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Consider the following subtyping relationship

subR <: R <: SuperR

subE <: E <: SuperE <: Exception and a class A

1 class A 3

2 R foo() throws E § ... %
3%

Let B <: A and B overrides foo()
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Qla

1
2
3
4
5
6
7
8

void bar(A a) s
try 2
Rr = a.foo();
// use T
¢ catch (E e) 3
// handle exception

5

ba'ad

Which implementations of foo in B violate substitutability of A with B

(a) SubR foo() throws E (b) SuperR foo() throws E

(c) R foo() throws SubE (d) R foo() throws SuperE

National University of Singapore 4/ 21



(a) Is ok. SubR <: R so it can bind to R
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(a) Is ok. SubR <: R so it can bind to R
(b) Not ok. SuperR </: R
 Let’s say we allow the bind to happen. What if we do r.g() where g is found in R but

not in SuperR
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(a) Is ok. SubR <: R so it can bind to R
(b) Not ok. SuperR </: R

 Let’s say we allow the bind to happen. What if we do r.g() where g is found in R but
not in SuperR

(c) Is ok. SubE <: E soitcan bind to E

« Catching exception is like binding the exception thrown to the one declared in the
catch block

(d) Not ok. SuperE <:/ E (Similar reason to (b))
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Q2 background

Java provides an abstract class called Number

This is the superclass of all primitive numeric wrapper classes

BigInteger is A class which supports arbritrary-precision integers (giant numbers)
BigInteger implements the Comparable<T> interface
Therefore,

« BigInteger <: Number
« BigInteger <: Comparable<T>

National University of Singapore 6/ 21



Q2 background

My best friend Ah Beng wrote a method to convert an array of BigInteger to an array of
primitive short values

1 public static short[] toShortArray(BigInteger[] a, BigInteger threshold) %

2 short[] out = new short[a.length];

3 for (int 1 = ©; 1 < a.length; i += 1) 3
4 if (ali].compareTo(threshold) <= 6) 3
5 out[i] = a[i].shortValue();

6 s

7 %

8 return out;

9

$

He realised he needed to do the same method for Integer and Double
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Q2 background

So Ah Beng wrote the following code

1 public static short[] toShortArray(Integer[] a, Integer threshold) 3
2 short[] out = new short[a.length];

3 for (int 1 = 0; i < a.length; i += 1) 3

4 if (al[i].compareTo(threshold) <= 6) 3

5 out[i] = a[i].shortValue();

6 s

7 s

8 return out;

9 %

10 public static short[] toShortArray(Double[] a, Double threshold) %
11 short[] out = new short[a.length];

12 for (int 1 = 0; 1 < a.length; 1 += 1) ¢

13 if (a[i].compareTo(threshold) <= 0) 1§

14 out[i] = a[i].shortValue();
15 :

16 ¢

1/ return out;

18 ¢
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Q2 background

Ah Beng scored A+ for CS1010X he realised he’s repeating code. So he wanted to generalize
the methods he has written
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This was his first attempt. What’s wrong? What kind of error do we get?

1
2
3
4
5
6
7
8
9

public static short[] toShortArray(Object[] a, Object threshold) %
short[] out = new short[a.length];
for (int 1 = ©; i1 < a.length; i += 1) ¢
if (ali].compareTo(threshold) <= 6) 3
out[i] = a[i].shortValue();
s
¢

return out;

e 'ad
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« Compile error
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« Compile error

> a has compile time type of Object[]
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« Compile error

> a has compile time type of Object[]
> a[i] has compile time type of Object
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« Compile error

> a has compile time type of Object[]
» a[i] has compile time type of Object
» Object does not have compareTo or shortValue method
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Being a persistent student, Ah Beng tried another approach.

public static short[] toShortArray(Number[] a, Number threshold) ¢
short[] out = new shortl[a.length];
for (int 1 = ©; i1 < a.length; i += 1) 3§
if (al[i].compareTo(threshold) <= 6) 3
g out[i] = a[i].shortValue();
s

return out;

VoONOCOGOP~WNER

b 'ad

Does it work now?

