CS2030S Recitation Problem Set 6

Brian

Recap

Maybe

o Just think of it as a box containing some value
e Ok but why do we need this box?
o We want to abstract out null checks (absence of a value)
o This absence would be captured by None
o Use some APIs to work on the value
o APIls would interally handle the Some [None cases

o Chain these API calls to have look elegant

Maybe APIs

e of :Creates a Maybe containing our value (or None if givena null) You can think
of this as "lifting" into the Maybe type.

e map : Takes a function and applies it on the value if Some , propogates if None

o filter : Similarto filter in CS1101S (if fail become None else remain the same)

More Maybe APls

e flatMap :Takesin f : X — Maybe<Y > If None remains None ,
applies on z to produce f(x) whichisa Maybe and flattens it.

e orElse :Takesin f: () — X,if Some return x, else produce the value of the
producer ie f()

e ifPresent :Takesin f : X — void. Only if x is present then consume the .

Variable capture

e Things can disappear from the stack

e |f ainner class uses a variable that is declared in an "outer" method

Anonymous class

e Declare alocal class and instantiate in one statement

e Has the form new X (arguments) { body }
o X s the class/interface that you inherit from

o body is the methods of that class, just no constructor

Functions and A-functions

If an anonymous class implements an interface with one method

o Essentially a function (since there is only one method to be called)

A function is basically an "anonymous" function
o Has one method so it is clear which method is overridden

Replace these functional interface with lambda expression
o " (variables) -> { body }

o can omit type of variables and { } if it is a single return statement

For stack and heap
o Treat anonymous functions as anonymous classes

e There are more concepts (currying, closures) refer to notes for them

Question 1.

Maybe<Internship> match(Resume r) {
if (r == null) {
return Maybe.none();
s
Maybe<List<String>> optList = r.getListOfLanguages();
List<String> list;
if (optList.equals(Maybe.none())) {
list = List.of();
} else {
list = optList.get(); // cannot call
I3
if (list.contains("Java")) {
return Maybe.of(findInternship(list));
} else {
return Maybe.none();
I3
I3

Q1.

o Convert the code to be a single statement
o No additional classes or methods beyond those in the code

o mustnotuse null or get

o no if-else statements/ternaries

10

Q2.

Draw stack and heap for the following

class A {
private int Xx;
public A(int x) {
this.x = x;
}
public int get() {
// Line A
return this.x;
¥
}

// 1n main method

A a = new A(5);

Producer<Integer> p = () —> a.get();
p.produce();

11

