
CS2030S Recitation
Week 5: Problem Set 4

brian

2025-09-21
National University of Singapore

Recap

Recap: Variance

• Covariant
‣ T <: S ⇒ C(T) <: C(S)

• Contravariant
‣ T <: S ⇒ C(S) <: C(T)

• Invariant
‣ Neither covariant nor contravariant

National University of Singapore 2 / 23

Recap: Generics

• A type abstraction where you abstract on the type within a class

• List<T> can work without knowing what T

• Use bounds to expose methods (upper-bound)

• Java generics are invariant

National University of Singapore 3 / 23

Recap: Wild cards

• A substitute for any type

• Can be upper bounded (? extends T)
‣ ? can be T and its subtypes
‣ Gives rise to covariance

• Can be lower bounded (? super T)
‣ ? can be T and its supertypes
‣ Gives rise to contravariance

National University of Singapore 4 / 23

Recap: Wildcard vs type variable

• What is the difference between using T vs ?
‣ ? if you don’t know the type and you don’t care

– you can’t even add Object to List<?> only null
‣ T when you define a class that should work with any type

National University of Singapore 5 / 23

Q1

• Determine subtyping for all the mixtures of bounded wildcards
• Integer <: Number <: Object . ArrayList<T>
• Draw S → T, if S <: T (Hasse diagram)
• can omit transitive subtyping

National University of Singapore 6 / 23

Q1

List<?>

List<? extends Object> List<? super Integer>

List<? extends Number> List<? super Number>

List<? extends Integer> List<? super Object>

List<Number>

List<Integer> List<Object>

ArrayList<Integer> ArrayList<Object>ArrayList<Number>
National University of Singapore 7 / 23

Recap: PECS

• Think from the perspective of the container (List<T>, Box<T>)
‣ What should be accepted with respect to whatever T is set to

• Producer Extends
‣ If the container is producing at least T you can also get something that produces SubT

• Consumer Super
‣ If the container is consuming at most T you can always store T in a container of SuperT

National University of Singapore 8 / 23

Recap: PECS Example

1 public class Example<T> {
2 void foo(Producer<? extends T> p, Consumer<? super T> c) {
3 T t = p.produce(); // Producer<SubT>
4 c.consume(t); // Consumer<SuperT> assigning subtype to a supertype
5 }
6 }

National University of Singapore 9 / 23

Recap: Type Inference

• Find constraints (Assuming type variable T)
‣ Argument type: Is there wildcards used for the T in the argument
‣ Target type: Is T going to be bound to some type
‣ Bounds on T: Does T extend/super something

• Solve the constraints
‣ Ignore the subclasses not specified in the constraints
‣ Solution may be a superclass of the types in the constraints

National University of Singapore 10 / 23

Q2a

Apple <: Fruit <: Comparable<Fruit>

1 static <T extends Comparable<T>> T max(List<T> list) {
2 T max = list.get(0);
3 if (list.get(1).compareTo(max) > 0) {
4 return list.get(1);
5 }
6 return max;
7 }

1 List<Fruit> fruits = List.of(new Fruit(), new Apple());
2 List<Apple> apples = List.of(new Apple(), new Apple());

What is the inferred type of T for

1 Fruit f = max(fruits);

National University of Singapore 11 / 23

Q2a

• Target: T <: Fruit
• Arugment: List<Fruit> <: List<T> ⇒ T = Fruit
• Bounds: T <: Comparable<T>
• T would be Fruit

National University of Singapore 12 / 23

Q2bi

Apple <: Fruit <: Comparable<Fruit>

1 static <T extends Comparable<T>> T max(List<T> list) {
2 T max = list.get(0);
3 if (list.get(1).compareTo(max) > 0) {
4 return list.get(1);
5 }
6 return max;
7 }

1 List<Fruit> fruits = List.of(new Fruit(), new Apple());
2 List<Apple> apples = List.of(new Apple(), new Apple());

Why is there a compilation error for

1 Fruit f = max(apples);

National University of Singapore 13 / 23

Q2bi

• Target: T <: Fruit
• Argument: List<Apple> <: List<T> ⇒ T = Apple
• Bounds: T <: Comparable<T>
• If T is Apple, is it a subtype of Comparable<T>?

