CS2030S Recitation
Week 9: Problem Set 6

brian

2025-10-15

National University of Singapore



Recap



Recap: Maybe

NullPointerExceptions are annoying

Bake the possibility of being “nothing” within the type of the object
Conceptually just a box

» None represents having no value (empty box)
» Some is a “box” with the value inside
Use APIs to interact with the value inside

» Can chain API calls since they always return a Maybe<T>

National University of Singapore 2/12



Recap: Maybe APIs

« of: Creates a Maybe containing our value (or None if given a null)
» “Lifting” a type T into type Maybe<T>

« map: Takes a function (T -> U)
» If Some, apply function on the value
» If None, propogate the None

« filter: Takes a predicate function
> If Some, apply function and convert to None if function returns false
» If None, propogate the None

National University of Singapore 3/12



Recap: More APIs

« flatMap: Takesin f: T -> Maybe<U>
» If Some, apply f and flatten the maybe
» If None, propogate the None

e orElse: Takesinf: () -> U
» If Some, return value
» If None, return f()

e ifPresent: Takesinf: T -> ()
» If Some, consume the value with f
» If None, propogate the None

National University of Singapore 4/12



Recap: Anonymous Class

« Declare a local class and instantiate in one statement
« Has the form new X(arguments) § body ?
» X is the class/interface that you inherit from
» body is the methods of that class, just no constructor

National University of Singapore 5/12



Recap: Functions and A-functions

If an anonymous class implements an interface with one method
Then it is kinda like a function (only one method to call)

A-function is an anonymous function

Can replace these functional interface with lambda expressions

» (arguments) -> { body %

» Can omit type of variables and { } if it is a single return statement
Stack and heap treates anonymous functions as anonymous classes

More concepts like currying and closure can be seen in notes

National University of Singapore 6/12



Q1: Finding internship

Rewrite using functional style using Maybe (single return statement)

Maybe<Internship> match(Resume r) ¢
if (r == null) 3
return Maybe.none();
s

1
2
3
4
5 Maybe<List<String>> optlList = r.getListOfLanguages();
6 List<String> list;

7 if (optList.equals(Maybe.none())) ¢

8 list = List.of();

9 t else $

10 y list = optList.get(); // cannot call
11

12 if (list.contains("Java")) s

13 return Maybe.of(findInternship(list));
14 % else 3

15 return Maybe.none();

16 ¢

17 ¢

National University of Singapore 7/12



Q1: Finding internship

1 Maybe<Internship> match(Resume r) %
2 if (r == null) 3

3 return Maybe.none();

4 3

5 °

6

§
« This is taken care of with of
» Maybe.of(r)

National University of Singapore 8/12



Q1: Finding internship

1 Maybe<Internship> match(Resume r) 3%

CZ’J Maybe<List<String>> optList = r.getListOfLanguages();
53

« We see that the return type of getListOfLanguages is a Maybe

» Hint that we should use flatMap
» .flatMap(x -> x.getListOfLanguages())

National University of Singapore 9/12



Q1: Finding internship

1 Maybe<Internship> match(Resume r) ¢

2 :

3 List<String> list;

4 if (optList.equals(Maybe.none())) %

5 list = List.of();

6 t else 3

7 list = optList.get(); // cannot call
8 s

9 if (list.contains("Java")) s

10 return Maybe.of(findInternship(list));
11 $* else 5

12 return Maybe.none();

13 ¢

o If None, stays None so we just can continue normally with mapping etc
» Use filter to check if contains “Java”
» .filter(lst -> 1lst.contains("Java"))

National University of Singapore 10/ 12



Q2: Draw stack and heap diagram

1 class A 3

2 private int x;

3

4 public A(int x) 3
5 this.x = Xx;

6 s

7 public int get() 1%
8 // Line A

9 return this.x;
10 ¢

11 %

With the following in main:
1A a = new A(5);

2 Producer<Integer> p = () -> a.get();
3 p.produce();

National University of Singapore 11/ 12



The End

bye!



	Recap
	Recap: Maybe
	Recap: Maybe APIs
	Recap: More APIs
	Recap: Anonymous Class
	Recap: Functions and λ-functions
	Q1: Finding internship
	Q1: Finding internship
	Q1: Finding internship
	Q1: Finding internship
	Q2: Draw stack and heap diagram

	The End

