
CS2030S Recitation Problem Set 5

Brian

1

Recap

2

Fully qualified name

Consider the following code

class A {
 int x = 0;

 int f() {
 int x = 3;
 return x; // hi i'm x, but which x?
 }
}

What is x referring to?

Somewhat ambiguous, esp from the
perspective of our dumb compiler

We can fully qualify the name to prevent

ambiguity

3

Fully qualified name

Consider the following code

class A {
 int x = 0;

 int f() {
 int x = 3;
 return this.x; // If i want to refer to field
 }
}

What is x referring to?

Somewhat ambiguous, esp from the
perspective of our dumb compiler

We can fully qualify the name to prevent

ambiguity

4

Fully qualified name

Idea is to remove ambiguity

If it's a field add this

If it's some outer class add the class name e.g. B

We can chain these 2, e.g. B.this to access outer class B's fields

5

Variable capture

Things can disappear from the stack

If a inner class uses a variable that is declared in an "outer" method

6

Immutability

Slowly we are setting the stage for another paradigm

Has to data structures or objects. NOT variables

saying a variable/field is FINAL just means no reassginments

Mutability has to do with whether a DS/object can mutate

In this course we want immutable objects to have no observable change on the
outside

7

Why make things immutable

Easier to reason about

Guarantees that whatever you are referring to has not changed

Sharing objects

Multiple objects can refer to something without worry

Sharing internals
Similar to prev but we can reuse some internals (see notes example on

ImmutableSeq)

Safer concurrency

Guarantees would still hold even if different interleaving of instructions (not impt
now learn next time)

8

Steps

Make fields final

Make class final

Any mutating methods (usually return void) should now return a new instance of that

class (if modifying)

9

The end

10

