
Bridging Methods in Java
In this document I will explain the motivation behind briding method as well as when it will be used.

The running example
Say we have the following Java program

Here, we have a class A with a type parameter T . A has a method fun which takes in T as a

parameter and prints out "A::fun".

Now let's imagine we are going to extend a parameterized version of A.

Here, we see that T has been assigned String .

Note that fun here has the parameter of type String , the same type T has been assigned too.

Instinctively, this seems to be an overriding.

Therefore, when we execute following code,

class A<T> {

void fun(T t) {

System.out.println("A::fun");

}

}

class B extends A<String> {

void fun(String t) {

System.out.println("B::fun");

}

}

A a = new B();

we would expect "B::fun" to be printed, since it should use the implementation of the runtime type.

If you are lost here, you should revise dynamic binding then come back

How type erasure ruins things
Consider what A would look like after type erasure.

Before:

After:

If you are lost here, you should revise type erasure

Now, notice that A only has a method of type fun(Object) , on top of this B also inherits this

method from A .

If we are to run the same code as before

a.fun("This is a best string you've seen so far");

class A<T> {

void fun(T t) {

System.out.println("A::fun");

}

}

class A {

void fun(Object t) {

System.out.println("A::fun");

}

}

Compilation step of dynamic binding would settle on fun(Object) since that is the only method

that A has and that works for the argument type.

Therefore, during the runtime step of dynamic binding it would look for fun(Object) which is not

implemented in B therefore, runs A 's implementation printing "A::fun"

Of course this breaks the user expectation that he/she/they have overidden the A(T) method.

Especially at the end of the day we would want to hide the fact that we are type erasing from the users

perspective.

How bridging method bridges
To fix this behaviour and to align it with user expectation, the compiler would inject bridging methods.

Essentially what it does is that for class B it would inject a method specifically for the erased version

of fun .

Therefore from:

we get

A a = new B();

a.fun("This is a best string you've seen so far");

class B extends A<String> {

void fun(String t) {

System.out.println("B::fun");

}

}

class B extends A<String> {

void fun(String t) {

System.out.println("B::fun");

}

Notice the cast of String to the argument t .

So even if we settle on the method fun(Object) , during runtime type we do find an

implementation in B for it and then do another fun call, this time it would correctly invoke

B::fun(String) and print out "B::fun".

Fixing one problem opens another one
Because of this injected code, we no longer can create a method of the type of the erased version

So using our example, we cannot do this for B :

because after injection, it would look like this

// THIS IS INJECTED BY COMPILER!

void fun(Object t) {

this.fun((String) t);

}

}

class B extends A<String> {

void fun(String t) {

System.out.println("B::fun");

}

void fun(Object o) {

System.out.println("Hi, I'm not allowed. I shouldn't exist :(");

}

}

class B extends A<String> {

Now if we were to try to invoke fun(Object) it would be ambiguous because B now contains 2

implementations for fun(Object) .

Congratulations!
You now understand the idea behind bridging methods! ok bye

void fun(String t) {

System.out.println("B::fun");

}

void fun(Object o) {

System.out.println("Hi, I'm not allowed. I shouldn't exist :(");

}

// THIS IS INJECTED BY COMPILER!

void fun(Object t) {

this.fun((String) t);

}

}

