
CS2030S Recitation
Week 3: Problem Set 1

brian

2025-08-27
National University of Singapore

Introduction

About me

• Brian Cheong
• Studied CS in NUS for UG
• Was a UG Lab TA for CS2030S since year 2
• Researching in Programming Languages

National University of Singapore 2 / 30

Contact me

• Website: https://www.comp.nus.edu.sg/~bskch
• Email: bskch@nus.edu.sg

National University of Singapore 3 / 30

mailto:bskch@nus.edu.sg

Flow of Recitation

Flow of Recitation

• Please watch lectures before coming
• Don’t have to complete recitation sheet but

at least read the questions
• Unlike lecture can stop me to ask questions

National University of Singapore 5 / 30

Recap

Stack and Heap diagram

Stack
• Made of frames

‣ Contains bindings between variable
names and its value

• These frames are for active method
invocation frames

• 1 method invocation → 1 frame
• When the method is done, remove the

frame

Heap
• Where objects that are created live
• Objects contain information about that

instance
‣ mainly fields (for now…)

• Why do we need the heap?
‣ To allow objects to “live” on after stack

frame that created it is destroyed

National University of Singapore 7 / 30

Problem Set

Q1a

1 class Vector2D {
2 private double x;
3 private double y;

4
 public Vector2D(double x, double y)
{

5 this.x = x;
6 this.y = y;
7 }
8 public void add(Vector2D vect) {
9 this.x = this.x + vect.x;
10 this.y = this.y + vect.y;
11 // Line A
12 }
13 }

Suppose we run

1
Vector2D v1 = new Vector2D(1,
1);

2
Vector2D v2 = new Vector2D(2,
2);

3 v1.add(v2);

• What would the stack and heap look
like at Line A

National University of Singapore 9 / 30

Q1a

National University of Singapore 10 / 30

Q1b

Suppose that x and y is now

1 class Vector2D {
2 private double[] coord2D;
3 // : other code omitted
4 }

1. What else would have to change in
Vector2D?

2. Would the program fragment in main still
be valid?

1. This is a reminder for brian to showcase
live

2. Change wherever this.x and this.y is
used
• this.x → this.coord2D[0]
• this.y → this.coord2D[1]

3. Yes it would still be valid
• The changes to Vector2D’s internals are

hidden behind the abstraction barrier

National University of Singapore 11 / 30

Recap: Dynamic Binding

Recap: Dynamic Binding

• Compile Time Type
‣ The type you give to a variable
‣ E.g. Animal animal = new Dog() CTT(animal) = Animal

• Run Time Type
‣ The type of the object that actually lives in the heap
‣ E.g. Animal animal = new Dog() RTT(animal) = Dog

National University of Singapore 13 / 30

Recap: Dynamic Binding

• Polymorphism (greek for many forms)
‣ Want different types to do the same “action” differently
‣ All humans can walk, but they all walk differently

• Dynamic binding gives rise to polymorphism
‣ let the runtime type decide what method is invoked
‣ Done in a two step process

1. compile time step
2. run time step

National University of Singapore 14 / 30

2 Step Dynamic Binding Overview

• During compilation
‣ To figure out which method descriptor (method signature + return type) to use at run

time
‣ Happens during compilation so can only use compile time type

• During run time
‣ Based on the run time type, find the method that matches the descriptor

National University of Singapore 15 / 30

Compile time step

Use a.foo(b) and param as the parameter to foo as a running example
1. See what methods CTT(a) has

• may have multiple overloaded foo methods
2. See which of these methods have CTT(b) <: CTT(param)
3. If there are still multiple options, choose the most specific method

• arguments to a method 𝑀 are more specific if they can be passed to a method 𝑁
without compile error

• Intuitively take the “smaller” one (subtyping is a good approximation)
4. Method descriptor stored in bytecode for run time

National University of Singapore 16 / 30

Run time step

Use same example a.foo(b) and param
1. Set RTT(a) as the current class you look at and the descriptor 𝑀
2. Look for exactly 𝑀 in the current class
3. Found it? Great you execute that method 𝑀
4. No find? Go to the super of the current class and jump back to step 2.

National University of Singapore 17 / 30

Q2: background

Point.java

1 public class Point {
2 private double x;
3 private double y;
4 public Point(double x, double y) {
5 this.x = x;
6 this.y = y;
7 }
8 }

National University of Singapore 18 / 30

Q2: background

Circle.java

1 public class Circle {
2 private Point centre;
3 private int radius;
4 public Circle(Point centre, int radius) {
5 this.centre = centre;
6 this.radius = radius;
7 }

National University of Singapore 19 / 30

Q2: background

continued…

8 public boolean equals(Object obj) {
9 System.out.println("equals(Object) called");
10 if (obj == this) {
11 return true;
12 }
13 if (obj instanceof Circle) {
14 Circle circle = (Circle) obj;
15 return (circle.centre.equals(centre) && circle.radius == radius);
16 } else {
17 return false;
18 }
19 }

National University of Singapore 20 / 30

Q2: background

continued…

20 public boolean equals(Circle circle) {
21 System.out.println("equals(Circle) called");
22 return circle.centre.equals(centre) && circle.radius == radius;
23 }
24 }

