CS2030S Recitation
Week 4: Problem Set 2

brian

2025-09-10

National University of Singapore



Recap



Recap: Type safety

- What is type safety?

National University of Singapore 2/21



Recap: Type safety

« What is type safety?
» Will not have type errors

National University of Singapore 2/21



Recap: Type safety

- What is type safety?
» Will not have type errors

» Cannot use values in an invalid or unintended way according to their type
« How does the compiler achieve type safety?

National University of Singapore 2/21



Recap: Type safety

- What is type safety?
» Will not have type errors

» Cannot use values in an invalid or unintended way according to their type
« How does the compiler achieve type safety?

» Use compile time type to determine what methods are available

National University of Singapore 2/21



Recap: Type safety

- What is type safety?
» Will not have type errors
» Cannot use values in an invalid or unintended way according to their type
« How does the compiler achieve type safety?
» Use compile time type to determine what methods are available
» Only allow assigning subtype to supertype (methods are guaranteed to be there)

— Because the subtype (if it does not override the method) would inherit the
implementation from supertype

National University of Singapore 2/21



Recap: Type safety

- What is type safety?
» Will not have type errors
» Cannot use values in an invalid or unintended way according to their type
« How does the compiler achieve type safety?
» Use compile time type to determine what methods are available
» Only allow assigning subtype to supertype (methods are guaranteed to be there)

— Because the subtype (if it does not override the method) would inherit the
implementation from supertype

National University of Singapore 2/21



Consider the following subtyping relationship

subR <: R <: SuperR

subE <: E <: SuperE <: Exception and a class A

1 class A 3

2 R foo() throws E § ... %
3%

Let B <: A and B overrides foo()

National University of Singapore

3/21



Qla

1
2
3
4
5
6
7
8

void bar(A a) s
try 2
Rr = a.foo();
// use T
¢ catch (E e) 3
// handle exception

5

ba'ad

Which implementations of foo in B violate substitutability of A with B

(a) SubR foo() throws E (b) SuperR foo() throws E

(c) R foo() throws SubE (d) R foo() throws SuperE

National University of Singapore 4/ 21



(a) Is ok. SubR <: R so it can bind to R

National University of Singapore 5/21



(a) Is ok. SubR <: R so it can bind to R
(b) Not ok. SuperR </: R
 Let’s say we allow the bind to happen. What if we do r.g() where g is found in R but

not in SuperR

National University of Singapore 5/21



(a) Is ok. SubR <: R so it can bind to R
(b) Not ok. SuperR </: R
 Let’s say we allow the bind to happen. What if we do r.g() where g is found in R but
not in SuperR
(c) Is ok. SubE <: E soitcan bind to E

« Catching exception is like binding the exception thrown to the one declared in the
catch block

National University of Singapore

5/21



(a) Is ok. SubR <: R so it can bind to R
(b) Not ok. SuperR </: R

 Let’s say we allow the bind to happen. What if we do r.g() where g is found in R but
not in SuperR

(c) Is ok. SubE <: E soitcan bind to E

« Catching exception is like binding the exception thrown to the one declared in the
catch block

(d) Not ok. SuperE <:/ E (Similar reason to (b))

National University of Singapore

5/21



Q2 background

Java provides an abstract class called Number

This is the superclass of all primitive numeric wrapper classes

BigInteger is A class which supports arbritrary-precision integers (giant numbers)
BigInteger implements the Comparable<T> interface
Therefore,

« BigInteger <: Number
« BigInteger <: Comparable<T>

National University of Singapore 6/ 21



Q2 background

My best friend Ah Beng wrote a method to convert an array of BigInteger to an array of
primitive short values

1 public static short[] toShortArray(BigInteger[] a, BigInteger threshold) %

2 short[] out = new short[a.length];

3 for (int 1 = ©; 1 < a.length; i += 1) 3
4 if (ali].compareTo(threshold) <= 6) 3
5 out[i] = a[i].shortValue();

6 s

7 %

8 return out;

9

$

He realised he needed to do the same method for Integer and Double

National University of Singapore 7/ 21



Q2 background

So Ah Beng wrote the following code

1 public static short[] toShortArray(Integer[] a, Integer threshold) 3
2 short[] out = new short[a.length];

3 for (int 1 = 0; i < a.length; i += 1) 3

4 if (al[i].compareTo(threshold) <= 6) 3

5 out[i] = a[i].shortValue();

6 s

7 s

8 return out;

9 %

10 public static short[] toShortArray(Double[] a, Double threshold) %
11 short[] out = new short[a.length];

12 for (int 1 = 0; 1 < a.length; 1 += 1) ¢

13 if (a[i].compareTo(threshold) <= 0) 1§

14 out[i] = a[i].shortValue();
15 :

16 ¢

1/ return out;

18 ¢

National University of Singapore 8/ 21



Q2 background

Ah Beng scored A+ for CS1010X he realised he’s repeating code. So he wanted to generalize
the methods he has written

National University of Singapore 9/21



This was his first attempt. What’s wrong? What kind of error do we get?

1
2
3
4
5
6
7
8
9

public static short[] toShortArray(Object[] a, Object threshold) %
short[] out = new short[a.length];
for (int 1 = ©; i1 < a.length; i += 1) ¢
if (ali].compareTo(threshold) <= 6) 3
out[i] = a[i].shortValue();
s
¢

return out;

e 'ad

National University of Singapore

10/ 21



« Compile error

National University of Singapore 11/ 21



« Compile error

> a has compile time type of Object[]

National University of Singapore 11/ 21



« Compile error

> a has compile time type of Object[]
> a[i] has compile time type of Object

National University of Singapore 11/ 21



« Compile error

> a has compile time type of Object[]
» a[i] has compile time type of Object
» Object does not have compareTo or shortValue method

National University of Singapore

11/ 21



Being a persistent student, Ah Beng tried another approach.

public static short[] toShortArray(Number[] a, Number threshold) ¢
short[] out = new shortl[a.length];
for (int 1 = ©; i1 < a.length; i += 1) 3§
if (al[i].compareTo(threshold) <= 6) 3
g out[i] = a[i].shortValue();
s

return out;

VoONOCOGOP~WNER

b 'ad

Does it work now?

