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A Probabilistic Model for Mining * What is a Carbohydrate Sugar Chain (Glycan)?

.  Glycan = Labeled Ordered Tree
Labeled Ordered Trees: . Databases on Glycans

I i  Probabilistic Models for Labeled Ordered Trees
Capturing Patterns in babil del beled Ordered
; and their empirical experimental results
Carbohydrate Sugar Chalns — Probabilistic Sibling Dependent Tree Markov Model
(PSTMM)

Hiroshi Mamitsuka _ Profile PSTMM
Bioinformatics Center — Ordered Tree Markov Model
Kyoto University » Concluding Remarks
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% Glycans %Glycans: Third MajorCTass
e Carbohydrate Sugar Chains = e DNA: Genome - Genomics
Giycans < o] - -
« Third major class of % %, * Protein: Proteome - Proteomics
biomolecules next to DNA C T e~ : - i
and proteins ’gi\ rﬁf‘i 1 E ’ GI¥Ean' I(|3|y:0r$e tflyi:tohmlcst. tv of
« Often found on cell surfaces % ,ﬁ’ C:ell membrane] - € collective 1gentity o e entirety o

carbohydrates in an organism

— The collective identity of the entirety of
carbohydrates in a cell

* Crucial to the development ."I
and function of multicellular !
organisms Glycolipids

* However, many still
unknowns in glycobiology

G Bioirformatics Cerder .
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é Glycan Structuré % Building Blocks of GIVEans
« DNA: String of four letters 6
— four kinds of nucleotides (A,G,C,T) O Gap Galactose . HoH
- _ . | O GalpNAc N-acetylgalactosamine i,
» Protein: String of twenty letters ® Gicp  Glucose 4 Kom HH1
— twenty types of amino acids B GlcpNAc N-acetylglucosamine
* Glycan: Tree structure of monosaccharides ‘f ":'a"*’ "\:"a””ose Glioseo(gc)
- ucp ucose
(sugars) and linkages % Xylp Xylose Sugars
— More than 10,000 structures known @ NeupAc N-acetylneuraminic acid
— ~twelve main types of monosaccharides (i.e., Glucose ¢ NeupGe N-glycolylneuraminic acid Bonds
[Glc], N-acetylglucosamine [GIcNAc], Mannose [Man]) & KDN Ketodeoxynonulosonic acid A
— 10-15 classes (i.e., N-Glycans, O-Glycans, GPI / g
anchors, etc.) anomer  Carbon #
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%Nhat Do Glycans Look Tike?"

» Variations in

s o S e, b e

é What Do Glycans Look Tike? ™

¢ |IUPAC 2D Representation

A, Conforma_t'ons * Tree structures of
\—-"‘: \»:*\ between just two monosaccharides and linkage: o B4 mB2 @ o6
B i sugars _ + Nodes = oy ™ I Biyg
e (monosaccharides) sugars/monosaccharides
. P < NER * Typical glycan + Edges = bonds/linkages of'm
RO N ey structures contain 10- * Features: Root node
iy 15 Sugars! 1. Rooted tree
e g e 2. Monosaccharides = Labels
3. Ordered children
i m&- G ‘Boinformatics Contes
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% Glycan Structur® % Outline
 Glycanis * What is a Glycan?

— Rooted Tree:
« Tree with root
— (Rooted) Labeled Tree:

* Tree whose nodes have labels attached
— Monosaccharide names

— (Rooted) Labeled Ordered Tree
« Labeled tree whose children are ordered

* Glycan = Labeled Ordered Tree

» Databases on Glycans

» Probabilistic Models for Labeled Ordered Trees
and their empirical experimental results

— Probabilistic Sibling Dependent Markov Model
(PSTMM)

— Profile PSTMM
— Ordered Tree Markov Model

e Concluding Remarks

General Database Symw”
% for Glycans

CarbBank

SWEET-DB / glycosciences.de
KEGG GLYCAN

e Consortium for Functional Glycomics
EuroCarbDB

» Commercial databases:
— GlycoSuite (Proteome Systems, Ltd.)
— Glycomics DB (Glycominds, Ltd.)

