CS2030S Recitation Problem Set 3

Brian Cheong

Recap

Covariance vs Contravariance vs Invariant

Only related for complex types
o example: List<Integer>, Map<String, Integer>

Covariance
o § <: T A C'is acomplex type = C(S) <: C(T)

Contravariance
o S <: T NCisacomplex type = C(T) <: C(S)

Invariant
o C'(T) and C(S) has no subtyping relationship

e Java complex types (generic classes) are invariant (without wildcards)

Generics

o Used to make classes more flexible
o Don't have to write the same class over and over for different types

few ways to declare type parameters
o Atthe class declaration class Name<T>

o at method level public <T> void name()
o Usual scoping rules apply (the 2 T would be different)

e Bound by some object T <: GetAreable
o Expose methods of the bound

e [ype erasure
o change all T to upper-bound

Exceptions

o Checked exceptions
o Errors that can be anticipated and recovered from

o Eg. Opening a file that may not exist

o Unchecked exceptions (runtime exceptions)
o Errors that cannot really be recovered from and should not happen
o Eg.Dividing by O

Exceptions

e Checked exceptions are part of the declaration of the method (throws keyword)

o Tells the compiler to check that this exception is handled somewhere

e |f you are a method and you invoke something that can throw an error,
o Either you handle it (try-catch)

o or you throw it yourself too
o Eventually some method needs to handle it

e no need to declare that runtime exceptions are thrown

Question 1: background

class A { // SubR <: R <: SuperR | SubE <: E <: SuperE <: Exception
R foo() throws E { ... }
5

void bar(A a) {
try {
R r = a.fool();
// use r
} catch (E e) {
// handle exception
I
}

Question 1a:

Does this code compile?
SubR foo() throws E {...}

e Yes

o SubR <: R
o SubR canbindtoR

Question 1b:

Does this code compile?
SuperR foo() throws E { ... }

e No
o SuperR < /: R
o SuperR cannot bindto R

o bar might use methods thatisin R but notin SuperR

Question 1c:

Does this code compile?
R foo() throws SubE { ...

e Yes
o SubE <: F

o SubE can bindto E

}

10

Question 1d:

Does this code compile?
R foo() throws SuperE { ... }

e No
o SuperE < /: E

o SuperE cannot bindto E

11

Discussion points

o What is the compiler doing? Relate to a principal we know
o Compiler is actually helping you with LSP

o Wherever you put A you can put B

o Ensures that the methods in B produce types that preserve type safety w.rt A

12

Question 2: background

e Java has an abstract class Number

e BigInteger is asubtype of Number and alsoimplements Comparable<T>
interface

13

Question 2: background

o Ah Beng implemented this method using BigInteger

public static short[] toShortArray(BigInteger[] a, BigInteger threshold) {
short[] out = new shortl[a.length];
for (int 1 = 0; i < a.length; i += 1) {
if (al[il.compareTo(threshold) <= 0) {
out[i] = alil.shortValue();
s
I3

return out;

14

Question 2: background

e He realised he needed to create methods for Integer

public static short[] toShortArray(Integer[] a, Integer threshold) {
short[] out = new short[a.lengthl];
for (int 1 = 0; i < a.length; i += 1) {
if (alil.compareTo(threshold) <= 0) {
out[i] = alil.shortValue();
s
I3

return out;

15

Question 2: background

e and Double

public static short[] toShortArray(Double[] a, Double threshold) A{
short[] out = new short[a.lengthl];
for (int i = 0; 1 < a.length; i += 1

if (alil.compareTo(threshold) <= 0) {
out[i] = alil.shortValue();
s
I3

return out;

16

Question 2ai:

e Having gotten A+ for CS1101S he knew repeating code like this is bad so he wanted
to refactor all the methods into just one

public static short[] toShortArray(Object[] a, Object threshold) {
short[] out = new short[a.lengthl];
for (int 1 = 0; i < a.length; i += 1) {
if (alil.compareTo(threshold) <= 0) {
out[i] = alil.shortValue();
s
I3

return out;

e This doesn't work. Why would Ah Beng not get A for CS2030S?

17

Question 2aii

e Realising his mistake, Ah Beng changed 0Object to Number

public static short[] toShortArray(Number[] a, Number threshold) A
short[] out = new short[a.lengthl];
for (int 1 = 0; i < a.length; i += 1) {
if (alil.compareTo(threshold) <= 0) {
out[i] = alil.shortValue();
I3
I3

return out;

e This doesn't work. Why would Ah Beng still not get A for CS2030S?

18

Question 2aii:

e Realising his mistake, Ah Beng changed Number to Comparable

public static short[] toShortArray(Comparablel[] a, Comparable threshold) {
short[] out = new shortl[a.length];
for (int 1 = 0; i < a.length; i += 1) {
if (alil.compareTo(threshold) <= 0) {
out[i] = alil.shortValue();
I3
I3

return out;

o This still doesn't work. Why? Is there any hope left for Ah Beng?

19

Question 2b:

o As a mugger, Ah Beng found out that type parameters can have multiple bounds

e <T extends S1 & S2>
Fix his code for him so that he can get that A

Brian fixes code live

What would the type erasure be? Would it be S1 or S2?

Question 3:

We have this class A

class A<T> {
public void fun(T x) {
System.out.println("A");
s
¥

A

Question 3i:

Will this compile?

class B extends A<String> {
public void fun(String i) {
System.out.println("B");

}
}

e B::fun(String) appearsto override A::fun(String)
o But after type erasure A::fun(Object)

e Sois it overloading or overriding?

22

Question 3i:

e But Java is built to meet people's expectations

o we would expect it to be overriding from the outside point of view (programmers view)

23

Question 3i:

class A {
public void fun(Object o) {
System.out.println("A");

}
¥

class B extends A {
public void fun(Object o) { // Bridge method
this.fun((String) o);
I3
public void fun(String i) {
System.out.println("B");
s
b

B::fun(String) overloads B::fun(Object) , B::fun(Object) overrides
A::fun(Object)

24

Question 3ii:

Will this compile?

class B extends A<String> {
public void fun(Object i) {
System.out.println("B");
s
5

25

Question 3ii:

e This cannot work. Think of how the bridge method would look like
e There would be 2 B::fun(Object)

26

Question 3ii:

class A {
public void fun(Object o) {
System.out.println("A");
I3
¥
class B extends A {
public void fun(Object o) { // Bridge method
this.fun((Object) o);
I3
public void fun(Object i) {
System.out.println("B");
I3
¥

e This leads to a compile error

27

Question 3iii:
Does this compile?

class B extends A<String> {
public void fun(Integer i) {
System.out.println("B");
s
5

28

Question 3iii:
e Yes. Bridging method is used again.

class A {
public void fun(Object o) {
System.out.println("A");
I3
¥
class B extends A {
public void fun(Object o) { // Bridge method
super.fun((String) o);
I3
public void fun(Integer i) {
System.out.println("B");
I3
¥

29

Question 3b:

e void fun(Object) is stored during compilation

e B::fun(Object) would be invoked in turninvokes B::fun(String) which print "B"
Iii:
e void fun(Object) is stored during compilation

e B::fun(Object) isinvoked which invokes A::fun(Object) which prints "A"

30

Thank you

bye

31