National University of Singapore

12/ 21



o Still compile error

National University of Singapore 13/ 21



o Still compile error

» Even though now we have access to shortValue
» We don’t have access to compareTo

National University of Singapore 13/ 21



Ah Beng tries again

1
2
3
4
5
6
7
8
9

public static short[] toShortArray(Comparable[] a, Comparable threshold) %
short[] out = new short[a.length];
for (int 1 = 0; 1 < a.length; 1 += 1) 3
if (ali].compareTo(threshold) <= 6) 3
g out[i] = a[i].shortValue();
¢

return out;

baTad

“See! I'm the best Java programmer” exclaimed Ah Beng.

National University of Singapore

14/ 21



Ah Beng tries again

1
2
3
4
5
6
7
8
9

public static short[] toShortArray(Comparable[] a, Comparable threshold) %
short[] out = new short[a.length];
for (int 1 = 0; 1 < a.length; 1 += 1) 3
if (ali].compareTo(threshold) <= 6) 3
g out[i] = a[i].shortValue();
¢

return out;

baTad

“See! I'm the best Java programmer” exclaimed Ah Beng. Why is Ah Beng not the best Java
programmer and will fail CS2030S?

National University of Singapore

14/ 21



« Still compile error

National University of Singapore 15/ 21



« Still compile error

» We gained access to compareTo
» but lost access to shortValue

National University of Singapore 15/ 21



« Still compile error

» We gained access to compareTo
» but lost access to shortValue
» We neeed access to both

National University of Singapore

15/ 21



« Still compile error

» We gained access to compareTo
» but lost access to shortValue
» We neeed access to both, is all hope lost for my bestie?

National University of Singapore

15/ 21



Ah Beng discovered (by being told by Brian) that Java supports generics

National University of Singapore 16 / 21



Ah Beng discovered (by being told by Brian) that Java supports generics

A type parameter can have multiple bounds using the & symbol

National University of Singapore 16 / 21



Ah Beng discovered (by being told by Brian) that Java supports generics

A type parameter can have multiple bounds using the & symbol

<T extends S1 & S2> (Only the first thing can be a class rest must be interfaces)

National University of Singapore 16 / 21



Ah Beng discovered (by being told by Brian) that Java supports generics

A type parameter can have multiple bounds using the & symbol
<T extends S1 & S2> (Only the first thing can be a class rest must be interfaces)

Help Ah Beng rewrite the method with generics

National University of Singapore

16 / 21



1 public static <T extends Number & Comparable<T>>
2 short[] toShortArray(T[] a, T threshold) 1%

3 short[] out = new short[a.length];

4 for (int 1 = ©; i < a.length; i++) ¢

5 if (ali].compareTo(threshold) <= 0) 3

6 out[i] = a[i].shortValue();

7 s

8 ¢

9 return out;

10 *

National University of Singapore

17/ 21



1 public static <T extends Number & Comparable<T>>
2 short[] toShortArray(T[] a, T threshold) 1%

3 short[] out = new short[a.length];

4 for (int 1 = ©; i < a.length; i++) ¢

5 if (ali].compareTo(threshold) <= 0) 3

6 out[i] = a[i].shortValue();

7 s

8 ¢

9 return out;

10 *

- What happens after type erasure?

National University of Singapore

17/ 21



1 public static <T extends Number & Comparable<T>>
2 short[] toShortArray(T[] a, T threshold) 1%

3 short[] out = new short[a.length];

4 for (int 1 = ©; i < a.length; i++) ¢

5 if (ali].compareTo(threshold) <= 0) 3

6 out[i] = a[i].shortValue();

7 s

8 ¢

9 return out;

10 *

- What happens after type erasure?
» Erase to first bound
» Cast to other bounds when need to access the method (injected by compiler)

National University of Singapore

17/ 21



We have PasswordIncorrectException <: AuthenticationException <: Exception

class Main 3
void start() s
try ¢
SSHClient client = new SSHClient();
client.connectPENode();
¢ catch (Exception e) %
2 System.out.println("Main");
s

P OoONOCOPR~WNER

[QV)
W

National University of Singapore 18/ 21



and

1 class SSHClient ¢

2 void connectPENode() throws Exception $
3 try ¢

4 // Line A (Code that could throw an exception)
5 ¢ catch (AuthenticationException e) %
6 System.out.println("SSHClient");

7 s

8 ¢

9%

if we run

1 new Main().start();

What would be printed based on the exceptions thrown in Line A

National University of Singapore 19/ 21



(a) Exception
« Exception not caught in catch clause in SSHClient because Exception </:
AuthenticationException
o It would be caught in the catch clause in Main (after stack unwinding) since subtyping
is reflexive
« “Main” printed
(b) AuthenticationException
« Exception is a subtype of itself so will be caught in catch clause in SSHClient
« “SSHClient” printed
(c) PasswordIncorrectException
« Exception is a subtype of PasswordIncorrectException so will be caught in catch
clause in SSHClient
« “SSHClient” printed

National University of Singapore 20/ 21



The End

bye!



	Recap
	Recap: Type safety
	Q1a
	Q2 background
	Q2a
	Q2a
	Q2b
	Q3

	The End