National University of Singapore 21 / 30

Q2: background

We have the following code fragment

1 Circle c1 = new Circle(new Point(0, 0), 10);
2 Circle c2 = new Circle(new Point(0, 0), 10);
3 Object o1 = c1;
4 Object o2 = c2;

National University of Singapore 22 / 30

Q2a

In essence…

1 public boolean equals(Object obj) {
2 :
3 }
4 public boolean equals(Circle circle) {
5 :
6 }

1 Circle c1 = new Circle(new Point(0, 0), 10);
2 Circle c2 = new Circle(new Point(0, 0), 10);
3 Object o1 = c1;
4 Object o2 = c2;

1. What is the return value of
c1.equals(c2)? Explain
• Which method gets invoked?
• What’s the return value?
• equals(Circle)
• false since Point did not

implement equals

National University of Singapore 23 / 30

Q2b(i)

1 equals(Object)
2 equals(Circle)

1 Circle c1 = new Circle(...);
2 Circle c2 = new Circle(...);
3 Object o1 = c1;
4 Object o2 = c2;

o1.equals(o2);
• Compile Time:

‣ CTT(o1) = Object only have
equals(Object)

‣ CTT(o2) = Object <: Object so all good
‣ boolean equals(Object) saved in

bytecode
• Run Time:

‣ RTT(o1) = Circle
‣ Look at Circle class and find
equals(Object)

‣ Execute that

National University of Singapore 24 / 30

Q2b(ii)

1 equals(Object)
2 equals(Circle)

1 Circle c1 = new Circle(...);
2 Circle c2 = new Circle(...);
3 Object o1 = c1;
4 Object o2 = c2;

o1.equals((Circle) o2);
• Compile Time:

‣ CTT(o1) = Object only have
equals(Object)

‣ CTT((Circle) o2) = Circle <: Object so
all good

‣ boolean equals(Object) saved in
bytecode

• Run Time:
‣ RTT(o1) = Circle
‣ Look at Circle class and find
equals(Object)

‣ Execute that

National University of Singapore 25 / 30

Q2b(iii)

1 equals(Object)
2 equals(Circle)

1 Circle c1 = new Circle(...);
2 Circle c2 = new Circle(...);
3 Object o1 = c1;
4 Object o2 = c2;

o1.equals(c2);
• Compile Time:

‣ CTT(o1) = Object only have
equals(Object)

‣ CTT(c2) = Circle <: Object so all good
‣ boolean equals(Object) saved in

bytecode
• Run Time:

‣ RTT(o1) = Circle
‣ Look at Circle class and find
equals(Object)

‣ Execute that

National University of Singapore 26 / 30

Q2b(iv)

1 equals(Object)
2 equals(Circle)

1 Circle c1 = new Circle(...);
2 Circle c2 = new Circle(...);
3 Object o1 = c1;
4 Object o2 = c2;

c1.equals(o2);
• Compile Time:

‣ CTT(c1) = Circle has equals(Object)
and equals(Circle)

‣ CTT(o2) = Object <: Object
and </: Circle so only equals(Object)
works

‣ boolean equals(Object) saved in
bytecode

• Run Time:
‣ RTT(c1) = Circle
‣ Look at Circle class and find
equals(Object)

‣ Execute that

National University of Singapore 27 / 30

Q2b(v)

1 equals(Object)
2 equals(Circle)

1 Circle c1 = new Circle(...);
2 Circle c2 = new Circle(...);
3 Object o1 = c1;
4 Object o2 = c2;

c1.equals((Circle) o2);
• Compile Time:

‣ CTT(c1) = Circle has equals(Object)
and equals(Circle)

‣ CTT((Circle) o2) = Circle <: Object
and <: Circle both work choose more
specific

‣ boolean equals(Circle) saved in
bytecode

• Run Time:
‣ RTT(c1) = Circle
‣ Look at Circle class and find
equals(Circle)

‣ Execute that

National University of Singapore 28 / 30

Q2b(vi)

1 equals(Object)
2 equals(Circle)

1 Circle c1 = new Circle(...);
2 Circle c2 = new Circle(...);
3 Object o1 = c1;
4 Object o2 = c2;

c1.equals(c2);
• Compile Time:

‣ CTT(c1) = Circle has equals(Object)
and equals(Circle)

‣ CTT(c2) = Circle <: Object
and <: Circle both work choose more
specific

‣ boolean equals(Circle) saved in
bytecode

• Run Time:
‣ RTT(c1) = Circle
‣ Look at Circle class and find
equals(Circle)

‣ Execute that

National University of Singapore 29 / 30

The End

See you next week

	Introduction
	About me
	Contact me

	Flow of Recitation
	Flow of Recitation

	Recap
	Stack and Heap diagram
	Stack
	Heap

	Problem Set
	Q1a
	Q1b

	Recap: Dynamic Binding
	Recap: Dynamic Binding
	2 Step Dynamic Binding Overview
	Compile time step
	Run time step
	Q2: background
	Q2a
	Q2b(i)
	Q2b(ii)
	Q2b(iii)
	Q2b(iv)
	Q2b(v)
	Q2b(vi)

	The End

