boolean } I}

equals(Object)

* Implementation found Iin
circle

Q3b

* 01.equals(c?2); public class Circle {

private Point centre;
private int radtius;

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

* 01.equals(c?2); public class Circle {

private Point centre;
private int radtius;

e CTT(o1) = Object

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

public class Circle {
private Point centre;
private int radtius;

 o01.equals(c?);

® — .
C-IT(O1) ObJeCt public Circle(Point centre, int radius) {
this.centre = centre;

_ this.radtus = radius;
» CTT(c2) = Circle }

@Override
public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}

}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

* 01.equals(c?2); public class Circle {

private Point centre;
private int radtius;
® I I — .
C (01) ObJeCt public Circle(Point centre, int radius) {
this.centre centre;
this.raduius radius;

» CTT(c2) = Circle }

@Override

: I public boolean equals(Object obj) {
* Methods available = System.out.println("equals(Object) called");

boolean equals(Object) if (obj == this) {

return true;
}
if (obj instanceof Circle) {

Circle circle = (Circle) obj;

return (circle.centre.equals(centre) && circle.radius == radius);
} else {

return false;

}

}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

* 01.equals(c?2); public class Circle {

private Point centre;
private int radtius;
® — .
CTT(O1) ObJeCt public Circle(Point centre, int radius) {
this.centre centre;
this.raduius radius;

« CTT(c2) = Circle }

@Override

: I public boolean equals(Object obj) {
* Methods available = System.out.println("equals(Object) called");

boolean equals(Object) if (obj == this) {

return true;

}
_ _ if (obj instanceof Circle) {
e CTT(c2) <: Object so it’s ok Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;
}
}

Q3b

* 01.equals(c?2); public class Circle {

private Point centre;
private int radtius;

e CTT(o1) = Object

public Circle(Point centre, int radius) {

this.centre = centre;
_ this.radtus = radius;
« CTT(c2) = Circle }
@Override
: public boolean equals(Object obj) {
° MethOdS avallable — System.out.println("equals(Object) called");
' if (obj == this) {
boolean equals(Object) etuin true:
}
_ . if (obj instanceof Circle) {
e CTT(c2) <: Object so it’s ok Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
: t false;
» Method descriptor boolean oo e
equals(Object) }

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

* 01.equals(c?2); public class Circle {

private Point centre;
private int radtius;

e CTT(o1) = Object

public Circle(Point centre, int radius) {

this.centre = centre;
_ this.radtus = radius;
« CTT(c2) = Circle }
@Override
: public boolean equals(Object obj) {
° MethOdS avallable — System.out.println("equals(Object) called");
' if (obj == this) {
boolean equals(Object) etuin true:
}
_ . if (obj instanceof Circle) {
e CTT(c2) <: Object so it’s ok Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
: t false;
» Method descriptor boolean oo e
equals(Object) }

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");

. |mp|ementati0n found in } return circle.centre.equals(centre) & circle.radius == radius;
circle }

Q3b

 o01.equals(c?);
e CTT(o1) = Object

« CTT(c2) = Circle

@Override
: public boolean equals(Object obj) {
* Methods available = System.out.println("equals(0Object) called");
boolean equals(Object) th (ob] == this) 1
}
_ " if (obj instanceof Circle) {
e CTT(c2) <: Object so it’s ok Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
: t false;
» Method descriptor boolean oo e
equals(Object) !

* Implementation found in
circle

Q3b

o C1.equals(02); publzlc class_Circle {
private Point centre;

private int radtius;

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}

Q3b

o C1.equals(02); publzlc class_Circle {
private Point centre;

private int radtius;

« CTT(c1) = Circle

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}

Q3b

o C1.equals(02); publzlc class_Circle {
private Point centre;

private int radtius;
* CTT(C1) = Circle public Circle(Point centre, int radius) {
this.centre = centre;

. C_I_I_(OZ) _ Object \ this.radius radius;

@Override
public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;
}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}

e CT

.equals(o?2);

CTT(c1) = Circle
CTT(02) = Object

Methods available = boolean
equals(Object) and boolean
equals(Circle)

Q3b

public class Circle {
private Point centre;
private int radtius;

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radtius
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius ==

}

== radius);

radius;

Q3b

o C1.equals(02); publzlc class_Circle {
private Point centre;

private int radtius;

