CS2030S Recitation Problem Set 8

Functor Laws

A functor is a structure with at least 2 methods (of, map) obeying two laws:

1. Identity Morphism (basically mapping identity fn gives you the same functor)
o Yfunctor : functor.map(z — x)
= functor

2. Composition morphism (any 2 maps is the same as 1 map with applying both
function)
O \v’functor, f,g : functor.map(:z: — f(a:)).map(y — g(y))
= functor, f, g : functor.map(z — g(f(x)))

Monad Laws

A monad is a structure with at least two methods (of, flatMap) obeying three laws:

1. Left Identity Law
o Vz, f : Monad.of(x).flatMap(y — f(y)) = f(x)
2. Right Identity Law
o Vmonad : monad.flatMap(z — Monad.of(x)) = monad

3. Associative Law
o VYmonad, f, g : monad.flatMap(x — f(«)).flatMap(y — g(v))
= monad.flatMap(x — f(z).flatMap(y — g(v)))

Question 1a

Complete the implementation of map using only flatMap so that the resulting
Monad<T> satisfies the functor laws.

* Need the identity and composition morphisms.

public <R> Monad<R> map(Transformer<? super T, ? extends R> f) {
return this.flatMap(XXX); // Need to satisfy Functor laws

¥

Question 1a

public <R> Monad<R> map(Transformer<? super T, ? extends R> f) {
return this.flatMap(XXX); // Need to satisfy Functor laws

}
e Noticethat f: T'— R

e What type should XXX be?
o XXX : T — Monad<R>

o How can | use f to produce XXX?
o XXX = x -> Monad.of(f.transform(x))

o Remember f.transform(x) = f(x)

Question 1b

Prove that composition is preserved.

e A: m.map(x -> f(x)).map(x -> g(x)) = m.flatMap(x ->
Monad.of(f(x))).flatMap(x -> Monad.of(g(x)))
by implementation

e B: = m.flatMap(x -> Monad.of(f(x)).flatMap(x -> Monad.of(g(x))))
by associative law.

e C: = m.flatMap(x -> Monad.of(g(f(x))))
by left identity law.

Sequential, Concurrent, and Parallel

e Sequential
o Do things in order on one thread

e Concurrent
o Do things in order one at a time but over different threads

e Parallel
o Actually doing things at the same time

Reduce Sequential

T reduce(T e, BinaryOperator<T> f)

f(a2

(| f(f(e,al),a2))

f(f(f(f(e,al),a2),a3)

f(f(f(f(e,al),a2),a3),ad)

Reduce Parallel

T reduce(T e, BinaryOperator<T> f)

[rem <]

£) f(| f(f(e,as),a6) -
f(f(f(f(f(e,a5),a6),a7) H

f(f(f(f(f(e,al),a2),a3),ad) , f(f(f(f(e,as5),a6),a7),as))

Reduce Parallel

<U> U reduce(U e, BiFunction<U,? super T,U> f, BinaryOperator<U> g)

f(

«[emu)

f(| f(f(e,al),a2)) f(| f(f(e,a5),as) - !
f(f(f(f(e,al),a2),a3) H f(f(f(f(e,a5),a6),a7) H

g f(f(f(f(e,al),a2),a3),ad) : f(f(f(f(e,a5),a6),a7),a8))

10

Question 2a and 2b

What is the return value?

Stream.of(1, 2, 3, 4)
.reduce(9, (a, x) -> (2 * a) + x, (al, a2) -> al + a2);

Stream.of(1, 2, 3, 4)
.parallel()
.reduce(9, (a, x) -> (2 * a) + x, (al, a2) -> al + a2);

Explain why there are differences

11

Reason

The accumulator is not associative

e If associative, f(f(a,b),c) = f(a, f(b,c))

e Future Brian will show you on the white board why it's not.
e This causes combiner and accumulator to not be compatible

e Future Brian shows again

12

Side note

e |tis NOT necessary for accumulator to be associative

e Parallel reduce will be split first into list of blocks.

e Each block will run in a sequential order, so the accumulator will be ranin a
specific order

e So it is more of a sufficient condition rather than a necessary one

13

Write estimatePi using Stream

Whether a point is inside the circle or not is independent of each other

Therefore can be parallelised
Create a stream of random points
Limit at numOfPoints

Filter if they are in the circle

Count

14

Evalutation

e Does parallelisation speed it up?
o Show code

o Overhead of creating new threads

15

Why is the number different each time

e EFach thread has access to the random seed

e The order which the threads interleave is random

e when limit happens, the threads may have produced more than necessary
elements and would be chopped off

e So what's left is a stream that can have different random points each run due to
the randomness

16

