CS2030S Recitation
Week 4: Problem Set 2

brian

2026-02-05

National University of Singapore



Recap



About Dyamic binding

Why do we use method descriptor? Isn’t method signature not enough?

Needed for type checking (Find method descriptor — type checking)

// In A.java java
int foo(Circle c) {
return 1;
}
boolean foo(Object o) {
return false;
3
// In main method
A a = new A()

boolean x = a.foo(new Circle(new Point(@, 0), 1);

O 0O N o0 O N LWON P

R
S

National University of Singapore 2/21



Recap: LSP

Liskov substitution principle

« Let ¢(x) be a property provable about objects x of type T'. Then ¢(y) should be true for
objects y of type S where S <: T’

 Sounds like it contradicts polymorphism

» Not really, we only care about properties that we are interested in
» They should still do the same thing, but maybe in a different way

National University of Singapore 3/21



Recap: Interfaces & Abstract classes

Abstract classes

« Sometimes we don’t have the full information to make a class but we have partial info
» Humans all have 2 eyes, all have the same metabolic functions (methods)
» But individual humans have different ways of talking, walking, etc
- Imagine writing an abstract Human class
» For methods and fields we know, we just fill them in
» For methods we don’t know how to implement yet, leave them abstract
» classes that extend Human would have to implement the abstract methods

National University of Singapore 4/ 21



Recap: Interfaces & Abstract classes

Interfaces
 An interface has all methods abstract and no fields
» These methods are always public
o It is a promise that anything that implements it has those methods
A LandVehicle can be abstract with methods like drive etc
« Model what it can do (implementation left to implementations of the interface)

National University of Singapore 5/21



Recap: Casting an Interface

 You can almost always cast at compile time

» Compiler can’t prove that you might not have put a subclass that implements that
interface so it allows it

» Unless the CTT of whatever you are casting is final

» If actually does not implement interface at run time then run time error

National University of Singapore 6/ 21



Problem Set




Q1 background

public class Rectangle {
private double width;
private double height;
public Rectangle(double width, double height) {
this.width = width;
this.height = height;
3
public double getArea() {
return this.width * this.height;
3
@0verride
public String toString() {
13 return "Width: " + this.width + " Height: " + this.height;
14 }
15 }

OO ~JOCOCITR~NWN -

[N
N -

Rectangle: :getArea is expected to return the product of its width and height

National University of Singapore 8/ 21



We believe that Square inherits from Rectangle

Square instances must satisfy that the four sides are always the same length.

Create a class called Square with a single constructor method. Should have the following
jshell output

1 jshell> new Square(5);

2 $.. ==> Width: 5.0 Height: 5.0
3

4 jshell> new Square(5).getArea();
5$.. ==> 25.0

National University of Singapore

9/21



public class Square extends Rectangle {
public Square(double length) {

1
2
3 super(length, length);
4}
5%

National University of Singapore

10/ 21



Q1b

Now Rectangle has two new methods to set the height and set the width.

ublic void setHeight(double height) {
this.height = height;

p

3

public void setWidth(double width) {
this.width = width;

3

o~corTh~hRwWN PR

Behaves like you would expect

1 jshell> Rectangle r = new Rectangle(5, 5);
2 jshell> r.setHeight(5);

3 jshell> r.setWidth(9);

4 jshell> r.getArea();

5$.. ==> 45.0

Explain the undesirable effects for the Square class?

National University of Singapore

11/ 21



 Explain the undesirable effects for the Square class?
» Square inherits setHeight and setWidth methods from Rectangle
» Height and width of the Square can now be independently set
» The property of having all 4 sides being the same is no longer true

National University of Singapore

12/ 21



Now we override these in Square
1
2
3
4
o)
6
7
8
9
1
1

Does this make sense? Should Square inherit from Rectangle?

@0verride

public void setHeight(double height) {
super.setHeight(height);
super.setWidth(height);

}

@0verride
public void setWidth(double width) {
super.setHeight(width);
@ super.setWidth(width);

1}

National University of Singapore 13/ 21



« Based on LSP, wherever we have a Rectangle, we should be able to put a Square and still

have the same properties (that we choose)

« But if we put a Square, it would no longer adhere to the property of Rectangle: :getArea
» Example: Checking if a document is in landscape or portrait

« LSP is violated, so Square should not inherit from Rectangle

National University of Singapore 14/ 21



Then should Rectangle inherit from Square?
o If Rectangle inherited from Square
o property of having all 4 sides the same is violated

« LSP is violated. Square and Rectangle should not inherit from each other

National University of Singapore

15/ 21



O2a

We have the following code

1 interface Shape{ 1 interface Printable {
2 double getArea(); 2 void print();
3} 33

1 Circle ¢ = new Circle(new Point(@, @), 10);
2 Shape s = c;
3 Printable p = c;

Explain the compilation error (if any) in some of the statements below
(i) s.print() (ii) p.print()

(iii) s.getArea() (iv) p.getArea()

National University of Singapore

16 / 21



« For i, s has compile time type Shape so does not have the print method. Thus a compilation
error is thrown

o For ii, no error. Printable has print method and p is of compile time type Printable

o for iii, no error. Shape has getArea method and s is of compile time type Shape

o for iv, p has compile time type Printable so does not have the method getArea. Thus a
compilation error is thrown

National University of Singapore 17/ 21



Your best friend, Ah Beng, proposes to re-implement Shape and Printable as abstract classes
instead. Would this work?

 No. Java does not allow the inheritance from multiple parent classes
« Abstract classes are still classes

National University of Singapore

18 /21



Can we define another interface PrintableShape which extends Printable and Shape and let
Circle implement PrintableShape instead?

« Yes. Interfaces can inherit from multiple super-interfaces

 Note that the keyword is extends and not inplements when interfaces inherit from other
interfaces

National University of Singapore

19/ 21



Give an example to illustrate why Java cannot inherit from multiple parent classes but can

implement multiple interfaces.

Say A has foo() which prints “a”

B has foo() which prints “b”

Let C inherit from both A and B, which foo() does it get?

Interfaces are fine since if A and B are interfaces, then C is forced to implement foo()

National University of Singapore

20/ 21



The End

bye!



	Recap
	About Dyamic binding
	Recap: LSP
	Liskov substitution principle

	Recap: Interfaces & Abstract classes
	Abstract classes
	Interfaces

	Recap: Casting an Interface

	Problem Set
	Q1 background
	Q1a
	Q1b
	Q1c
	Q1d
	Then should Rectangle inherit from Square? 

	Q2a
	Q2b
	Q2c
	Q2d

	The End

