
CS2030S Recitation
Week 9: Problem Set 6

brian

2025-10-15
National University of Singapore

Recap

Recap: Maybe

• NullPointerExceptions are annoying
• Bake the possibility of being “nothing” within the type of the object
• Conceptually just a box

‣ None represents having no value (empty box)
‣ Some is a “box” with the value inside

• Use APIs to interact with the value inside
‣ Can chain API calls since they always return a Maybe<T>

National University of Singapore 2 / 12

Recap: Maybe APIs

• of: Creates a Maybe containing our value (or None if given a null)
‣ “Lifting” a type T into type Maybe<T>

• map: Takes a function (T -> U)
‣ If Some, apply function on the value
‣ If None, propogate the None

• filter: Takes a predicate function
‣ If Some, apply function and convert to None if function returns false
‣ If None, propogate the None

National University of Singapore 3 / 12

Recap: More APIs

• flatMap: Takes in f: T -> Maybe<U>
‣ If Some, apply f and flatten the maybe
‣ If None, propogate the None

• orElse: Takes in f: () -> U
‣ If Some, return value
‣ If None, return f()

• ifPresent: Takes in f: T -> ()
‣ If Some, consume the value with f
‣ If None, propogate the None

National University of Singapore 4 / 12

Recap: Anonymous Class

• Declare a local class and instantiate in one statement
• Has the form new X(arguments) { body }

‣ X is the class/interface that you inherit from
‣ body is the methods of that class, just no constructor

National University of Singapore 5 / 12

Recap: Functions and 𝜆-functions

• If an anonymous class implements an interface with one method
• Then it is kinda like a function (only one method to call)
• 𝜆-function is an anonymous function
• Can replace these functional interface with lambda expressions

‣ (arguments) -> { body }
‣ Can omit type of variables and { } if it is a single return statement

• Stack and heap treates anonymous functions as anonymous classes
• More concepts like currying and closure can be seen in notes

National University of Singapore 6 / 12

Q1: Finding internship

Rewrite using functional style using Maybe (single return statement)

1 Maybe<Internship> match(Resume r) {
2 if (r == null) {
3 return Maybe.none();
4 }
5 Maybe<List<String>> optList = r.getListOfLanguages();
6 List<String> list;
7 if (optList.equals(Maybe.none())) {
8 list = List.of();
9 } else {
10 list = optList.get(); // cannot call
11 }
12 if (list.contains("Java")) {
13 return Maybe.of(findInternship(list));
14 } else {
15 return Maybe.none();
16 }
17 }

National University of Singapore 7 / 12

Q1: Finding internship

1 Maybe<Internship> match(Resume r) {
2 if (r == null) {
3 return Maybe.none();
4 }
5 :
6 }

• This is taken care of with of
‣ Maybe.of(r)

National University of Singapore 8 / 12

Q1: Finding internship

1 Maybe<Internship> match(Resume r) {
2 :
3 Maybe<List<String>> optList = r.getListOfLanguages();
4 :
5 }

• We see that the return type of getListOfLanguages is a Maybe
‣ Hint that we should use flatMap
‣ .flatMap(x -> x.getListOfLanguages())

National University of Singapore 9 / 12

Q1: Finding internship

1 Maybe<Internship> match(Resume r) {
2 :
3 List<String> list;
4 if (optList.equals(Maybe.none())) {
5 list = List.of();
6 } else {
7 list = optList.get(); // cannot call
8 }
9 if (list.contains("Java")) {
10 return Maybe.of(findInternship(list));
11 } else {
12 return Maybe.none();
13 }
14 }

• If None, stays None so we just can continue normally with mapping etc
‣ Use filter to check if contains “Java”
‣ .filter(lst -> lst.contains("Java"))

National University of Singapore 10 / 12

Q2: Draw stack and heap diagram

1 class A {
2 private int x;
3
4 public A(int x) {
5 this.x = x;
6 }
7 public int get() {
8 // Line A
9 return this.x;
10 }
11 }

With the following in main:

1 A a = new A(5);
2 Producer<Integer> p = () -> a.get();
3 p.produce();

National University of Singapore 11 / 12

The End

bye!

	Recap
	Recap: Maybe
	Recap: Maybe APIs
	Recap: More APIs
	Recap: Anonymous Class
	Recap: Functions and λ-functions
	Q1: Finding internship
	Q1: Finding internship
	Q1: Finding internship
	Q1: Finding internship
	Q2: Draw stack and heap diagram

	The End