National University of Singapore

12/ 21



o Still compile error
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o Still compile error

» Even though now we have access to shortValue
» We don’t have access to compareTo

National University of Singapore 13/ 21



Ah Beng tries again

1
2
3
4
5
6
7
8
9

public static short[] toShortArray(Comparable[] a, Comparable threshold) %
short[] out = new short[a.length];
for (int 1 = 0; 1 < a.length; 1 += 1) 3
if (ali].compareTo(threshold) <= 6) 3
g out[i] = a[i].shortValue();
¢

return out;

baTad

“See! I'm the best Java programmer” exclaimed Ah Beng.
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Ah Beng tries again

1
2
3
4
5
6
7
8
9

public static short[] toShortArray(Comparable[] a, Comparable threshold) %
short[] out = new short[a.length];
for (int 1 = 0; 1 < a.length; 1 += 1) 3
if (ali].compareTo(threshold) <= 6) 3
g out[i] = a[i].shortValue();
¢

return out;

baTad

“See! I'm the best Java programmer” exclaimed Ah Beng. Why is Ah Beng not the best Java
programmer and will fail CS2030S?
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« Still compile error
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« Still compile error

» We gained access to compareTo
» but lost access to shortValue
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« Still compile error

» We gained access to compareTo
» but lost access to shortValue
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« Still compile error

» We gained access to compareTo
» but lost access to shortValue
» We neeed access to both, is all hope lost for my bestie?
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Ah Beng discovered (by being told by Brian) that Java supports generics
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Ah Beng discovered (by being told by Brian) that Java supports generics

A type parameter can have multiple bounds using the & symbol
<T extends S1 & S2> (Only the first thing can be a class rest must be interfaces)

Help Ah Beng rewrite the method with generics
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1 public static <T extends Number & Comparable<T>>
2 short[] toShortArray(T[] a, T threshold) 1%

3 short[] out = new short[a.length];

4 for (int 1 = ©; i < a.length; i++) ¢

5 if (ali].compareTo(threshold) <= 0) 3

6 out[i] = a[i].shortValue();

7 s

8 ¢

9 return out;

10 *
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- What happens after type erasure?
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1 public static <T extends Number & Comparable<T>>
2 short[] toShortArray(T[] a, T threshold) 1%

3 short[] out = new short[a.length];

4 for (int 1 = ©; i < a.length; i++) ¢

5 if (ali].compareTo(threshold) <= 0) 3

6 out[i] = a[i].shortValue();

7 s

8 ¢

9 return out;

10 *

- What happens after type erasure?
» Erase to first bound
» Cast to other bounds when need to access the method (injected by compiler)

National University of Singapore

17/ 21



We have PasswordIncorrectException <: AuthenticationException <: Exception

class Main 3
void start() s
try ¢
SSHClient client = new SSHClient();
client.connectPENode();
¢ catch (Exception e) %
2 System.out.println("Main");
s

P OoONOCOPR~WNER

[QV)
W
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and

1 class SSHClient ¢

2 void connectPENode() throws Exception $
3 try ¢

4 // Line A (Code that could throw an exception)
5 ¢ catch (AuthenticationException e) %
6 System.out.println("SSHClient");

7 s

8 ¢

9%

if we run

1 new Main().start();

What would be printed based on the exceptions thrown in Line A
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(a) Exception
« Exception not caught in catch clause in SSHClient because Exception </:
AuthenticationException
o It would be caught in the catch clause in Main (after stack unwinding) since subtyping
is reflexive
« “Main” printed
(b) AuthenticationException
« Exception is a subtype of itself so will be caught in catch clause in SSHClient
« “SSHClient” printed
(c) PasswordIncorrectException
« Exception is a subtype of PasswordIncorrectException so will be caught in catch
clause in SSHClient
« “SSHClient” printed
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The End

bye!
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