« CTT(c1) = Circle

public Circle(Point centre, int radius) {

this.centre = centre;
] this.radius = radtius;
e CTT(02) = Object }
| @Override
* Methods available = boolean public boolean equals(Object obj) {

: System.out.println("equals(Object) called");
equals(Object) and boolean o (obj == -'Eh-ls) {(Auats(Obect))
equals(Circle) \ return true;

if (obj instanceof Circle) {
: : Circle circle = (Circle) obj;
* CTT(OZ) <. ObJeCt_ return (circle.centre.equals(centre) && circle.radius == radius);
but CTT(02) </: Circle } else {
return false;
}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

o C1.equals(02); publ:lc class_Circle {
private Point centre;

private int radtius;

« CTT(c1) = Circle

public Circle(Point centre, int radius) {

this.centre = centre;
] this.radius = radtius;
e CTT(02) = Object }
| @Override
 Methods available = boolean public boolean equals(Object obj) {
: System.out.println("equals(Object) called");
equals(Object) and boolean o (obj == -'Eh-ls) {(Auats(Obect))
equals(Circle) \ return true;
if (obj instanceof Circle) {
_ : Circle circle = (Circle) obj;
* CTT(OZ) <. ObJeCt_ return (circle.centre.equals(centre) && circle.radius == radius);
but CTT(02) </: Circle } else {
return false;
}
» Method descriptor boolean !
equals(Object) public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;
}

}

Q3b

o C1.equals(02); publ:lc class_Circle {
private Point centre;

private int radtius;

« CTT(c1) = Circle

public Circle(Point centre, int radius) {

this.centre = centre;
, this.radius = radtius;
e CTT(02) = Object }
_ @Override
 Methods available = boolean public boolean equals(Object obj) {
: System.out.println("equals(Object) called");
equals(Object) and boolean o (obj == -'Eh-ls) {(Auats(obiect)
equals(Circle) \ return true;
if (obj instanceof Circle) {
_ : Circle circle = (Circle) obj;
* CTT(OZ) <. ObJeCt_ return (circle.centre.equals(centre) && circle.radius == radius);
but CTT(02) </: Circle } else {
return false;
}
» Method descriptor boolean !
equals(Object) public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;
* Implementation found in circle b

}

Q3b

* cl.equals(0?);
e CTT(c1) = Circle

e CTT(02) = Object

@Override
* Methods available = boolean public boolean equals(Object obj) {

: System.out.println("equals(Object) called");
equals(Obiject) and boolean Y on] us B LTh it equatsiObiect))
equals(Circle) } return true;

if (obj instanceof Circle) {
: : Circle circle = (Circle) obj;
’ CTT(OQ) < ObJeCt_ return (circle.centre.equals(centre) && circle.radius == radius);
but CTT(02) </: Circle } else {
return false;
}
» Method descriptor boolean !

equals(Object)

* Implementation found in circle

Q3b

public class Circle {
private Point centre;
private int radtius;

» c1.equals((Circle) 02);

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}

Q3b

public class Circle {
private Point centre;
private int radtius;

» c1.equals((Circle) 02);

« CTT(c1) = Circle

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}

Q3b

public class Circle {
private Point centre;

] private int radius;
 CTT(c1) = Circle ’
public Circle(Point centre, int radius) {

» c1.equals((Circle) 02);

_ _ this.centre = centre;
° C-|_|_((CIFC|e) 02) = Circle \ this.radius = radius;
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;
}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}

e CT

.equals((Circle) 02);

CTT(c1) = Circle
CTT((Circle) 02) = Circle

Methods available = boolean
equals(Object) and boolean
equals(Circle)

Q3b

public class Circle {
private Point centre;
private int radtius;

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radtius
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius ==

}

== radius);

radius;

e CT

Q3b

public class Circle {
private Point centre;
private int radtius;

.equals((Circle) 02);

CTT(c1) = Circle

public Circle(Point centre, int radius) {

_ _ this.centre = centre;
CTT((Circle) 02) = Circle \ this.radius = radius;
i — @Override
Methods a_vallable boolean public boolean equals(Object obj) {
equals(Object) and boolean System.out.println("equals(Object) called");

if (obj == this) {

equals(Circle) return true:

}
] : if (obj instanceof Circle) {
CTT(02) <: Object Circle circle = (Circle) obj;
=1ale C'I_I'((Circle) 02) < Circle return (circle.centre.equals(centre) && circle.radius == radius);
. ' } else {
take more specific return false;
}

