

CS2030S Recitation Problem Set 8

Functor Laws

A functor is a *structure* with at least 2 methods (of, map) obeying two laws:

1. Identity Morphism (basically mapping identity fn gives you the same functor)

- $\forall \text{functor} : \text{functor.map}(x \rightarrow x) \equiv \text{functor}$

2. Composition morphism (any 2 maps is the same as 1 map with applying both function)

- $\forall \text{functor}, f, g : \text{functor.map}(x \rightarrow f(x)).\text{map}(y \rightarrow g(y)) \equiv \text{functor}, f, g : \text{functor.map}(x \rightarrow g(f(x)))$

Monad Laws

A monad is a *structure* with at least two methods (of, flatMap) obeying three laws:

1. Left Identity Law

- $\forall x, f : \text{Monad.of}(x).\text{flatMap}(y \rightarrow f(y)) \equiv f(x)$

2. Right Identity Law

- $\forall \text{monad} : \text{monad.flatMap}(x \rightarrow \text{Monad.of}(x)) \equiv \text{monad}$

3. Associative Law

- $\forall \text{monad}, f, g : \text{monad.flatMap}(x \rightarrow f(x)).\text{flatMap}(y \rightarrow g(y)) \equiv \text{monad.flatMap}(x \rightarrow f(x).\text{flatMap}(y \rightarrow g(y)))$

Question 1a

Complete the implementation of map using only `flatMap` so that the resulting `Monad<T>` satisfies the functor laws.

- Need the identity and composition morphisms.

```
public <R> Monad<R> map(Transformer<? super T, ? extends R> f) {  
    return this.flatMap(XXX); // Need to satisfy Functor laws  
}
```

Question 1a

```
public <R> Monad<R> map(Transformer<? super T, ? extends R> f) {  
    return this.flatMap(XXX); // Need to satisfy Functor laws  
}
```

- Notice that $f : T \rightarrow R$
- What type should XXX be?
 - $XXX : T \rightarrow \text{Monad}<R>$
 - How can I use f to produce XXX?
 - $XXX = x \rightarrow \text{Monad.of}(f.\text{transform}(x))$
 - Remember $f.\text{transform}(x) \equiv f(x)$

Question 1b

Prove that composition is preserved.

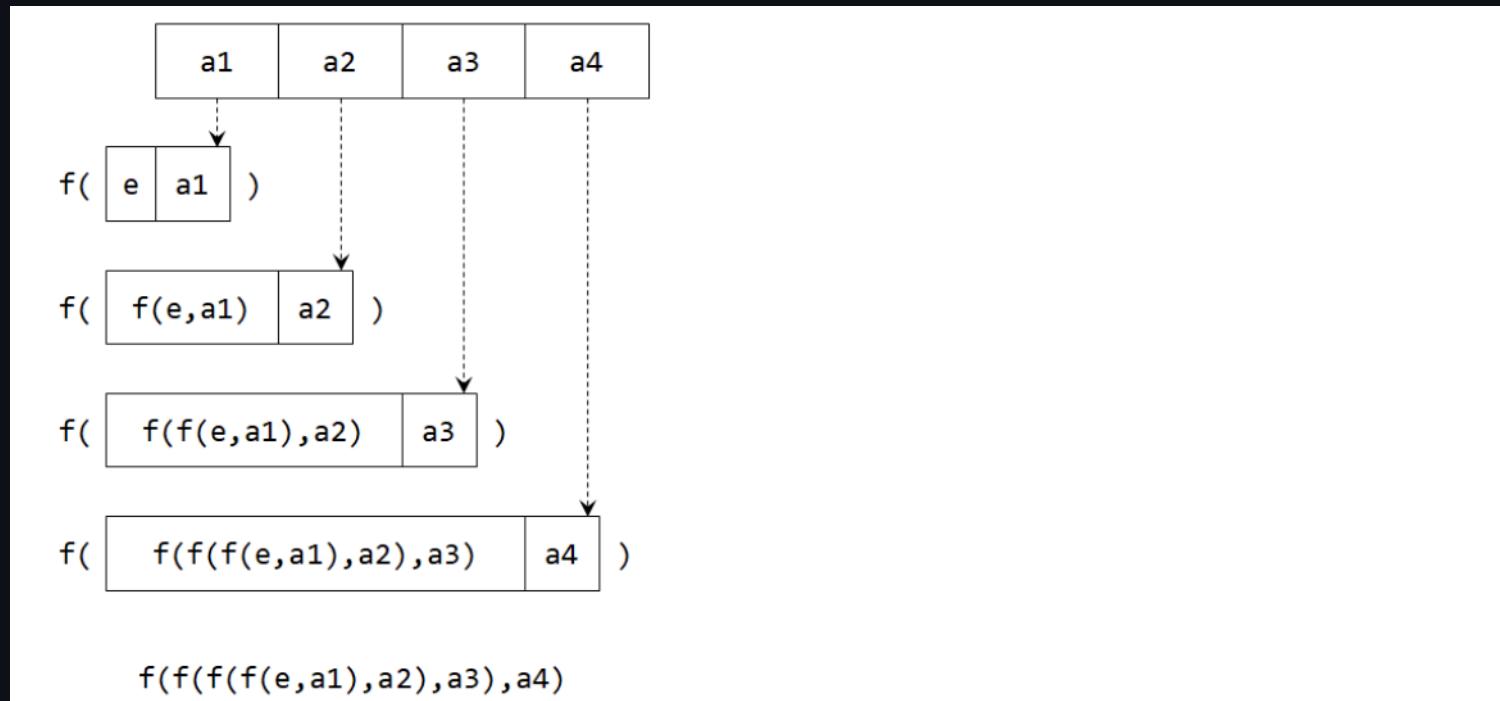
- A: $m.\text{map}(x \rightarrow f(x)).\text{map}(x \rightarrow g(x)) \equiv m.\text{flatMap}(x \rightarrow \text{Monad.of}(f(x))).\text{flatMap}(x \rightarrow \text{Monad.of}(g(x)))$
by implementation
- B: $\equiv m.\text{flatMap}(x \rightarrow \text{Monad.of}(f(x))).\text{flatMap}(x \rightarrow \text{Monad.of}(g(x))))$
by associative law.
- C: $\equiv m.\text{flatMap}(x \rightarrow \text{Monad.of}(g(f(x))))$
by left identity law.

