
CS2030S Recitation Problem Set 7

Brian Cheong

1

InfiniteList<T>
• What is head?

◦ A Producer that produces our value
◦ Think of it as the instructions to create the current value

• What is tail?
◦ A Producer that produces the next InfiniteList
◦ Think of it as the instructions to create the next InfiniteList

2

InfiniteList<T> (APIs)
• iterate : init is your initial value, next transforms the current value to the

next one
• head : gets your current value.
• tail : gets the next InfiniteList.
• get : get the value n elements away from the current one.

3

Question 1a: background

Fibonacci Sequence

• First described by Indian mathematician Pingala
• Popularised by Fibonacci
• Basically Fibonacci noticed rabbits are loving and thus breed a lot
• So it is

4

Question 1a:
• Enough about mating rabbits...

• What are we supposed to do?
◦ Create InfiniteList<BigInteger> fib(BigInteger a, BigInteger b)
◦ return infinite list of fibonacci numbers
◦ and is your current number, and your next number
◦ If head is called, return (current number)
◦ Fib is an encoding of 2 fibonacci numbers at a particular point.
◦ Tail should be as the current number and as the next number.

5

Question 1a:
InfiniteList<BigInteger> fib(BigInteger a, BigInteger b) {

return new InfiniteList<>(
 () -> a,
 () -> fib(b, a.add(b))
);
}

6

Question 1b:
• ZipWith

◦ You're given another list and a curried mapper function. Basically zip 2 list
together to produce a result list.

◦ Realise the type of mapper : , is the type of the resultant
list after zipping

◦ Simply, apply mapper on the current element () to produce and apply
on to produce

7

Question 1b:
public <S, R> InfiniteList<R> zipWith (InfiniteList<? extends S> list,
 Transformer<? super T,
 ? extends Transformer<? super S, extends R>> mapper) {

return new InfiniteList<>(
 () -> mapper.transform(this.head()).transform(list.head()),
 () -> this.tail().zipWith(list.tail(), mapper)
);
}

8

Question 2
• Write fib again, such that it returns the first Fibonacci numbers as a

Stream<BigInteger>

◦ use iterate , map and limit can be found here
◦ use Pair<T>
◦ Previously fib represented 2 Fibonacci numbers, now we can use Pair

to do that
◦ we iterate to create Pairs of Fibonacci numbers
◦ First will be a number, second will be the next number.
◦ Limit at
◦ then we just map and get the first of each pair

9

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Stream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Stream.html

Question 2
Stream<BigInteger> fib(int n) {

return Stream.iterate(new Pair<>(BigInteger.ONE, BigInteger.ONE),
 pair -> new Pair<>(pair.second, pair.first.add(pair.second)))
 .limit(n).map(pair -> pair.first);
}

10

Question 3
• Write product that takes in 2 List and produce a Stream combining each

element from list1 with every element in list2 using BiFunction
◦ BiFunction takes in 2 things and combines it into 1
◦ For each element in list1 , iterate across entire list2
◦ Intuition we convert list1 and list2 to Stream since we want a

stream anyway
◦ then use flatMap to map each element in stream1 to it's own copy of

stream2 (we don't want nested stream)
◦ Both the element from stream1 and stream2 are in scope, and we can

apply the BiFunction .

11

Question 3
<T, U, R> Stream<R> product(List<? extends T> list1, List<? extends U> list2,
 BiFunction<? super T, ? super U, ? extends R> func) {

return list1.stream().flatMap(ele1 ->
 list2.stream().map(ele2 ->
 func.apply(ele1, ele2)));
}

12

Question 4
• Omega numbers

◦ the i-th Omega number is the number of distinct prime factors in the
number i

◦ Example: Omega number of 1 is 0, Omega number of 2 is 1, Omega
number of 6 is 2 (2, 3)

13

Question 4
• Implement omega for numbers

◦ Create a stream of numbers from
◦ for each number, create a new stream from (now is a stream of

stream)
▪ use filter to keep numbers that divide and is a prime number
▪ count the numbers
▪ reduces our stream of streams back to a stream of numbers

14

Question 4
• Given in lecture

boolean isPrime(int x) {
return IntStream.range(2, x).noneMatch(n -> x % n == 0);

}

15

Question 4
Stream<Long> omega(int n) {

return Stream
 .iterate(1, i -> i <= n, i -> i + 1)
 .map(i -> Stream
 .iterate(2, x -> x <= i, x -> x + 1)
 .filter(x -> (i % x == 0 && isPrime(x)))
 .count());
}

16

