CS2030S Recitation Problem Set 9

Brian Cheong



ForkjoinPool



ForkjoinPool

e Parallel divide and conquer

e Break up the problem into smaller problems
e Combine the results

e Achieved with RecursiveTask<T>



RecursiveTask

e fork : Add to the head of the deque (other dudes can pick it up from behind)

e join : 2 cases: 1)if done read result 2) call compute
e compute : execute task (which may or may not fork depending on size)

e When thread is idle,
o check if OWN deque empty if not take from head

o steal work from the tail of other threads deque



Order of fork and join

e After forking, join in reverse order

e Because if not will need to do some pops and push to get to the subtask we
want
o Less efficient if done this way



Question 1

e Trace thru the events
o What tasks get added to the deque?

o Which worker executes which task?

o Which worker steals which task?

e Brian will now show the code and run a few times



Question 1

e Qutput differs from run to run

e all task except count = 4 will be sent to deque
e whichever worker is free will execute the task (seemingly random)

e When a worker waits on a join, it can go steal other work from other worker



Question 2

import java.util.concurrent.RecursiveTask;

class Fibonacci extends RecursiveTask<Integer> {
private final int Xx;
Fibonacci(int x) {
this.x = Xx;
J

@Override
protected Integer compute() {
if (this.x <= 1) {
return 1;
}

Fibonacci f1
Fibonacci f2

new Fibonacci(this.x - 1);
new Fibonacci(this.x - 2);

// decide the affects of the ordering of forking



Question 2a

Code Analysis

f1.fork(); e f1is forked for other workers to
int a = f2.compute();

mpl
int b = fi1.join(); complete
return a + b; e f2 is completed by the current
thread

e f1.join is like waiting for f1 to be
done in case it's not



Question 2b

Code

f1.fork();

int a = fi1.join();
int b = f2.compute();
return a + b;

Analysis

f1 is forked for other workers to
complete

f1.join waits for the entire f1 to
finish

f2.compute is done by the current
thread

no parallelism

10



Question 2c

Code
int a = fi.compute();
int b = f2.compute();

return a + b;

Analysis

e f1.compute is done on the current
thread

e f2.compute is done sequentially
after f1 by the current thread

e no parallelism

11



Question 2d

Code

f1.fork();
f2.fork();

int a = f2.join();
int b = f1.join();
return a + b;

Analysis

f1.fork allows other workers to
work on it

f2.fork allows other workers to

work on it as well but f2 is on the
head

f2.join gets the result from f2
f1.join gets the result from f1

allows f1 and 2 to run in parallel

12



Question 2e

Code

f1.fork();
f2.fork();

int a = fi1.join();
int b = f2.join();
return a + b;

Analysis

f1.fork allows other workers to
work on it

f2.fork allows other workers to

work on it as well but f2 is on the
head

f1.join gets the result from f2
o need to find f1 on the deque

f2.join gets the result from f2

allows f1 and 2 to run in parallel
but less efficient

13



That's all folks

It was an honour and
pleasure to teach all of you

14



That's all folks

It was an honour and
pleasure to teach all of you

all the best for exams

I'll miss you guys (maybe)

15



