
CS2030S Recitation
Week 4: Problem Set 2

brian

2026-02-05

National University of Singapore

Recap

About Dyamic binding

Why do we use method descriptor? Isn’t method signature not enough?

Needed for type checking (Find method descriptor → type checking)

1 // In A.java java

2 int foo(Circle c) {

3 return 1;

4 }

5 boolean foo(Object o) {

6 return false;

7 }

8 // In main method

9 A a = new A()

10 boolean x = a.foo(new Circle(new Point(0, 0), 1);

National University of Singapore 2 / 21

Recap: LSP

Liskov substitution principle

• Let 𝜑(𝑥) be a property provable about objects 𝑥 of type 𝑇 . Then 𝜑(𝑦) should be true for

objects 𝑦 of type 𝑆 where 𝑆 <: 𝑇

• Sounds like it contradicts polymorphism

‣ Not really, we only care about properties that we are interested in

‣ They should still do the same thing, but maybe in a different way

National University of Singapore 3 / 21

Recap: Interfaces & Abstract classes

Abstract classes

• Sometimes we don’t have the full information to make a class but we have partial info

‣ Humans all have 2 eyes, all have the same metabolic functions (methods)

‣ But individual humans have different ways of talking, walking, etc

• Imagine writing an abstract Human class

‣ For methods and fields we know, we just fill them in

‣ For methods we don’t know how to implement yet, leave them abstract

‣ classes that extend Human would have to implement the abstract methods

National University of Singapore 4 / 21

Recap: Interfaces & Abstract classes

Interfaces

• An interface has all methods abstract and no fields

‣ These methods are always public

• It is a promise that anything that implements it has those methods

• A LandVehicle can be abstract with methods like drive etc

• Model what it can do (implementation left to implementations of the interface)

National University of Singapore 5 / 21

Recap: Casting an Interface

• You can almost always cast at compile time

‣ Compiler can’t prove that you might not have put a subclass that implements that

interface so it allows it

‣ Unless the CTT of whatever you are casting is final

‣ If actually does not implement interface at run time then run time error

National University of Singapore 6 / 21

Problem Set

Q1 background

1 public class Rectangle {
2 private double width;
3 private double height;
4 public Rectangle(double width, double height) {
5 this.width = width;
6 this.height = height;
7 }
8 public double getArea() {
9 return this.width * this.height;
10 }
11 @Override
12 public String toString() {
13 return "Width: " + this.width + " Height: " + this.height;
14 }
15 }

Rectangle::getArea is expected to return the product of its width and height

National University of Singapore 8 / 21

Q1a

We believe that Square inherits from Rectangle

Square instances must satisfy that the four sides are always the same length.

Create a class called Square with a single constructor method. Should have the following

jshell output

1 jshell> new Square(5);
2 $.. ==> Width: 5.0 Height: 5.0
3
4 jshell> new Square(5).getArea();
5 $.. ==> 25.0

National University of Singapore 9 / 21

Q1a

1 public class Square extends Rectangle {
2 public Square(double length) {
3 super(length, length);
4 }
5 }

National University of Singapore 10 / 21

Q1b

Now Rectangle has two new methods to set the height and set the width.

1 public void setHeight(double height) {
2 this.height = height;
3 }
4 public void setWidth(double width) {
5 this.width = width;
6 }

Behaves like you would expect

1 jshell> Rectangle r = new Rectangle(5, 5);
2 jshell> r.setHeight(5);
3 jshell> r.setWidth(9);
4 jshell> r.getArea();
5 $.. ==> 45.0

Explain the undesirable effects for the Square class?

National University of Singapore 11 / 21

Q1b

• Explain the undesirable effects for the Square class?

‣ Square inherits setHeight and setWidth methods from Rectangle

‣ Height and width of the Square can now be independently set

‣ The property of having all 4 sides being the same is no longer true

National University of Singapore 12 / 21

Q1c

Now we override these in Square

1 @Override
2 public void setHeight(double height) {
3 super.setHeight(height);
4 super.setWidth(height);
5 }
6
7 @Override
8 public void setWidth(double width) {
9 super.setHeight(width);
10 super.setWidth(width);
11 }

Does this make sense? Should Square inherit from Rectangle?

National University of Singapore 13 / 21

Q1c

• Based on LSP, wherever we have a Rectangle, we should be able to put a Square and still

have the same properties (that we choose)

• But if we put a Square, it would no longer adhere to the property of Rectangle::getArea

‣ Example: Checking if a document is in landscape or portrait

• LSP is violated, so Square should not inherit from Rectangle

National University of Singapore 14 / 21

Q1d

Then should Rectangle inherit from Square?

• If Rectangle inherited from Square

• property of having all 4 sides the same is violated

• LSP is violated. Square and Rectangle should not inherit from each other

National University of Singapore 15 / 21

Q2a

We have the following code

1 interface Shape{
2 double getArea();
3 }

1 interface Printable {
2 void print();
3 }

1 Circle c = new Circle(new Point(0, 0), 10);
2 Shape s = c;
3 Printable p = c;

Explain the compilation error (if any) in some of the statements below

(i) s.print() (ii) p.print()

(iii) s.getArea() (iv) p.getArea()

National University of Singapore 16 / 21

Q2a

• For i, s has compile time type Shape so does not have the print method. Thus a compilation

error is thrown

• For ii, no error. Printable has print method and p is of compile time type Printable

• for iii, no error. Shape has getArea method and s is of compile time type Shape

• for iv, p has compile time type Printable so does not have the method getArea. Thus a

compilation error is thrown

National University of Singapore 17 / 21

Q2b

Your best friend, Ah Beng, proposes to re-implement Shape and Printable as abstract classes

instead. Would this work?

• No. Java does not allow the inheritance from multiple parent classes

• Abstract classes are still classes

National University of Singapore 18 / 21

Q2c

Can we define another interface PrintableShape which extends Printable and Shape and let

Circle implement PrintableShape instead?

• Yes. Interfaces can inherit from multiple super-interfaces

• Note that the keyword is extends and not implements when interfaces inherit from other

interfaces

National University of Singapore 19 / 21

Q2d

Give an example to illustrate why Java cannot inherit from multiple parent classes but can

implement multiple interfaces.

• Say A has foo() which prints “a”

• B has foo() which prints “b”

• Let C inherit from both A and B, which foo() does it get?

• Interfaces are fine since if A and B are interfaces, then C is forced to implement foo()

National University of Singapore 20 / 21

The End

bye!

	Recap
	About Dyamic binding
	Recap: LSP
	Liskov substitution principle

	Recap: Interfaces & Abstract classes
	Abstract classes
	Interfaces

	Recap: Casting an Interface

	Problem Set
	Q1 background
	Q1a
	Q1b
	Q1c
	Q1d
	Then should Rectangle inherit from Square?

	Q2a
	Q2b
	Q2c
	Q2d

	The End

