CS2030S Recitation
Week 5: Problem Set 4

brian

A Z=0E=2

National University of Singapore



Recap



Recap: Variance

« Covariant
» T <: S=C(T) <: C(S)
« Contravariant
» T <: S=C(S) <: C(T)
« Invariant
» Neither covariant nor contravariant

National University of Singapore 2/23



Recap: Generics

A type abstraction where you abstract on the type within a class

List<T> can work without knowing what T

Use bounds to expose methods (upper-bound)

Java generics are invariant

National University of Singapore 3/23



Recap: Wild cards

« A substitute for any type

 Can be upper bounded (? extends T)
» ? can be T and its subtypes
» Gives rise to covariance

« Can be lower bounded (? super T)
» ? can be T and its supertypes
» Gives rise to contravariance

National University of Singapore 4/ 23



Recap: Wildcard vs type variable

« What is the difference between using T vs ?
» ? if you don’t know the type and you don’t care
— you can’t even add Object to List<?> only null
» T when you define a class that should work with any type

National University of Singapore 5/23



Determine subtyping for all the mixtures of bounded wildcards
Integer <: Number <: Object . ArraylList<T>

Draw S — T, if S <: T (Hasse diagram)
can omit transitive subtyping

National University of Singapore 6/23



’//////////éList<?>€\\\\\\\\\\

List<? extends Object> List<? super Integer>

List<? extends Number>

A

List<? super Number>

N

List<? extends Integer> List<? super Object>

List<Number>

AN

List<Integer> List<Object>

AN

ArrayList<Integer> ArrayList<Number> ArraylList<Object>
National University of Singapore 7/23



Recap: PECS

o Think from the perspective of the container (List<T>, Box<T>)
» What should be accepted with respect to whatever T is set to

e Producer Extends

» If the container is producing at least T you can also get something that produces SubT

« Consumer Super

» If the container is consuming at most T you can always store T in a container of SuperT

National University of Singapore 8/23



Recap: PECS Example

1 public class Example<T> 3

2 void foo(Producer<? extends T> p, Consumer<? super T> c) 3

3 T t = p.produce(); // Producer<SubT>

4 c.consume(t); // Consumer<SuperT> assigning subtype to a supertype
5

6 ¢

National University of Singapore 9/23



Recap: Type Inference

« Find constraints (Assuming type variable T)
» Argument type: Is there wildcards used for the T in the argument
» Target type: Is T going to be bound to some type
» Bounds on T: Does T extend/super something

« Solve the constraints
» Ignore the subclasses not specified in the constraints
» Solution may be a superclass of the types in the constraints

National University of Singapore 10/ 23



O2a

Apple <: Fruit <: Comparable<Fruit>

1 static <T extends Comparable<T>> T max(List<T> list) §

1List<Fruit> fruits
2 List<Apple> apples

if (list.get(1).compareTo(max) > ©) 2

2 T max = list.get(0);
3

4 return list.get(1);
5 3%

6 return max;

7%

List.of (new Fruit(), new Apple());
List.of(new Apple(), new Apple());

What is the inferred type of T for

1 Fruit f = max(fruits);

National University of Singapore

11/23



Target: T <: Fruit

Arugment: List<Fruit> <: List<T> = T = Fruit
Bounds: T <: Comparable<T>

T would be Fruit

National University of Singapore 12/ 23



Apple <: Fruit <: Comparable<Fruit>

1 static <T extends Comparable<T>> T max(List<T> list) §
T max = list.get(0);

if (list.get(1).compareTo(max) > ©) 2

' return list.get(1);

return max,

5

1 List<Fruit> fruits = List.of(new Fruit(), new Apple());
2 List<Apple> apples = List.of(new Apple(), new Apple());

NOOThWwWN

Why is there a compilation error for

1 Fruit f = max(apples);

National University of Singapore 13/ 23



e Target: T <: Fruit
 Argument: List<Apple> <: List<T> = T = Apple
« Bounds: T' <: Comparable<T>

« If T is Apple, is it a subtype of Comparable<T>?
» No

» Cannot solve all constraints so compile error

National University of Singapore 14/ 23



Apple <: Fruit <: Comparable<Fruit>

1 static <T extends Comparable<T>> T max(List<T> list) §
T max = list.get(0);

if (list.get(1).compareTo(max) > ©) 2

' return list.get(1);

return max,

5

1 List<Fruit> fruits = List.of(new Fruit(), new Apple());
2 List<Apple> apples = List.of(new Apple(), new Apple());

NOOThWwWN

Why is there a compilation error for

1 Apple a = max(apples);

National University of Singapore 15/ 23



 Target: T <: Apple
 Argument: List<Apple> <: List<T> = T = Apple
« Bounds: T' <: Comparable<T>

« If T is Apple, is it a subtype of Comparable<T>?
» No

» Cannot solve all constraints so compile error

National University of Singapore 16 / 23



Apple <: Fruit <: Comparable<Fruit>

1 static <T extends Comparable<T>> T max(List<T> list) §
T max = list.get(0);

if (list.get(1).compareTo(max) > ©) 2

' return list.get(1);

return max,

5

1 List<Fruit> fruits = List.of(new Fruit(), new Apple());
2 List<Apple> apples = List.of(new Apple(), new Apple());

NOOThWwWN

Why is there a compilation error for

1 Apple a = max(fruits);

National University of Singapore 17/ 23



 Target: T <: Apple
« Argument: List<Fruit> <: List<T> = T = Fruit
« Bounds: T' <: Comparable<T>

« If Tis Fruit, is it a subtype of Apple?
» No

» Cannot solve all constraints so compile error

National University of Singapore 18/ 23



Fix the header of max so that i and ii work

« What was the main issue with 1 and i1
» Apple </: Comparable<T>

« How can we solve this?
» Wildcards?
» Extend or super?

National University of Singapore

19/ 23



« We should put <T extends Comparable<? super T>>

» compareTo takes in a T so it is a Consumer

1 static <T extends Comparable< ? super T>> T max(List<T> 1list) %
T max = list.get(0);
if (list.get(1).compareTo(max) > 0) %
return list.get(1);
¢

return max;

$

NOOoThwhN

National University of Singapore

20/ 23



Q2d

What is the new inferred type for Tin i and ii
.« (1)
» Target: T <: Fruit
» Argument: List<Apple> <: List<T> = T = Apple
» Bounds: T' <: Comparable<? super T>
» Tis Apple
o (ii)
» Target: T' <: Apple
» Argument: List<Apple> <: List<T> = T = Apple
» Bounds: T' <: Comparable<? super T>
» Tis Apple

National University of Singapore 21/ 23



o (iii)
» Target: T <: Apple
» Argument: List<Fruit> <: List<T> = T = Fruit
» Bounds: T' <: Comparable<? super T>
» Fruit </: Apple so still compilation error

» anyway these stuff intuitively does not make sense
» If you have a list that can contains all kinds of fruits, how can you know you will get an

apple

National University of Singapore

22 /23



The End

bye!



	Recap
	Recap: Variance
	Recap: Generics
	Recap: Wild cards
	Recap: Wildcard vs type variable
	Q1
	Q1
	Recap: PECS
	Recap: PECS Example
	Recap: Type Inference
	Q2a
	Q2bi
	Q2bii
	Q2biii
	Q2c
	Q2d

	The End

