
CS2030S Recitation
Week 4: Problem Set 2

brian

2025-09-10
National University of Singapore

Recap

Recap: Type safety

• What is type safety?

National University of Singapore 2 / 21

Recap: Type safety

• What is type safety?
‣ Will not have type errors

National University of Singapore 2 / 21

Recap: Type safety

• What is type safety?
‣ Will not have type errors
‣ Cannot use values in an invalid or unintended way according to their type

• How does the compiler achieve type safety?

National University of Singapore 2 / 21

Recap: Type safety

• What is type safety?
‣ Will not have type errors
‣ Cannot use values in an invalid or unintended way according to their type

• How does the compiler achieve type safety?
‣ Use compile time type to determine what methods are available

National University of Singapore 2 / 21

Recap: Type safety

• What is type safety?
‣ Will not have type errors
‣ Cannot use values in an invalid or unintended way according to their type

• How does the compiler achieve type safety?
‣ Use compile time type to determine what methods are available
‣ Only allow assigning subtype to supertype (methods are guaranteed to be there)

– Because the subtype (if it does not override the method) would inherit the
implementation from supertype

National University of Singapore 2 / 21

Recap: Type safety

• What is type safety?
‣ Will not have type errors
‣ Cannot use values in an invalid or unintended way according to their type

• How does the compiler achieve type safety?
‣ Use compile time type to determine what methods are available
‣ Only allow assigning subtype to supertype (methods are guaranteed to be there)

– Because the subtype (if it does not override the method) would inherit the
implementation from supertype

National University of Singapore 2 / 21

Q1a

Consider the following subtyping relationship

subR <: R <: SuperR
subE <: E <: SuperE <: Exception and a class A

1 class A {
2 R foo() throws E { ... }
3 }

Let B <: A and B overrides foo()

National University of Singapore 3 / 21

Q1a

1 void bar(A a) {
2 try {
3 R r = a.foo();
4 // use r
5 } catch (E e) {
6 // handle exception
7 }
8 }

Which implementations of foo in B violate substitutability of A with B

(a) SubR foo() throws E (b) SuperR foo() throws E

(c) R foo() throws SubE (d) R foo() throws SuperE

National University of Singapore 4 / 21

Q1a

(a) Is ok. SubR <: R so it can bind to R

National University of Singapore 5 / 21

Q1a

(a) Is ok. SubR <: R so it can bind to R
(b) Not ok. SuperR </: R

• Let’s say we allow the bind to happen. What if we do r.g() where g is found in R but
not in SuperR

National University of Singapore 5 / 21

Q1a

(a) Is ok. SubR <: R so it can bind to R
(b) Not ok. SuperR </: R

• Let’s say we allow the bind to happen. What if we do r.g() where g is found in R but
not in SuperR

(c) Is ok. SubE <: E so it can bind to E
• Catching exception is like binding the exception thrown to the one declared in the

catch block

National University of Singapore 5 / 21

Q1a

(a) Is ok. SubR <: R so it can bind to R
(b) Not ok. SuperR </: R

• Let’s say we allow the bind to happen. What if we do r.g() where g is found in R but
not in SuperR

(c) Is ok. SubE <: E so it can bind to E
• Catching exception is like binding the exception thrown to the one declared in the

catch block
(d) Not ok. SuperE <:/ E (Similar reason to (b))

National University of Singapore 5 / 21

Q2 background

Java provides an abstract class called Number

This is the superclass of all primitive numeric wrapper classes

BigInteger is A class which supports arbritrary-precision integers (giant numbers)
BigInteger implements the Comparable<T> interface
Therefore,
• BigInteger <: Number
• BigInteger <: Comparable<T>

National University of Singapore 6 / 21

Q2 background

My best friend Ah Beng wrote a method to convert an array of BigInteger to an array of
primitive short values