}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

public class Circle {
private Point centre;
private int radtius;

» c1.equals((Circle) 02);

« CTT(c1) = Circle

public Circle(Point centre, int radius) {

_ _ this.centre = centre;
« CTT((Circle) 02) = Circle \ this.radius = radius;
i — @Override
* Methods a_vallable boolean public boolean equals(Object obj) {
equals(Object) and boolean System.out.println("equals(Object) called");

if (obj == this) {

equals(Circle) return true:

}
] : if (obj instanceof Circle) {
« CTT(02) <: Object Circle circle = (Circle) obj;
=1ale C'I_I'((Circle) 02) < Circle return (circle.centre.equals(centre) && circle.radius == radius);
. ' } else {
take more specific return false;
}

}
 Method descriptor boolean | | |
public boolean equals(Circle circle) {

equaIS(CerIG) System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;
}

}

Q3b

public class Circle {
private Point centre;
private int radtius;

» c1.equals((Circle) 02);

« CTT(c1) = Circle

public Circle(Point centre, int radius) {

_ _ this.centre = centre;
« CTT((Circle) 02) = Circle \ this.radius = radius;
i — @Override
* Methods a_vallable boolean public boolean equals(Object obj) {
equals(Object) and boolean System.out.println("equals(Object) called");

if (obj == this) {

equals(Circle) return true:

}
] : if (obj instanceof Circle) {
« CTT(02) <: Object Circle circle = (Circle) obj;
=1ale C'I_I'((Circle) 02) < Circle return (circle.centre.equals(centre) && circle.radius == radius);
. ' } else {
take more specific return false;
}

}
 Method descriptor boolean | | |
public boolean equals(Circle circle) {

equaIS(CerIG) System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;
}

* Implementation found in circle h

» c1.equals((Circle) 02);
e CTT(c1) = Circle
» CTT(02) = Circle

e Methods available = boolean
equals(Object) and boolean
equals(Circle)

e CTT(02) <: Object
and CTT((Circle) 02) <: Circle
take more specific

 Method descriptor boolean _ _ _
public boolean equals(Circle circle) {

equaIS(CerIG) System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

. L }
* Implementation found in circle

Q3b

public class Circle {
private Point centre;
private int radtius;

* cl.equals(c?2);

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}

Q3b

public class Circle {
private Point centre;
private int radtius;

* cl.equals(c?2);

« CTT(c1) = Circle

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}

Q3b

public class Circle {
private Point centre;

] private int radius;
 CTT(c1) = Circle ’
public Circle(Point centre, int radius) {

* cl.equals(c?2);

| this.centre = centre;
e CTT(c2) = Circle } this.radius = radius;
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;
}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}

e CT

.equals(c?);

CTT(c1) = Circle
CTT(c2) = Circle

Methods available = boolean
equals(Object) and boolean
equals(Circle)

Q3b

public class Circle {
private Point centre;
private int radtius;

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radtius
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius ==

}

== radius);

radius;

e CT

.equals(c?);

CTT(c1) = Circle
CTT(c2) = Circle

Methods available = boolean
equals(Object) and boolean
equals(Circle)

CTT(02) <: Object
and CTT(c2) <: Circle
take more specific

Q3b

public class Circle {
private Point centre;
private int radtius;

public Circle(Point centre, int radius) {

this.centre = centre;
this.radius = radtius;
}
@Override

public boolean equals(Object obj) {
System.out.println("equals(Object) called");
if (obj == this) {
return true;
}
if (obj instanceof Circle) {
Circle circle = (Circle) obj;
return (circle.centre.equals(centre) && circle.radius == radius);
} else {
return false;

}
}

public boolean equals(Circle circle) {
System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

}
}

Q3b

public class Circle {
private Point centre;
private int radtius;

* cl.equals(c?2);

« CTT(c1) = Circle

public Circle(Point centre, int radius) {

this.centre = centre;
e CTT(c2) = Circle this.radius = radius;
s
i — @Override
* Methods a_vallable slelelCCly public boolean equals(Object obj) {
equals(Object) and boolean System.out.println("equals(Object) called");

if (obj == this) {

equals(Circle) return true:

}
] : if (obj instanceof Circle) {
« CTT(02) <: Object Circle circle = (Circle) obj;
=1ale C-|_|_(CZ) < Circle return (circle.centre.equals(centre) && circle.radius == radius);
e } else {
take more specific return false;
}

}
 Method descriptor boolean | | |
public boolean equals(Circle circle) {

equaIS(CerIG) System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;
}

}

Q3b

public class Circle {
private Point centre;
private int radtius;

* cl.equals(c?2);

« CTT(c1) = Circle

public Circle(Point centre, int radius) {

this.centre = centre;
e CTT(c2) = Circle this.radius = radius;
s
i — @Override
* Methods a_vallable slelelCCly public boolean equals(Object obj) {
equals(Object) and boolean System.out.println("equals(Object) called");

if (obj == this) {

equals(Circle) return true:

}
] : if (obj instanceof Circle) {
« CTT(02) <: Object Circle circle = (Circle) obj;
=1ale C-|_|_(CZ) < Circle return (circle.centre.equals(centre) && circle.radius == radius);
e } else {
take more specific return false;
}

}
 Method descriptor boolean | | |
public boolean equals(Circle circle) {

equaIS(CerIG) System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;
}

* Implementation found in circle h

* cl.equals(c?2);
e CTT(c1) = Circle
« CTT(c2) = Circle

e Methods available = boolean
equals(Object) and boolean
equals(Circle)

e CTT(02) <: Object
and CTT(c2) <: Circle
take more specific

 Method descriptor boolean _ _ _
public boolean equals(Circle circle) {

equaIS(CerIG) System.out.println("equals(Circle) called");
return circle.centre.equals(centre) && circle.radius == radius;

. L }
* Implementation found in circle

Problem Set 2

Liskov Substitution Principle

Liskov Substitution Principle

 Let ¢p(x) be a property provable about objects x of type
T. Then ¢(y) should be true for objects of type S where

S<: T

Liskov Substitution Principle

 Let ¢p(x) be a property provable about objects x of type
T. Then ¢(y) should be true for objects of type S where

S<: T

* |n english, if you have some property (user-defined) for
a class/type

Liskov Substitution Principle

 Let ¢p(x) be a property provable about objects x of type
T. Then ¢(y) should be true for objects of type S where

S<: T

* |n english, if you have some property (user-defined) for
a class/type

* |t's subtypes should maintain that property

Example

Example

 Notes example (Restaurant)

Example

 Notes example (Restaurant)

* Every restaurant should be open from 12pm to 10pm

Example

 Notes example (Restaurant)
* Every restaurant should be open from 12pm to 10pm

* |unch one violates since it closes at 2pm

Example

 Notes example (Restaurant)
* Every restaurant should be open from 12pm to 10pm
* |unch one violates since it closes at 2pm

e 24hr one Is Ok

Example

 Notes example (Restaurant)
* Every restaurant should be open from 12pm to 10pm
* |unch one violates since it closes at 2pm
e 24hr one is ok

* (is restaurant) A (12pm <= time <= 10pm) —> Open

Example

 Notes example (Restaurant)
* Every restaurant should be open from 12pm to 10pm
* |unch one violates since it closes at 2pm
e 24hr one is ok
* (is restaurant) A (12pm <= time <= 10pm) —> Open

* if predicate is false, then anything can happen (doesn’t have to be
closed or open)

Q1a

» Rectangle class

* Rectangle: :getArea is expected to return product of
height and width

Q1a

» Rectangle class

* Rectangle: :getArea is expected to return product of
height and width

* Design a class Square that inherits from Rectangle

* New constraint: all 4 sides are always of the same length

Q1a

» Rectangle class

* Rectangle: :getArea is expected to return product of
height and width

* Design a class Square that inherits from Rectangle
* New constraint: all 4 sides are always of the same length

 Create class Square with a single constructor method

Q1a

class Square public class Rectangle {
; t private double width;

\ private double height;
public Rectangle(double width, double height) {
this.width = width;
this.height = height;
}

public double getArea() {
return this.width * this.height;

}

@Override
public String toString() {
return "Width: " + this.width + " Height: " +
this.height;
}
}

Q1a

class Square extends Rectangle { public class Rectangle {
private double width;
1 private double height;

public Rectangle(double width, double height) {
this.width = width;
this.height = height;

