
CS2030S Recitation Problem Set 9

Brian Cheong

1

ForkJoinPool

2

ForkJoinPool
Parallel divide and conquer

Break up the problem into smaller problems
Combine the results
Achieved with RecursiveTask<T>

3

RecursiveTask
fork : Add to the head of the deque (other dudes can pick it up from behind)

join : 2 cases: 1) if done read result 2) call compute

compute : execute task (which may or may not fork depending on size)

When thread is idle,
check if OWN deque empty if not take from head
steal work from the tail of other threads deque

4

Order of fork and join
After forking, join in reverse order

Because if not will need to do some pops and push to get to the subtask we
want

Less efficient if done this way

5

Question 1
Trace thru the events

What tasks get added to the deque?
Which worker executes which task?
Which worker steals which task?

Brian will now show the code and run a few times

6

Question 1
Output differs from run to run

all task except count = 4 will be sent to deque
whichever worker is free will execute the task (seemingly random)
When a worker waits on a join, it can go steal other work from other worker

7

Question 2
import java.util.concurrent.RecursiveTask;

class Fibonacci extends RecursiveTask<Integer> {
 private final int x;
 Fibonacci(int x) {
 this.x = x;
 }
 @Override
 protected Integer compute() {
 if (this.x <= 1) {
 return 1;
 }
 Fibonacci f1 = new Fibonacci(this.x - 1);
 Fibonacci f2 = new Fibonacci(this.x - 2);

 // decide the affects of the ordering of forking
 :
 }
} 8

Question 2a

Code

f1.fork();
int a = f2.compute();
int b = f1.join();
return a + b;

Analysis

f1 is forked for other workers to
complete
f2 is completed by the current
thread
f1.join is like waiting for f1 to be
done in case it's not

9

Question 2b

Code

f1.fork();
int a = f1.join();
int b = f2.compute();
return a + b;

Analysis

f1 is forked for other workers to
complete
f1.join waits for the entire f1 to
finish
f2.compute is done by the current
thread
no parallelism

10

Question 2c

Code

int a = f1.compute();
int b = f2.compute();
return a + b;

Analysis

f1.compute is done on the current
thread
f2.compute is done sequentially
after f1 by the current thread
no parallelism

11

Question 2d

Code

f1.fork();
f2.fork();
int a = f2.join();
int b = f1.join();
return a + b;

Analysis

f1.fork allows other workers to
work on it
f2.fork allows other workers to
work on it as well but f2 is on the
head
f2.join gets the result from f2
f1.join gets the result from f1
allows f1 and f2 to run in parallel

12

Question 2e

Code

f1.fork();
f2.fork();
int a = f1.join();
int b = f2.join();
return a + b;

Analysis

f1.fork allows other workers to
work on it
f2.fork allows other workers to
work on it as well but f2 is on the
head
f1.join gets the result from f2

need to find f1 on the deque
f2.join gets the result from f2
allows f1 and f2 to run in parallel
but less efficient

13

That's all folks

It was an honour and
pleasure to teach all of you

14

That's all folks

It was an honour and
pleasure to teach all of you

all the best for exams

I'll miss you guys (maybe)

15