1 public static short[] toShortArray(BigInteger[] a, BigInteger threshold) {
2 short[] out = new short[a.length];
3 for (int i = 0; i < a.length; i += 1) {
4 if (a[i].compareTo(threshold) <= 0) {
5 out[i] = a[i].shortValue();
6 }
7 }
8 return out;
9 }

He realised he needed to do the same method for Integer and Double

National University of Singapore 7 / 21

Q2 background

So Ah Beng wrote the following code

1 public static short[] toShortArray(Integer[] a, Integer threshold) {
2 short[] out = new short[a.length];
3 for (int i = 0; i < a.length; i += 1) {
4 if (a[i].compareTo(threshold) <= 0) {
5 out[i] = a[i].shortValue();
6 }
7 }
8 return out;
9 }
10 public static short[] toShortArray(Double[] a, Double threshold) {
11 short[] out = new short[a.length];
12 for (int i = 0; i < a.length; i += 1) {
13 if (a[i].compareTo(threshold) <= 0) {
14 out[i] = a[i].shortValue();
15 }
16 }
17 return out;
18 }

National University of Singapore 8 / 21

Q2 background

Ah Beng scored A+ for CS1010X he realised he’s repeating code. So he wanted to generalize
the methods he has written

National University of Singapore 9 / 21

Q2a

This was his first attempt. What’s wrong? What kind of error do we get?

1 public static short[] toShortArray(Object[] a, Object threshold) {
2 short[] out = new short[a.length];
3 for (int i = 0; i < a.length; i += 1) {
4 if (a[i].compareTo(threshold) <= 0) {
5 out[i] = a[i].shortValue();
6 }
7 }
8 return out;
9 }

National University of Singapore 10 / 21

Q2a

• Compile error

National University of Singapore 11 / 21

Q2a

• Compile error
‣ a has compile time type of Object[]

National University of Singapore 11 / 21

Q2a

• Compile error
‣ a has compile time type of Object[]
‣ a[i] has compile time type of Object

National University of Singapore 11 / 21

Q2a

• Compile error
‣ a has compile time type of Object[]
‣ a[i] has compile time type of Object
‣ Object does not have compareTo or shortValue method

National University of Singapore 11 / 21

Q2a

Being a persistent student, Ah Beng tried another approach.

1 public static short[] toShortArray(Number[] a, Number threshold) {
2 short[] out = new short[a.length];
3 for (int i = 0; i < a.length; i += 1) {
4 if (a[i].compareTo(threshold) <= 0) {
5 out[i] = a[i].shortValue();
6 }
7 }
8 return out;
9 }

Does it work now?

National University of Singapore 12 / 21

Q2a

• Still compile error

National University of Singapore 13 / 21

Q2a

• Still compile error
‣ Even though now we have access to shortValue
‣ We don’t have access to compareTo

National University of Singapore 13 / 21

Q2a

Ah Beng tries again

1 public static short[] toShortArray(Comparable[] a, Comparable threshold) {
2 short[] out = new short[a.length];
3 for (int i = 0; i < a.length; i += 1) {
4 if (a[i].compareTo(threshold) <= 0) {
5 out[i] = a[i].shortValue();
6 }
7 }
8 return out;
9 }

“See! I’m the best Java programmer” exclaimed Ah Beng.

National University of Singapore 14 / 21

Q2a

Ah Beng tries again

1 public static short[] toShortArray(Comparable[] a, Comparable threshold) {
2 short[] out = new short[a.length];
3 for (int i = 0; i < a.length; i += 1) {
4 if (a[i].compareTo(threshold) <= 0) {
5 out[i] = a[i].shortValue();
6 }
7 }
8 return out;
9 }

“See! I’m the best Java programmer” exclaimed Ah Beng. Why is Ah Beng not the best Java
programmer and will fail CS2030S?

