Bridging Methods in Java

In this document | will explain the motivation behind briding method as well as when it will be used.

The running example

Say we have the following Java program

class A<T> {

void fun(T t) {
System.out.println("A::fun");
}

h

Here, we have a class| A |with a type parameter | T |.| A |has a method | fun ‘which takesin| T asa
parameter and prints out "A::fun".

Now let's imagine we are going to extend a parameterized version of A.

class B extends A<String> {
void fun(String t) {
System.out.println("B::fun");
}.

s

Here, we see that| T|has been assigned | String .
Note that| fun |here has the parameter of type| String , the same type| T has been assigned too.
Instinctively, this seems to be an overriding.

Therefore, when we execute following code,

A a = new B();

a.fun("This is a best string you've seen so far");

we would expect "B::fun" to be printed, since it should use the implementation of the runtime type.

If you are lost here, you should revise dynamic binding then come back

How type erasure ruins things

Consider what A |would look like after type erasure.

Before;

class A<T> {
void fun(T t) {

System.out.println("A::fun");
}
}.

After:

class A {
void fun(Object t) {

System.out.println("A::fun");

}
h

If you are lost here, you should revise type erasure

Now, notice that| A lonly has a method of type| fun(0bject) |, on top of this| B |also inherits this
method from A .

If we are to run the same code as before

A a = new B();

a.fun("This is a best string you've seen so far");

Compilation step of dynamic binding would settle on| fun(0bject) |since that is the only method
that A |has and that works for the argument type.

Therefore, during the runtime step of dynamic binding it would look for| fun(0Object) |which is not
implemented in| B therefore, runs|A|'s implementation printing "A::fun"

Of course this breaks the user expectation that he/she/they have overidden the A(T) | method.

Especially at the end of the day we would want to hide the fact that we are type erasing from the users
perspective.

How bridging method bridges

To fix this behaviour and to align it with user expectation, the compiler would inject bridging methods.

Essentially what it does is that for class | B | it would inject a method specifically for the erased version
of | fun|.

Therefore from:

class B extends A<String> {
void fun(String t) {
System.out.println("B::fun");
}

1

we get

class B extends A<String> {
void fun(String t) {
System.out.println("B::fun");

}.

// THIS IS INJECTED BY COMPILER!
void fun(Object t) {
this.fun((String) t);

I

}.

Notice the cast of String |to the argument|t|.

So even if we settle on the method | fun(0bject) |, during runtime type we do find an
implementation in | B|for it and then do another | fun | call, this time it would correctly invoke
B::fun(String) |and print out "B::fun".

Fixing one problem opens another one

Because of this injected code, we no longer can create a method of the type of the erased version

So using our example, we cannot do this for|B :

class B extends A<String> {
void fun(String t) {

System.out.println("B::fun");

}.

void fun(Object o) {

System.out.println("Hi, I'm not allowed. I shouldn't exist :(");

}
}

because after injection, it would look like this

class B extends A<String> {

void fun(String t) {
System.out.println("B::fun");

y

void fun(Object o) {

System.out.println("Hi, I'm not allowed. I shouldn't exist :(");

y

// THIS IS INJECTED BY COMPILER!
void fun(Object t) {
this.fun((String) t);

s

}

Now if we were to try to invoke | fun(0bject) it would be ambiguous because B /now contains 2
implementations for fun(0Object) .

Congratulations!

You now understand the idea behind bridging methods! ok bye