}

public double getArea() {
return this.width * this.height;
}

@Override
public String toString() {
return "Width: " + this.width + " Height: " +
this.helght;
}
}

Q1a

class Square extends Rectangle { public clags Eictanglﬁ {
- private double width;
public Square(double length) { orivate double height:
I3 public Rectangle(double width, double height) {
} this.width = width;

this.height = height;
}

public double getArea() {
return this.width * this.height;
}

@Override
public String toString() {
return "Width: " + this.width + " Height: " +
this.helght;
}
}

Q1a

class Square extends Rectangle { public class Rectangle {
public Square(double length) { private double width;
private double height;
super(length, length);
I3 public Rectangle(double width, double height) {
1 this.width = width;

this.height = height;
}

public double getArea() {
return this.width * this.height;
}

@Override
public String toString() {
return "Width: " + this.width + " Height: " +
this.helght;
}
}

Q1b

public
thtis

public
this

void setHeight(double height) {
.height = height;

vold setWidth(double width) {
.width = width;

Q1b

 \We have 2 setters for height and
width within Rectangle

public void setHeight(double height) {
this.hetight = heilght;

public void setWidth(double width) {
this.width = width;

Q1b

 \We have 2 setters for height and
width within Rectangle

public void setHeight(double height) {
Py PrOperty: thlS.hElght — he'l.ght;

public void setWidth(double width) {
this.width = width;

Q1b

 \We have 2 setters for height and
width within Rectangle

public void setHeight(double height) {

- blic void setWidth(double width
* W = last width set P ehis width - wtdthf oubte width) A
I3

Q1b

 \We have 2 setters for height and
width within Rectangle

public void setHeight(double height) {

o Property: } this.heilght = height;
_ - public void setWidth(double width) {
* w = last width set this.width = width;

}
 h = last height set

Q1b

 \We have 2 setters for height and
width within Rectangle

public void setHeight(double height) {

o Property: } this.heilght = height;
_ - public void setWidth(double width) {
* w = last width set this.width = width;
}

 h = last height set

e then getArea() must returnw * h

Q1b

 \We have 2 setters for height and
width within Rectangle

public void setHeight(double height) {

o Property: } this.heilght = height;
_ - public void setWidth(double width) {
* w = last width set this.width = width;

 h = last height set
e then getArea() must returnw * h

 Why is this undesirable for Square”?

Q1b

public
thtis

public
this

void setHeight(double height) {
.height = height;

vold setWidth(double width) {
.width = width;

Q1b

 Why is this undesirable for Square”?

public void setHeight(double height) {
this.hetight = heilght;
}

public void setWidth(double width) {
this.width = width;
}

Q1b

 Why is this undesirable for Square”?

* Now we can have set the height public void setHeight(double height) {
and width independently for } this.height = height;
Square

public void setWidth(double width) {
this.width = width;
}

Q1b

 Why is this undesirable for Square”?

* Now we can have set the height public void setHeight(double height) {
and width independently for } this.height = height;
Square

public void setWidth(double width) {
this.width = width;

* Violates the other property that +
Square must have 4 sides of equal
length

Qic

@Override

public void setHeight(double height) {
super.setHeight(height);
super.setWidth(height);

}

@Override

public void setWidth(double width) {
super.setHetlght(width);
super.setWidth(width);

}

Qic

By LSP, anywhere that expects @override
public void setHeight(double height) {
Rectangle, we can put a Square super.setHeight (height):
super.setWidth(height);
}
@Override

public void setWidth(double width) {
super.setHetlght(width);
super.setWidth(width);

}

Qic

By LSP, anywhere that expects @override

public void setHeight(double height) {
Rectangle, we can put a Square super.setHeight (height):

super.setWidth(height);

* Imagine a method that takes in a ;

Rectangle @Override
public void setWidth(double width) {
super.setHetlght(width);

* |t will expect properties of rectangle super.setWidth(width);
}

Qic

By LSP, anywhere that expects @override

public void setHeight(double height) {
Rectangle, we can put a Square super.setHeight (height):

super.setWidth(height);

Imagine a method that takes in a ;

Rectangle @override
public void setWidth(double width) {
| _ super.setHetlght(width);
|t will expect properties of rectangle } super.setWidth(width);

If we pass in Square this no longer works

Qic

By LSP, anywhere that expects @override

public void setHeight(double height) {
Rectangle, we can put a Square super.setHeight (height):

super.setWidth(height);