National University of Singapore 14 / 21

Q2a

• Still compile error

National University of Singapore 15 / 21

Q2a

• Still compile error
‣ We gained access to compareTo
‣ but lost access to shortValue

National University of Singapore 15 / 21

Q2a

• Still compile error
‣ We gained access to compareTo
‣ but lost access to shortValue
‣ We neeed access to both

National University of Singapore 15 / 21

Q2a

• Still compile error
‣ We gained access to compareTo
‣ but lost access to shortValue
‣ We neeed access to both, is all hope lost for my bestie?

National University of Singapore 15 / 21

Q2b

Ah Beng discovered (by being told by Brian) that Java supports generics

National University of Singapore 16 / 21

Q2b

Ah Beng discovered (by being told by Brian) that Java supports generics

A type parameter can have multiple bounds using the & symbol

National University of Singapore 16 / 21

Q2b

Ah Beng discovered (by being told by Brian) that Java supports generics

A type parameter can have multiple bounds using the & symbol

<T extends S1 & S2> (Only the first thing can be a class rest must be interfaces)

National University of Singapore 16 / 21

Q2b

Ah Beng discovered (by being told by Brian) that Java supports generics

A type parameter can have multiple bounds using the & symbol

<T extends S1 & S2> (Only the first thing can be a class rest must be interfaces)

Help Ah Beng rewrite the method with generics

National University of Singapore 16 / 21

Q2b

1 public static <T extends Number & Comparable<T>>
2 short[] toShortArray(T[] a, T threshold) {
3 short[] out = new short[a.length];
4 for (int i = 0; i < a.length; i++) {
5 if (a[i].compareTo(threshold) <= 0) {
6 out[i] = a[i].shortValue();
7 }
8 }
9 return out;
10 }

National University of Singapore 17 / 21

Q2b

1 public static <T extends Number & Comparable<T>>
2 short[] toShortArray(T[] a, T threshold) {
3 short[] out = new short[a.length];
4 for (int i = 0; i < a.length; i++) {
5 if (a[i].compareTo(threshold) <= 0) {
6 out[i] = a[i].shortValue();
7 }
8 }
9 return out;
10 }

• What happens after type erasure?

National University of Singapore 17 / 21

Q2b

1 public static <T extends Number & Comparable<T>>
2 short[] toShortArray(T[] a, T threshold) {
3 short[] out = new short[a.length];
4 for (int i = 0; i < a.length; i++) {
5 if (a[i].compareTo(threshold) <= 0) {
6 out[i] = a[i].shortValue();
7 }
8 }
9 return out;
10 }

• What happens after type erasure?
‣ Erase to first bound
‣ Cast to other bounds when need to access the method (injected by compiler)

National University of Singapore 17 / 21

Q3

We have PasswordIncorrectException <: AuthenticationException <: Exception

1 class Main {
2 void start() {
3 try {
4 SSHClient client = new SSHClient();
5 client.connectPENode();
6 } catch (Exception e) {
7 System.out.println("Main");
8 }
9 }
10 }

National University of Singapore 18 / 21

Q3

and

1 class SSHClient {
2 void connectPENode() throws Exception {
3 try {
4 // Line A (Code that could throw an exception)
5 } catch (AuthenticationException e) {
6 System.out.println("SSHClient");
7 }
8 }
9 }

if we run

1 new Main().start();

What would be printed based on the exceptions thrown in Line A

National University of Singapore 19 / 21

Q3

(a) Exception
• Exception not caught in catch clause in SSHClient because Exception </:
AuthenticationException

• It would be caught in the catch clause in Main (after stack unwinding) since subtyping
is reflexive

• “Main” printed
(b) AuthenticationException

• Exception is a subtype of itself so will be caught in catch clause in SSHClient
• “SSHClient” printed

(c) PasswordIncorrectException
• Exception is a subtype of PasswordIncorrectException so will be caught in catch

clause in SSHClient
• “SSHClient” printed

National University of Singapore 20 / 21

The End

bye!

	Recap
	Recap: Type safety
	Q1a
	Q2 background
	Q2a
	Q2a
	Q2b
	Q3

	The End