Sequential, Concurrent, and Parallel

- Sequential
 - Do things in order on one thread
- Concurrent
 - Do things in order one at a time but over different threads
- Parallel
 - Actually doing things at the same time

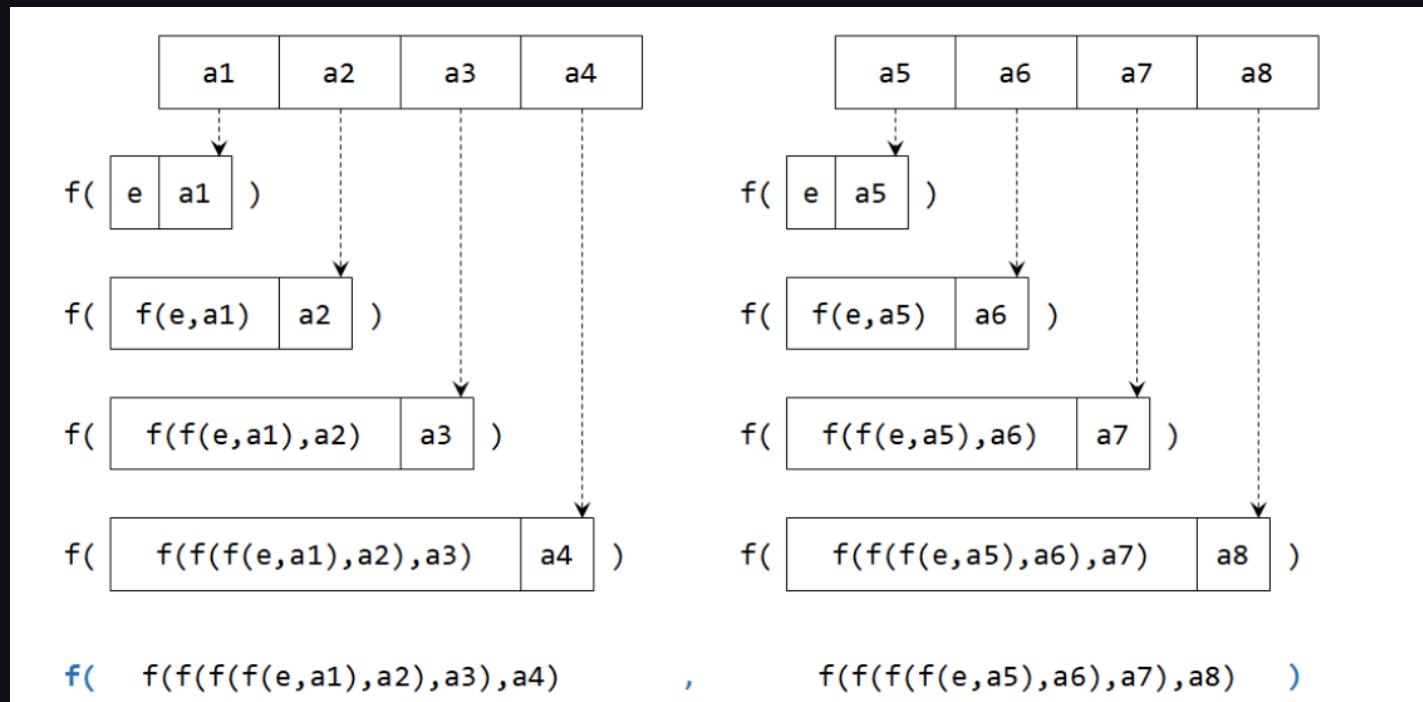
Reduce Sequential

```
T reduce(T e, BinaryOperator<T> f)
```