Imagine a method that takes in a ;

Rectangle @Override
public void setWidth(double width) {
super.setHetlght(width);

* |t will expect properties of rectangle super.setWidth(width);
}

If we pass in Square this no longer works

We fixed 4 sides being same but violated
other property

Q1d

* So then does it make sense for Rectangle to inherit from Square

Q1d

* So then does it make sense for Rectangle to inherit from Square

e NO

Q1d

* So then does it make sense for Rectangle to inherit from Square
* No

e Square has a constraint that all 4 sides must be of equal length

Q1d

* So then does it make sense for Rectangle to inherit from Square
* No
e Square has a constraint that all 4 sides must be of equal length

 Rectangle relaxes this constraint

Q1d

* So then does it make sense for Rectangle to inherit from Square
* No
e Square has a constraint that all 4 sides must be of equal length
 Rectangle relaxes this constraint

» Better for Square and Rectangle to not inherit from each other at all

Q2a

public interface Shape {
public double getArea();

}

public interface Printable {
public vouid print();
}

Circle ¢ = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

Q2a

 Which statements are allowed?

public interface Shape {
public double getArea();

}

public interface Printable {
public vouid print();
}

Circle ¢ = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

Q2a

* Which statements are allowed?

e s.print();

public interface Shape {
public double getArea();

}

public interface Printable {
public void print();
}

Circle ¢ = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

Q2a

* Which statements are allowed?

e s.print();

public interface Shape {

* p.print(); public double getArea();
}

public interface Printable {
public void print();
}

Circle ¢ = new Circle(new Pount(0,0), 10);
Shape s = c;
Printable p = c;

Q2a

* Which statements are allowed?

e s.print();

public interface Shape {

* p.print(); public double getArea();
}

e s.getArea();

public interface Printable {
public void print();
}

Circle ¢ = new Circle(new Pount(0,0), 10);
Shape s = c;
Printable p = c;

Q2a

* Which statements are allowed?

e s.print();

public interface Shape {

* p.print(); public double getArea();
}

e s.getArea();

public interface Printable {

e p.getArea(); public void print();
}

Circle ¢ = new Circle(new Pount(0,0), 10);
Shape s = c;
Printable p = c;

Q2a

* Which statements are allowed?

e s.print();

public interface Shape {
public double getArea();

}

* p.print();

e s.getArea();

public interface Printable {
public void print();
}

* p.getArea();

 Why does the compiler not allow some of these
statements?

Circle ¢ = new Circle(new Pount(0,0), 10);
Shape s = c;
Printable p = c;

Q2a

* Which statements are allowed?

e s.print();

public interface Shape {
public double getArea();

}

* p.print();

e s.getArea();

public interface Printable {
public void print();
}

* p.getArea();

 Why does the compiler not allow some of these
statements?

* Preserve type safety
Circle ¢ = new Circle(new Pount(0,0), 10);
Shape s = c;
Printable p = c;

Q2a

* Which statements are allowed?

e s.print();

public interface Shape {
public double getArea();

}

* p.print();

e s.getArea();

public interface Printable {
public void print();
}

* p.getArea();

 Why does the compiler not allow some of these
statements?

* Preserve type safety
Circle ¢ = new Circle(new Pount(0,0), 10);

» Compiler doesn’t know RTT Shape s = c;
Printable p = c;

Q2a

* Which statements are allowed?

e s.print();

public interface Shape {
public double getArea();

}

* p.print();

e s.getArea();

public interface Printable {
public void print();
}

* p.getArea();

 Why does the compiler not allow some of these
statements?

* Preserve type safety
Circle ¢ = new Circle(new Pount(0,0), 10);

» Compiler doesn’t know RTT Shape s = c;
Printable p = c;

e Only knows about the CTT methods

Q2a

* Which statements are allowed?

e s.print();

public interface Shape {
public double getArea();

}

* p.print();

e s.getArea();

public interface Printable {
public void print();
}

* p.getArea();

 Why does the compiler not allow some of these
statements?

