
CS2030S Recitation Problem Set 4

Brian Cheong

1

Recap

2

Wildcards

A substitute for any type

Can be upper bounded (? extends T)
? can be T and it's subtypes

This gives rise to covariance behaviour

Can be lower bounded (? super T)
? can be T and it's supertypes

This gives rise to contravariance behaviour

Use unbounded when you know nothing. Better than rawtyping

3

PECS

Think from the perspective of the container

Producer Extend

If you say you produce T, makes sense that you produce subtypes of T

Consumer Super
You have a T, makes sense to store T in containers of T and containers of

supertype of T

4

Type inference

Very algorithmic (easy to score)

Find constraints (each one produces a set of types)

Argument Type: Is there wildcards used for the T in the argument?

Target Type: Is T going to be bound to some type? Integer i =

myObj<Integer>.foo()

Bounds on Type Parameters: Does T extend/super something?

Solve the constraints

Ignore subclasses not specified in constraints

Solution may be a superclass of the types in constraints

5

Q1a

class B<T> {
 T x;
 static T y;
}

Run this and explain

Throws compile error

T is instantiated when an object B is created

Static means no object is created, so T is not instantiated

6

Q1b

class C<T> {
 static int b = 0;
 C() {
 this.b++;
 }
 public static void main(String[] args) {
 C<Integer> x = new C<>();
 C<String> y = new C<>();
 System.out.println(x.b);
 System.out.println(y.b);
 }
}

prints 2 on both lines

Remember that there is still only one class C

int b is for that class C 7

Q2

Determine subtyping
Typing is just a relation (partial-order)

Draw , if , Hasse diagram

Can omit the transitive subtyping

Brian will now demonstrate his artistic skills

8

Q3

static <T extends Comparable<T>> T max(List<T> list) {
 T max = list.get(0);
 if (list.get(1).compareTo(max) > 0) {
 return list.get(1);
 }
 return max;
}

class Fruit implements Comparable<Fruit> {
 public int compareTo(Fruit f) {
 return 0; // stub
 }
}

class Apple extends Fruit {
}

9

Q3a

What would T be inferred as if we call Fruit f = max(fruits)

Target Typing: T <: Fruit

Argument Typing: List<Fruit> <: List<T> T = Fruit

Bounds on T: T <: Comparable<T>

10

Q3bi

Why does it fail to compile if we call Fruit f = max(apples)

Target Typing: T <: Fruit

Argument Typing: List<Apple> <: List<T> T = Apple

Bounds on T: T <: Comparable<T>

If T = Apple, does Apple <: Comparable<Apple> hold?

No, that's why we die. Apple is a Comparable<Fruit>

11

Q3bii

Why does it fail to compile if we call Apple a = max(Apples)

Target Typing: T <: Apple

Argument Typing: List<Apple> <: List<T> T = Apple

Bounds on T: T <: Comparable<T>

Same as before, we die because Apple </: Comparable<Apple>

12

Q3biii

Why does it fail to compile if we call Apple a = max(Fruits)

Target Typing: T <: Apple

Argument Typing: List<Fruit> <: List<T> T = Fruit

Bounds on T: T <: Comparable<T>

Why do we die?

Fruit </: Apple

13

Q3c

How do we fix this? (Just change the method header)

Remember the main issue is that Apple </: Comparable<Apple>

If only there was something could put to make it more flexible, I would use ? for that

Apple <: Comparable<? super Apple> right?

static <T extends Comparable<? super T>> T max(List<T> list)

14

Q3di

Target typing: T <: Fruit

Argument typing: List<Apple> <: List<T> T = Apple

Bounds on T: T <: Comparable<? super T>

T <: Fruit holds

Also Apple <: Comparable<? super Apple> because Apple is a Comparable<Fruit>

15

Q3dii

Target typing: T <: Apple

Argument typing: List<Apple> <: List<T> T = Apple

Bounds on T: T <: Comparable<? super T>

T <: Fruit holds

Also Apple <: Comparable<? super Apple> because Apple is a Comparable<Fruit>

16

Q3

Note that Apple <: Fruit <: Comparable<Fruit> <:
Comparable<? super Fruit> <: Comparable<? super Apple>

17

