
CS2030S Recitation Problem Set 3

Brian Cheong

1

Recap

2

Covariance vs Contravariance vs Invariant

Only related for complex types

example: List<Integer>, Map<String, Integer>

Covariance

Contravariance

Invariant
 has no subtyping relationship

Java complex types (generic classes) are invariant (without wildcards)

3

Generics

Used to make classes more flexible

Don't have to write the same class over and over for different types

few ways to declare type parameters

At the class declaration class Name<T>

at method level public <T> void name()

Usual scoping rules apply (the 2 T would be different)

Bound by some object T <: GetAreable

Expose methods of the bound

Type erasure

change all T to upper-bound

4

Exceptions

Checked exceptions

Errors that can be anticipated and recovered from

Eg. Opening a file that may not exist

Unchecked exceptions (runtime exceptions)
Errors that cannot really be recovered from and should not happen

Eg. Dividing by 0

5

Exceptions

Checked exceptions are part of the declaration of the method (throws keyword)

Tells the compiler to check that this exception is handled somewhere

If you are a method and you invoke something that can throw an error,

Either you handle it (try-catch)

or you throw it yourself too

Eventually some method needs to handle it

no need to declare that runtime exceptions are thrown

6

Question 1: background

class A { // SubR <: R <: SuperR | SubE <: E <: SuperE <: Exception
 R foo() throws E { ... }
}

void bar(A a) {
 try {
 R r = a.foo();
 // use r
 } catch (E e) {
 // handle exception
 }
}

7

Question 1a:

Does this code compile?

SubR foo() throws E {...}

Yes

SubR can bind to R

8

Question 1b:

Does this code compile?

SuperR foo() throws E { ... }

No

SuperR cannot bind to R

bar might use methods that is in R but not in SuperR

9

Question 1c:

Does this code compile?

R foo() throws SubE { ... }

Yes

SubE can bind to E

10

Question 1d:

Does this code compile?

R foo() throws SuperE { ... }

No

SuperE cannot bind to E

11

Discussion points

What is the compiler doing? Relate to a principal we know
Compiler is actually helping you with LSP

Wherever you put A you can put B

Ensures that the methods in B produce types that preserve type safety w.r.t A

12

Question 2: background

Java has an abstract class Number

BigInteger is a subtype of Number and also implements Comparable<T>
interface

13

Question 2: background

Ah Beng implemented this method using BigInteger

public static short[] toShortArray(BigInteger[] a, BigInteger threshold) {
 short[] out = new short[a.length];
 for (int i = 0; i < a.length; i += 1) {
 if (a[i].compareTo(threshold) <= 0) {
 out[i] = a[i].shortValue();
 }
 }
 return out;
}

14

Question 2: background

He realised he needed to create methods for Integer

public static short[] toShortArray(Integer[] a, Integer threshold) {
 short[] out = new short[a.length];
 for (int i = 0; i < a.length; i += 1) {
 if (a[i].compareTo(threshold) <= 0) {
 out[i] = a[i].shortValue();
 }
 }
 return out;
}

15

Question 2: background

and Double

public static short[] toShortArray(Double[] a, Double threshold) {
 short[] out = new short[a.length];
 for (int i = 0; i < a.length; i += 1) {
 if (a[i].compareTo(threshold) <= 0) {
 out[i] = a[i].shortValue();
 }
 }
 return out;
}

16

Question 2ai:

Having gotten for CS1101S he knew repeating code like this is bad so he wanted
to refactor all the methods into just one

public static short[] toShortArray(Object[] a, Object threshold) {
 short[] out = new short[a.length];
 for (int i = 0; i < a.length; i += 1) {
 if (a[i].compareTo(threshold) <= 0) {
 out[i] = a[i].shortValue();
 }
 }
 return out;
}

This doesn't work. Why would Ah Beng not get for CS2030S?

17

Question 2aii:

Realising his mistake, Ah Beng changed Object to Number

public static short[] toShortArray(Number[] a, Number threshold) {
 short[] out = new short[a.length];
 for (int i = 0; i < a.length; i += 1) {
 if (a[i].compareTo(threshold) <= 0) {
 out[i] = a[i].shortValue();
 }
 }
 return out;
}

This doesn't work. Why would Ah Beng still not get for CS2030S?

18

Question 2aii:

Realising his mistake, Ah Beng changed Number to Comparable

public static short[] toShortArray(Comparable[] a, Comparable threshold) {
 short[] out = new short[a.length];
 for (int i = 0; i < a.length; i += 1) {
 if (a[i].compareTo(threshold) <= 0) {
 out[i] = a[i].shortValue();
 }
 }
 return out;
}

This still doesn't work. Why? Is there any hope left for Ah Beng?

19

Question 2b:

As a mugger, Ah Beng found out that type parameters can have multiple bounds

<T extends S1 & S2>

Fix his code for him so that he can get that

Brian fixes code live

What would the type erasure be? Would it be S1 or S2?

20

Question 3:

We have this class A

class A<T> {
 public void fun(T x) {
 System.out.println("A");
 }
}

21

Question 3i:

Will this compile?

class B extends A<String> {
 public void fun(String i) {
 System.out.println("B");
 }
}

B::fun(String) appears to override A::fun(String)

But after type erasure A::fun(Object)

So is it overloading or overriding?

22

Question 3i:

But Java is built to meet people's expectations

we would expect it to be overriding from the outside point of view (programmers view)

23

Question 3i:

class A {
 public void fun(Object o) {
 System.out.println("A");
 }
}
class B extends A {
 public void fun(Object o) { // Bridge method
 this.fun((String) o);
 }
 public void fun(String i) {
 System.out.println("B");
 }
}

B::fun(String) overloads B::fun(Object) , B::fun(Object) overrides

A::fun(Object)
24

Question 3ii:

Will this compile?

class B extends A<String> {
 public void fun(Object i) {
 System.out.println("B");
 }
}

25

Question 3ii:

This cannot work. Think of how the bridge method would look like

There would be 2 B::fun(Object)

26

Question 3ii:

class A {
 public void fun(Object o) {
 System.out.println("A");
 }
}
class B extends A {
 public void fun(Object o) { // Bridge method
 this.fun((Object) o);
 }
 public void fun(Object i) {
 System.out.println("B");
 }
}

This leads to a compile error

27

Question 3iii:

Does this compile?

class B extends A<String> {
 public void fun(Integer i) {
 System.out.println("B");
 }
}

28

Question 3iii:

Yes. Bridging method is used again.

class A {
 public void fun(Object o) {
 System.out.println("A");
 }
}
class B extends A {
 public void fun(Object o) { // Bridge method
 super.fun((String) o);
 }
 public void fun(Integer i) {
 System.out.println("B");
 }
}

29

Question 3b:

i:

void fun(Object) is stored during compilation

B::fun(Object) would be invoked in turn invokes B::fun(String) which print "B"

iii:

void fun(Object) is stored during compilation

B::fun(Object) is invoked which invokes A::fun(Object) which prints "A"

30

Thank you

bye

31