% CarbBank e —

Developed by Complex Carbohydrate
Research Center, University of Georgia

« Community database of carbohydrates

Project ended due to lack of funding in
1996

Continued in Japan until around 2000




% SWEET.DB ~

A part of Glycoscience.de L e e

* http://lwww.dkfz- iy L
heidelberg.de/spec/sweetdb/ ——

» Combines CarbBank and Sugabase using
a common web-based interface ey

 Provides searching by bibliography,
structure, NMR and MS, as well as by
LINUCS ID
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KEGG GLYCAN™ "

* http://www.genome.jp/kegg/glycan/
» Based on CarbBank as well as input from

scientists

« All data is linked with KEGG's other
resources: GENES, PATHWAY, KO
(KEGG Ontology) and literary databases

€

Related Pathway Maps

]

Compute | | Clear

Enter query glycan: (in ane of the thees forme )

mascs Contes L . . ‘Boinformatics Contes
e, e it e, e
pe— Glycan Biosynthesis.angd===22.
Metabolism Pathways
N-Glycan biosynthesis Gchosylphosphatidylir)ositol(GPI)
High-mannose type N-glycan -anchor biosynthesis
biosynthesis Glycosphingolipid metabolism
N-Glycan degradation Blood group glycolipid
O-Glycan biosynthesis biosynthesis - lactoseries
Chondroitin / heparan sulfate Blood group glycolipid )
biosynthesis biosynthesis - neo-lactoseries
Keratan sulfate biosynthesis Globoside metabolism
Glycosaminoglycan degradation Ganglioside biosynthesis )
Lipopolysaccharide biosynthesis ~ Glycan structures - biosynthesis 1
Peptidoglycan biosynthesis Glycan structures - biosynthesis 2
Glycan structures - degradation
e, . . . KEGG Glycan Search sics Caniss
Pl R, e Sty
Overall Relationship of e .

Giycan |0 G00078  {gxample) G001 KCaM Main Server

KCF Féa Namg ¢

KCF File Text

Salnct targnt database;
&) KEGH GLYCAN O CarbBank
Select progrom:

¥ Gagped (Approsmats mateh)
ungappad (Fact match)

Sebect option:

KCaM Tutorial
KCaM FAQ
KCaM Dacs
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Chyo am Bats Beari b Resel
w7t PaTE rIRET— - - " a
View Structure - :
KEGG Glycan Search
[Computo | (Retum = -
Query 500078
Galbt—a fxiCNAf.l "
Galvt— GleNACH —3 Gale1—4 Glewt—1 Car
Structumn 3
o
Galer—a GleMAC - -
00070
Datahase KEGG GLYCAN
O CarbBank
Program apped (Approximate match)
Ingapged (Exace match) ) - = = -
Gphion Giobal search =
Local search
Chyoam Bats Beari b Resel
[ - - i -
m " -
v - =
s - -
L L c
Similarity-3eore - 700
G, f ormalics Cerdse KEGG Glycan Search lics Caniss
Query : [t R, S Sstm Searn s ey
e e e
Compute
Enter quury glyean: (in ane of the thee farme)
siyean o [GOOO78 (gwampie) Gonoz1 [ View US| gea ain Server
~ A = KoM Tutorial
468181 s Gleni 81— Gl Mt GLcM L e i = KCoM FAQ
. KCaM Dacs
[T
™ Select progrom:
81— Glchie bt —3 al 41— Gl bl —— L er
; ¥ Gagped {Approamace m
Ungapped (Fxact match)
Seheet option:
() Global search
Diocal ssarch
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Consortium for Func

é Glycomics

» Consortium home page:
http://www.functionalglycomics.org/

» Consortium of major universities and research
institutes worldwide

« Aim: to provide a central resource for glycomics
research

* Also provides requested resources to promote
participating investigators’ research
— Glycan arrays and data
— Mass spectra analysis...

