CS2030S Recitation Problem Set 4

Brian Cheong

Recap

Wildcards

A substitute for any type

Can be upper bounded (? extends T)
o ?canbe T and it's subtypes

o This gives rise to covariance behaviour

Can be lower bounded (? super T)
o ?canbe T and it's supertypes

o This gives rise to contravariance behaviour

Use unbounded when you know nothing. Better than rawtyping

PECS

e Think from the perspective of the container

e Producer Extend
o If you say you produce T, makes sense that you produce subtypes of T

e Consumer Super
o You have a T, makes sense to store T in containers of T and containers of
supertype of T

Type inference

e Very algorithmic (easy to score)

e Find constraints (each one produces a set of types)
o Argument Type: Is there wildcards used for the T in the argument?

o Target Type: Is T going to be bound to some type? Integeri =
myQObj<Integer>.foo()

o Bounds on Type Parameters: Does T extend/super something?
e Solve the constraints

o |gnore subclasses not specified in constraints

o Solution may be a superclass of the types in constraints

Q1la

class B<T> {
T X;
static T vy;
¥

Run this and explain

e Throws compile error
e T isinstantiated when an object B is created

e Static means no object is created, so T is not instantiated

Q1b

class C<T> {

static int b = 0;

c() {
this.b++;

s

public static void main(String[] args) {
C<Integer> x = new C<>();
C<String> y = new C<>();
System.out.println(x.b);
System.out.println(y.b);

}
}

e prints 2 on both lines
e Remember that there is still only one class C

e int b isforthatclassC

Q2

e Determine subtyping
o Typing is just a relation (partial-order)

e Draw S — T if S <: T',Hasse diagram

Can omit the transitive subtyping

Brian will now demonstrate his artistic skills

Q3

static <T extends Comparable<T>> T max(List<T> list) {
T max = list.get(0);
if (list.get(1).compareTo(max) > 0) {
return list.get(1);
s
return max;

}

class Fruit implements Comparable<Fruit> {
public int compareTo(Fruit f) {
return @; // stub

}
}

class Apple extends Fruit {
¥

Q3a

What would T be inferred as if we call Fruit f =

e Target Typing: T <: Fruit
e Argument Typing: List<Fruit> <: List<T>

e BoundsonT: T <: Comparable<T>

max(fruits)

— T = Fruilt

10

Q3bi

Why does it fail to compile if we call Fruit f = max(apples)

Target Typing: T <: Fruit

Argument Typing: List<Apple> <: List<T> =—— T = Apple
BoundsonT: T <: Comparable<T>

If T = Apple, does Apple <: Comparable<Apple> hold?

No, that's why we die. Apple is a Comparable<Fruit>

11

Q3bii

Why does it fail to compile if we call Apple a = max(Apples)

Target Typing: T <: Apple

Argument Typing: List<Apple> <: List<T> —— T = Apple

BoundsonT:. T <: Comparable<T>

Same as before, we die because Apple </: Comparable<Apple>

12

Q3Mbiil

Why does it fail to compile if we call Apple a = max(Fruits)

Target Typing: T <: Apple

Argument Typing: List<Fruit> <: List<T>
BoundsonT: T <: Comparable<T>

Why do we die?

Fruit </: Apple

—> T = Fruit

13

Q3c

How do we fix this? (Just change the method header)

Remember the main issue is that Apple </: Comparable<Apple>

If only there was something could put to make it more flexible, | would use ? for that
e Apple <: Comparable<? super Apple> right?

e static <T extends Comparable<? super T>> T max(List<T> list)

14

Q3di

e Targettyping: T <: Fruit

Argument typing: List<Apple> <: List<T> =— T = Apple
e BoundsonT: T <: Comparable<? super T>

T <: Fruit holds

Also Apple <: Comparable<? super Apple> because Apple is a Comparable<Fruit>

15

Q3dii

e Targettyping: T <: Apple

Argument typing: List<Apple> <: List<T> =— T = Apple
e BoundsonT: T <: Comparable<? super T>

T <: Fruit holds

Also Apple <: Comparable<? super Apple> because Apple is a Comparable<Fruit>

16

Q3

e Notethat Apple <: Fruit <: Comparable<Fruit> <:

Comparable<? super Fruit> <: Comparable<? super Apple>

17