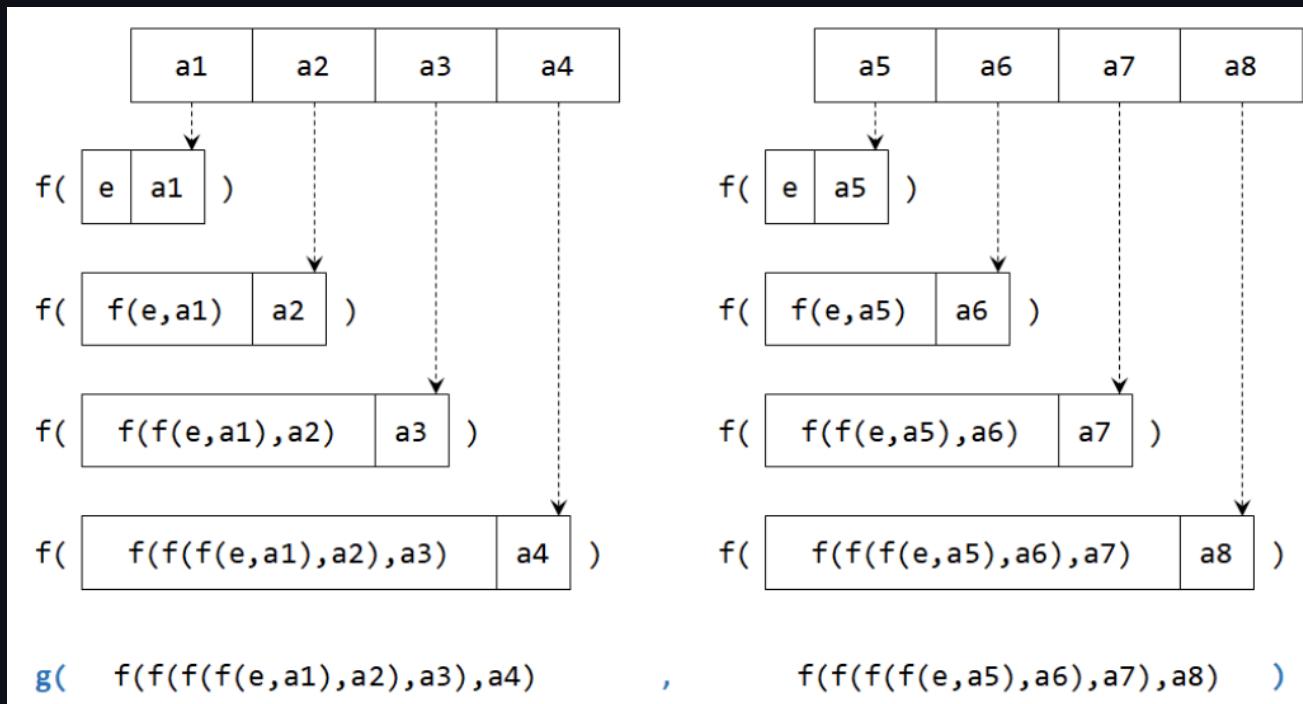
Reduce Parallel

```
T reduce(T e, BinaryOperator<T> f)
```



Reduce Parallel

```
<U> U reduce(U e, BiFunction<U,? super T,U> f, BinaryOperator<U> g)
```



Question 2a and 2b

What is the return value?

```
Stream.of(1, 2, 3, 4)
    .reduce(0, (a, x) -> (2 * a) + x, (a1, a2) -> a1 + a2);
```

```
Stream.of(1, 2, 3, 4)
    .parallel()
    .reduce(0, (a, x) -> (2 * a) + x, (a1, a2) -> a1 + a2);
```

Explain why there are differences

Reason

The accumulator is not associative

- If associative, $f(f(a, b), c) = f(a, f(b, c))$
- Future Brian will show you on the white board why it's not.
- This causes `combiner` and `accumulator` to not be compatible
- Future Brian shows again

Side note

- It is **NOT** necessary for `accumulator` to be associative
- Parallel reduce will be split first into list of blocks.
- Each block will run in a sequential order, so the `accumulator` will be ran in a specific order
- So it is more of a sufficient condition rather than a necessary one

Write `estimatePi` using Stream

- Whether a point is inside the circle or not is independent of each other
- Therefore can be parallelised
- Create a stream of random points
- Limit at `numOfPoints`
- Filter if they are in the circle
- Count

Evaluation

- Does parallelisation speed it up?
 - Show code
 - Overhead of creating new threads

Why is the number different each time

- Each thread has access to the random seed
- The order which the threads interleave is random
- when limit happens, the threads may have produced more than necessary elements and would be chopped off
- So what's left is a stream that can have different random points each run due to the randomness