+ CFG glycan database web page:

http://www.functionalglycomics.org/glycomics/molecule/jsp/carbohyd
rate/carbMoleculeHome.jsp
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* http://www.eurocarbdb.org/
« Based in Europe, but participants from
universities and research groups
worldwide
« Distributed infrastructure to integrate e ———— [————
multiple resources with a single interface . e
Ell 0 O hodogy 0 f Car = |
% Outline ™" % Where to Begin? ™ """
* What is a Glycan? « Glycan Structure:

* Glycan = Labeled Ordered Tree _ Rooted Tree:

« Databases on Glycans « Tree with root

» Probabilistic Models for Labeled Ordered Trees — (Rooted) Labeled Tree:
and their empirical experimental results i

— Probabilistic Sibling Dependent Markov Model * Tree whose nodes have labels attached

(PSTMM) — Monosaccharide names
— Profile PSTMM — (Rooted) Labeled Ordered Tree
— Ordered Tree Markov Model « Labeled tree whose children are ordered

e Concluding Remarks
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@otivation (from Biological Side) ™

* Glycans = Labeled Ordered Trees

* Many unknowns in glycobiology
— High uncertainty and noisy

» The leaves of glycans are important in
recognition by various pathogens

« Differences in these patterns affect
biological functions

« Pattern mining method robust against
noise required

%Iotivation (from Informatics Side)

» Labled Ordered Trees: Semi-structured (or
Unstructured) data
— Other examples found in web and text mining, e.g.
XML
* Mining semi-structured data, like graphs and/or
trees, becoming important in machine learning
and data mining

« Frequent pattern mining and kernels already
developed recently

* New mining approaches robust against noise
required

‘Bioinformatics. Cendes

LS

% Probabilistic Modeling ™~

Statistical machine learning

» Represent uncertainty

Robust against noise in data

Efficient learning schemes already known

Modeling labeled ordered trees not
developed yet

i ‘Bioinformatics Certes.
e e e, s S
S S AT TR

Mining Labeled Ordered Trees
Based-on Probabilistic Modeling
* To “learn” patterns from the tree structures

of glycans by estimating the probability
parameters of our model

% Three Problems

¢ Must be solved to be used in real-world
applications
1. Computing likelihood: computing how likely
a given example can be generated from a
model

2. Learning: estimating probability parameters
of a model from given data

3. Parsing: finding the most likely state
transition on an example given a model

-, BecnfonTabcs: Ceriet
e e S S e e

% Three Problems

1. Computing the likelihood of a set of trees:

— To determine which data are considered to
belong to same class as training (learned)
data

2. Estimating the parameters:
— To “learn” patterns found in given data
3. Finding the most likely state transition:
— Toretrieve the learned patterns
— To apply to multiple alignments




% Three Problems

e Learning (estimating probability
parameters) is the most important,
since ...

e Computing the likelihood is a part of
learning

e Parsing can be done by modifying the
likelihood computation

é Three Problems

* Must be solved to be used in real-world
applications
1. Computing likelihood: computing how likely

a given example can be generated from a
model

= 2. Learning: estimating probability parameters
of a model from given data
3. Parsing: finding the most likely state
transition of a tree given a model

. ‘Bioinformatics Canter
e
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¥ Hidden Markov Model (HMM)

* Model: set of states connected by directed edges
» Parameters:

— State transition probability: &;

— Label output probability (at state): b; (k)

 Operation: series of Markov transition on states,
generating sequence of labels (string) with

likelihood
6 O : state

i’ \ «— : state transition

f : Label output

- ‘Bioinformatics Certes.

