
CS2030S Recitation Problem Set 6

Brian

1

Recap

2

Maybe

Just think of it as a box containing some value

Ok but why do we need this box?
We want to abstract out null checks (absence of a value)

This absence would be captured by None

Use some APIs to work on the value

APIs would interally handle the Some / None cases

Chain these API calls to have look elegant

3

Maybe APIs

of : Creates a Maybe containing our value (or None if given a null) You can think
of this as "lifting" into the Maybe type.

map : Takes a function and applies it on the value if Some , propogates if None

filter : Similar to filter in CS1101S (if fail become None else remain the same)

4

More Maybe APIs

flatMap : Takes in If None remains None ,

applies on to produce which is a Maybe and flattens it.

orElse : Takes in , if Some return , else produce the value of the

producer ie

ifPresent : Takes in . Only if is present then consume the .

5

Variable capture

Things can disappear from the stack

If a inner class uses a variable that is declared in an "outer" method

6

Anonymous class

Declare a local class and instantiate in one statement

Has the form new X (arguments) { body }

X is the class/interface that you inherit from

body is the methods of that class, just no constructor

7

Functions and λ-functions

If an anonymous class implements an interface with one method

Essentially a function (since there is only one method to be called)

λ function is basically an "anonymous" function
Has one method so it is clear which method is overridden

Replace these functional interface with lambda expression

`(variables) -> { body }

can omit type of variables and { } if it is a single return statement

For stack and heap

Treat anonymous functions as anonymous classes

There are more concepts (currying, closures) refer to notes for them

8

Question 1.

Maybe<Internship> match(Resume r) {
 if (r == null) {
 return Maybe.none();
 }
 Maybe<List<String>> optList = r.getListOfLanguages();
 List<String> list;
 if (optList.equals(Maybe.none())) {
 list = List.of();
 } else {
 list = optList.get(); // cannot call
 }
 if (list.contains("Java")) {
 return Maybe.of(findInternship(list));
 } else {
 return Maybe.none();
 }
}

9

Q1.

Convert the code to be a single statement
No additional classes or methods beyond those in the code

must not use null or get

no if-else statements/ternaries

10

Q2.

Draw stack and heap for the following

class A {
 private int x;
 public A(int x) {
 this.x = x;
 }
 public int get() {
 // Line A
 return this.x;
 }
}
// in main method
A a = new A(5);
Producer<Integer> p = () -> a.get();
p.produce();

11

