
CS2030S Recitation Problem Set 8

1

Functor Laws
A functor is a structure with at least 2 methods (of, map) obeying two laws:

1. Identity Morphism (basically mapping identity fn gives you the same functor)

2. Composition morphism (any 2 maps is the same as 1 map with applying both
function)

2

Monad Laws
A monad is a structure with at least two methods (of, flatMap) obeying three laws:

1. Left Identity Law

2. Right Identity Law

3. Associative Law

3

Question 1a
Complete the implementation of map using only flatMap so that the resulting
Monad<T> satisfies the functor laws.

Need the identity and composition morphisms.

public <R> Monad<R> map(Transformer<? super T, ? extends R> f) {
 return this.flatMap(XXX); // Need to satisfy Functor laws
}

4

Question 1a
public <R> Monad<R> map(Transformer<? super T, ? extends R> f) {
 return this.flatMap(XXX); // Need to satisfy Functor laws
}

Notice that

What type should be?

How can I use to produce ?

 = x -> Monad.of(f.transform(x))

Remember f.transform(x) f(x)

5

Question 1b
Prove that composition is preserved.

A: m.map(x -> f(x)).map(x -> g(x)) m.flatMap(x ->
Monad.of(f(x))).flatMap(x -> Monad.of(g(x)))

by implementation

B: m.flatMap(x -> Monad.of(f(x)).flatMap(x -> Monad.of(g(x))))
by associative law.

C: m.flatMap(x -> Monad.of(g(f(x))))
by left identity law.

6

Sequential, Concurrent, and Parallel
Sequential

Do things in order on one thread
Concurrent

Do things in order one at a time but over different threads

Parallel
Actually doing things at the same time

7

Reduce Sequential
T reduce(T e, BinaryOperator<T> f)

8

Reduce Parallel
T reduce(T e, BinaryOperator<T> f)

9

Reduce Parallel
<U> U reduce(U e, BiFunction<U,? super T,U> f, BinaryOperator<U> g)

10

Question 2a and 2b
What is the return value?

Stream.of(1, 2, 3, 4)
 .reduce(0, (a, x) -> (2 * a) + x, (a1, a2) -> a1 + a2);

Stream.of(1, 2, 3, 4)
 .parallel()
 .reduce(0, (a, x) -> (2 * a) + x, (a1, a2) -> a1 + a2);

Explain why there are differences

11

Reason
The accumulator is not associative

If associative,
Future Brian will show you on the white board why it's not.

This causes combiner and accumulator to not be compatible

Future Brian shows again

12

Side note
It is NOT necessary for accumulator to be associative

Parallel reduce will be split first into list of blocks.

Each block will run in a sequential order, so the accumulator will be ran in a
specific order

So it is more of a sufficient condition rather than a necessary one

13

Write estimatePi using Stream
Whether a point is inside the circle or not is independent of each other

Therefore can be parallelised

Create a stream of random points

Limit at numOfPoints

Filter if they are in the circle

Count

14

Evalutation
Does parallelisation speed it up?

Show code
Overhead of creating new threads

15

Why is the number different each time
Each thread has access to the random seed

The order which the threads interleave is random
when limit happens, the threads may have produced more than necessary
elements and would be chopped off

So what's left is a stream that can have different random points each run due to
the randomness

16