% Three Problems

« Hidden Markov model case:

1. Computing likelihood: computing auxiliary
probabilities: Forward or Backward
probabilities

2. Learning: Maximizing the likelihood by
Baum-Welch (Forward-Backward) algorithm,
an EM (Expectation-Maximization) algorithm

3. Parsing: Viterbi algorithm

., BaoindorTatics Certer

e:orward Probability, HMM Case

* The probability that the current state is j and
string [1..1] is already generated: «,[t, j]

« Dynamic programming over t available
+ Updating formula: o,[t,i]= ab;(c)e,[t-1i]

b
B

| P remd prx
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|

| S

| S
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é o

Computing Likelihood, HMM Case

e Compute forward probabilities over whole
a given string

e Use final forward probabilities

» Likelihood: Zi‘,aafr,i]




- ‘Beoirdormatics Cenler

é Learning, HMM Case

* Baum-Welch (Expectation-Maximization)

‘Beosnformabcs Cente
.

Supplement for HMM L

Computing backward probabilities

= pai, j)b;(o.s
algorithm states | A (i) zj:ﬂm(l)a(l (o)
1. Compute forward probabilities ! N
2. Compute backward probabilities: 5,1t i1 J
Probabtilitg that the current state is j and string [t..T] is already i time
generate: . 0 =
3. Compute expectation value of transition ij: stateSCOITIDUtIng eXpeCt::itI?n values
E,, [#((, ). 6l c ) e, [t.ilab; (01,) B, [t +1 ] )
4. Update transition pro‘_be_lbility a; using expectation . / (D)
values: = E; [#((, )01 { i !
' Y E G )).0)
« The above steps iterated until convergence i
ime
1t {41 {30
> - - — e e
Summary Probabilistic Models for Trees
¢ Maximizing the Likelihood _
« Baum-Welch: EM algorithm * Notations
i —Tree: T
¢ Repeat the following two steps alternately Nrede
— Node: x

until some stopping condition satisfied
— E-step:
1. Compute forward and backward
2. Compute expectation values
— M-step:
1. Update transition probabilities

— State type: s
— State of node: z
—Label: o

Related work:
Hidden Tree Markov Model (HTMM)

[Deligenti et al., 2003]
» Probabilistic model for labeled trees, not
for labeled ordered trees

« State depends on that of the parent only

Dependencies

%HTMM Cannot Capture Sibling
Dependencies!

10
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é Outline

* What is a Glycan?

* Glycan = Labeled Ordered Tree

« Databases on Glycans

» Probabilistic models for Labeled Ordered Trees
and their empirical experimental results

— Probabilistic Sibling Dependent Markov Model
(PSTMM)

— Profile PSTMM
— Ordered Tree Markov Model
* Concluding Remarks

Proposed model
 Probabilistic Sibling dependent Tree
Markov Model (PSTMM)

— Modeling sibling dependency as well as
parent-child dependency

— Extension of hidden Markov model (HMM)
and hidden tree Markov model (HTMM)

‘Bioinformatics. Cendes

LS
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PSTMM

« State depends on those of both the parent
and the immediately elder sibling

Dependencies

e
ST G AN T AT TR

Define PSTMM Parameters

* Three probability parameters
— Initial state probability: 7[s]=P(z' =5,))
« Probability that the state of the root is SI
— State transition probability:

al{s,,8}.8,1(=P(zj =5, | 2, = 54,2 =)

- Probability that the state of jis S, given that the
state of the immediately elder sibling is SI and the
sate of the parentis Sy

— Label output probability: b[s,, o]
* Probability that the state S, outputs O,

Bioirformatics Cerder
et

» Extension of HMM for Labeled Ordered
Trees
» Labeled Ordered Tree
— Two directions:
 Parent-Child directions
« Sibling directions
— Sibling: Forward and Backward
— Parent-Child: ?

A\

—

A\

Downward and Upward!