‣ No
‣ Cannot solve all constraints so compile error

National University of Singapore 14 / 23

Q2bii

Apple <: Fruit <: Comparable<Fruit>

1 static <T extends Comparable<T>> T max(List<T> list) {
2 T max = list.get(0);
3 if (list.get(1).compareTo(max) > 0) {
4 return list.get(1);
5 }
6 return max;
7 }

1 List<Fruit> fruits = List.of(new Fruit(), new Apple());
2 List<Apple> apples = List.of(new Apple(), new Apple());

Why is there a compilation error for

1 Apple a = max(apples);

National University of Singapore 15 / 23

Q2bii

• Target: T <: Apple
• Argument: List<Apple> <: List<T> ⇒ T = Apple
• Bounds: T <: Comparable<T>
• If T is Apple, is it a subtype of Comparable<T>?

‣ No
‣ Cannot solve all constraints so compile error

National University of Singapore 16 / 23

Q2biii

Apple <: Fruit <: Comparable<Fruit>

1 static <T extends Comparable<T>> T max(List<T> list) {
2 T max = list.get(0);
3 if (list.get(1).compareTo(max) > 0) {
4 return list.get(1);
5 }
6 return max;
7 }

1 List<Fruit> fruits = List.of(new Fruit(), new Apple());
2 List<Apple> apples = List.of(new Apple(), new Apple());

Why is there a compilation error for

1 Apple a = max(fruits);

National University of Singapore 17 / 23

Q2biii

• Target: T <: Apple
• Argument: List<Fruit> <: List<T> ⇒ T = Fruit
• Bounds: T <: Comparable<T>
• If T is Fruit, is it a subtype of Apple?

‣ No
‣ Cannot solve all constraints so compile error

National University of Singapore 18 / 23

Q2c

Fix the header of max so that i and ii work

• What was the main issue with i and ii
‣ Apple </: Comparable<T>

• How can we solve this?
‣ Wildcards?
‣ Extend or super?

National University of Singapore 19 / 23

Q2c

• We should put <T extends Comparable<? super T>>
‣ compareTo takes in a T so it is a Consumer

1 static <T extends Comparable< ? super T>> T max(List<T> list) {
2 T max = list.get(0);
3 if (list.get(1).compareTo(max) > 0) {
4 return list.get(1);
5 }
6 return max;
7 }

National University of Singapore 20 / 23

Q2d

What is the new inferred type for T in i and ii
• (i)

‣ Target: T <: Fruit
‣ Argument: List<Apple> <: List<T> ⇒ T = Apple
‣ Bounds: T <: Comparable<? super T>
‣ T is Apple

• (ii)
‣ Target: T <: Apple
‣ Argument: List<Apple> <: List<T> ⇒ T = Apple
‣ Bounds: T <: Comparable<? super T>
‣ T is Apple

National University of Singapore 21 / 23

Q2d

• (iii)
‣ Target: T <: Apple
‣ Argument: List<Fruit> <: List<T> ⇒ T = Fruit
‣ Bounds: T <: Comparable<? super T>
‣ Fruit </: Apple so still compilation error
‣ anyway these stuff intuitively does not make sense
‣ If you have a list that can contains all kinds of fruits, how can you know you will get an

apple

National University of Singapore 22 / 23

The End

bye!

	Recap
	Recap: Variance
	Recap: Generics
	Recap: Wild cards
	Recap: Wildcard vs type variable
	Q1
	Q1
	Recap: PECS
	Recap: PECS Example
	Recap: Type Inference
	Q2a
	Q2bi
	Q2bii
	Q2biii
	Q2c
	Q2d

	The End