* Preserve type safety
Circle ¢ = new Circle(new Pount(0,0), 10);

» Compiler doesn’t know RTT Shape s = c;
Printable p = c;

e Only knows about the CTT methods

* Only allow methods that is guaranteed to exist for that
compile type

Q2b

Ok then can we implement as an
abstract class then?

public abstact class Shape {
public double getArea();

}

public abstract class Printable {
public vouid print();
}

Circle ¢ = new Circle(new Pount(0,0), 10);
Shape s = c;
Printable p = c;

Q2b

Ok then can we implement as an
abstract class then?

public_abstact class Shape {
» No, java doesn’t allow classes to public double getArea();

. . . !
iInherit from multiple classes
public abstract class Printable {
public vouid print();
}

Circle ¢ = new Circle(new Pount(0,0), 10);
Shape s = c;
Printable p = c;

Q2c

* Ok then can we have another publé%_ingerﬁce Stclzpe f)
' LC double getAreal();
interface that extends both Shape o ubte g

and Printable? . |
public interface Printable {

public voild print();
}

public interface PrintableShape
extends Printable, Shape {
}

Circle ¢ = new Circle(new Pount(0,0), 10);
Shape s = c;
Printable p = c;

Q2c

* Ok then can we have another publé%_ingerﬁce Stclzpe f)
' LC double getAreal();
interface that extends both Shape o ubte g

and Printable? . |
public interface Printable {

public voild print();
* Yeah }

public interface PrintableShape
extends Printable, Shape {
}

Circle ¢ = new Circle(new Pount(0,0), 10);
Shape s = c;
Printable p = c;

Q2d

public interface Shape {
public double getArea();

}

public interface Printable {
public void print();
}

public interface PrintableShape
extends Printable, Shape {
}

Circle ¢ = new Circle(new Point(0,0), 10);
Shape s = c;
Printable p = c;

Q2d

Ok why multiple interface can but multiple public interface Shape {

classes cannot? } public double getArea();

public interface Printable {
public void print();
}
‘\\\\\ ‘//////’ public interface PrintableShape
@ extends Printable, Shape {
}

Circle ¢ = new Circle(new Pount(0,0), 10);
Shape s = c;
Printable p = c;

Q2d

Ok why multiple interface can but multiple public interface Shape {

classes cannot? } public double getArea();

public interface Printable {
public void print();
}
‘\\\\\ ‘//////’ public interface PrintableShape
@ extends Printable, Shape {
}

Circle ¢ = new Circle(new Pount(0,0), 10);
Shape s = c;
Printable p = c;

Q2d

Ok why multiple interface can but multiple public interface Shape {

classes cannot? } public double getArea();

public interface Printable {
public void print();
}
‘\\\\\ ‘//////’ public interface PrintableShape
@ extends Printable, Shape {
}

Circle ¢ = new Circle(new Pount(0,0), 10);
Shape s = c;
Printable p = c;

Q2d

Ok why multiple interface can but multiple public interface Shape {

classes cannot? } public double getArea();

public interface Printable {
public void print();
}
‘\\\\\ ‘//////’ public interface PrintableShape
@ extends Printable, Shape {
}

Circle ¢ = new Circle(new Pount(0,0), 10);
Shape s = c;
Printable p = c;

Q2d

Ok why multiple interface can but multiple public interface Shape {

classes cannot? } public double getArea();

public interface Printable {
public void print();
}
‘\\\\\ ‘//////’ public interface PrintableShape
@ extends Printable, Shape {
}

e What if A and B both have an

implementation of some method foo Circle ¢ = new Circle(new Point(0,0), 10);
Shape s = C;
Printable p = c;

Q2d

Ok why multiple interface can but multiple public interface Shape {

classes cannot? } public double getArea();

public interface Printable {
public void print();
}
‘\\\\\ ‘//////’ public interface PrintableShape
<::::> extends Printable, Shape {
}

e What if A and B both have an

implementation of some method foo Circle ¢ = new Circle(new Point(0,0), 10);
Shape s = C;

| | _ Printable p = c;
 \Which does C inherit?

Q2d

Ok why multiple interface can but multiple public interface Shape {

classes cannot? } public double getArea();

public interface Printable {
public void print();
}
‘\\\\\ ‘//////’ public interface PrintableShape
<::::> extends Printable, Shape {
}

e What if A and B both have an

implementation of some method foo Circle ¢ = new Circle(new Point(0,0), 10);
Shape s = C;

| | _ Printable p = c;
 \Which does C inherit?

* If interface there is no implementation so
its fine, a concrete class has to implement

Thank you see you next
week :)