P o Caceme S, s iy

% Four Auxiliary Parameters™

 Define the following four
probabilities for a tree u with
nodes Xy, ..., X,
— Forward F, (sq, S, xJ)
— Backward B, (sq, S xj)
— Upward U, (Sq, Xp)
— Downward D, (s;, X)) ==
» Each computed by dynamic
programming (DP)

PSTMM

11



G sl Computng Backuaidahd
. « Example Upward with
Backward: / \
Upward: E
dettg i
Iléo.r.vlvlard Fy (Squ S1, %) F:;c;:ward B, (fslqs"l1 X)
% Computing Backward"a’n‘ e Computing Backward@and™" "
Upward with DP Upward with DP
Backward: / \ Backward: / \
Upward: E Upward: E

TR R

Computing Backward and
Upward wit
Backward: /\

Upward: E

€

e o Cacem S, s iy

Computing Backward"' nd™"

Upward with DP

Backward: /\

Upward: E

12



Computing Backwardand™
Upward with DP

Backward: / \

Upward: E

‘Beoirdormatics Cenler
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,,,,,,

\\\\\

.

é Computing Backward and ™~

Backward: / \

Upward: E

Backward: /\

Upward E

‘Bhonformatics. Cendes
et o Do St sty

AT PRI

- ‘Bioinformatics Certes.
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% Computing Backward and
Upward with DP
Backward / \

Upward E

Computing Backwardand™
Upward with DP

Backward / \

Upward E

Bioirformatics Cerder
P o S S s sy

P o Cacems S, s iy
AT

% Computing Backward and
Upward with DP
Backward / \

Upward E

13
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Computing Backward and
ith.D
Upward Wlt P
Backward / \
Upward E

;;;;;

e o S s, b s
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Computing Backward an
Upward wit
Backward / \

Upward E

‘Bionformatics. Cendes
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Computing Backwardand ™
Upward with DP

Backward: /\

Upward: E

‘Bioinformatics. Centes.
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% Estimating Paraméters

* Maximum Likelihood and EM (Expectation-
Maximization) as shown for HMMs

« E-step computes three expectation values in E-
step:
— N(s,,) = initial state expectation value
= Y({sy Sm} ) = state transition expectation value
— &(s,, gy, = label output expectation value

* M-step updates our probability parameters Tt[s|],
a[{sq s} syl and b [s;, oy] using these
expectation values

« Repeat E-M until likelihood is maximized

Estimating Parameters:
Iteration Procedure
™ E-step

UF,BD M-step

5 e LT
ST et

u
FBD UFBD UFBD
>

e L pm——

» The likelihood of tree T, given a set of
parameters © can thus be found at
the root node x, as:
- L(Tu ve) = zT[[SI] Uu (SI ' Xl)
» The likelihood for a set of trees
T={T,..., T,}given a set of parameters © can
thus be computed as a product of the likelihood
of each tree:
-L(T:©) =T, =71t [5] Uy (51, X1)
=M, L(T,;0)

14
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éMost Likely State Transition

¢ HMMs:
— Viterbi algorithm
— Used for multiple sequence alignment

* PSTMMs:
— Viterbi algorithm
— For Multiple tree alignment

e o S M, b s

@he Most Likely State Transition

« Based on maximum likelihood parameters,
we can calculate:
— g(Sq Smy X)) = Maximum state transition
proba?blllty
— @y (Sq: Xp) = Maximum output label probability
— g (Sq Sms %) @and Ty (Sq, Xp), Which retrieve

the actual states correspondlng to these
maximum values (argmax of ¢p)

‘Bionformatics. Cendes
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% Empirical Experiménts™

« Experimental Setting
— Synthetic
« Performance comparison

— Capture sibling-dependent patterns

— Discriminate between those that do and do not contain
these patterns

— Use five-fold cross validation
— Real data: glycans
« Performance comparison
« Analyzing patterns found

- ‘Bioinformatics Certes.
e e e, s S
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Synthetic Data Experiment

« Compared to five models that
do not incorporate any
dependencies among children.
— HTMM
— Label model (LM)

— Mixture of label model (MLM)
— Label pair model (LPM)

Mixture of label pair model
(MLPM)

Bioirformatics Cerder
P o S S s sy

% Synthetic Data Expefiment

» Positive data set consisted of trees of equivalent
size, embedded with various types of patterns:

» Negative data set (which is used only for test)
consisted of trees of equivalent size, keeping
the same distribution of parent-child pairs as
that in positive data set

2 3 % 507 5
Ql Q2 )3 Q4 p Qs 4 p Qb
-~ o d _ d fL -
y > » > »
F o ,)n'f IR )y s '"\l:
db .é. ji-1 Ji-1 ey
o 00
I A A R & B i+l

P o Cacems S, s iy
WY CPRE AR T AT AR

Results

« Trees with patterns vs. ones without patterns.
— AUC (Area under the ROC curve)
Equivalent to Mann-Whitney-Wilcoxon text and Gini index
— PSTMM outperformed being statistically significant (t-test).

Pattern | PSTMM HTMM | MLPM LI’M | MLM
Q1 | 87.6 | 569 (13.0) | 71.8 (12.5) | 50.7 (40.0) 19.9 (64.0) 576 (
Q2 801 51.4 (24.4) | 48.5 (3 7T (27.6) | ¢ 1.
L85 96.1 230 (55.0) | 512 (7 1 (36.8] | B
Q4 80.0 48.9 (10.3) | 589 ( 603 (6.5)
G 70.3 50.5 (13.1) | 5.8 (16.1) | 50,0 (18.3) ) . (
Q6 84.5 | 50.3 (48.4) | 9.1 (21.5) | 51.5 (39.1) I'J ;["{J.GI 19.8 (27.4)

15
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Results

» Trees with patterns vs. ones without patterns.
— Accuracy
+  (TP+TN)/(TP+FP+FN+TN)
« Threshold is selected such that the accuracy is maximized.
— PSTMM outperformed being statistically significant (t-test).

% Results ™=

« Trees with patterns vs. ones without patterns.
— Precision at recall of 30%
«  TP/TP+FP)
« Threshold is selected where the recall TP/(TP+FN) = 0.3
— PSTMM outperformed being statistically significant (t-test).

Pattern | PSTMM | HTMM | MLPM | LPM | MLM | LM
W 80.9 58.1 (14.9) | 66.8 (10.7) | 52.9 (30.4) | 50.0 (35.0) | 55.3 (21.8) Pattern | PSTMM HTMM MLPM LPM MLM LM
Q2 83.8 53.5 (30,0) | 51.2 (47.5) | 58.0 (32.7) | 58.6 (26.9) | 55.9 (31.6) Q1 99.2 | 53.5 (22.0) | 76.8 (14.0) | 49.7 (28.3) | 50.0 {123.5) | 54.3 (28.8)
Q3 90.7 54.3 (20.9) | 53.2 (43.4) | 58.7 (37.4) | 60.7 (35.0) | 56.5 (25.9) Q2 95.3 50.3 (37.1) | 48.8 (61.5) | 59.2 (35.4) | 46.9 (75.0) | 50.0 (38.4)
4 73.9 522 (8.1) | 58.1 (5.97) | 59.5 (4.86) | 50.0 (8.73) | 56.6 (6.27) 03 99.0 51.2 (46.2) | 53.8 (39.1) | 64.0 (13.7) | 48.8 (55.7) | 55.8 (36.4)
85 66.1 | 525 (16.5) | 53.3 (10.4) | 52.0 (15.1) | 50.0 (18.5) | 52.2 (12.9) Q4 87.3 | 47.6 (7.3) | 50.1 (4.64) | 57.8 (6.44) | 50.0 (6.99) | 51.2 (7.03)
(875 78.2 | 523 (36.2) | 51.4 (18.7) | 52.9 (30.2) | 50.0 (25.1) | 53.3 (20.1) Q5 75.7 | 51.0(16.9) | 51.6 (14.8) | 48.9 (13.2) | 50.0 (13.6) | 45.4 (13.9)
i 6 88.2 50.0 (31.6) | 49.2 (19.0) | 52.5 (44.2) | 50.0 (29.2) | 47.4 (28.4)
e, ‘Boinformatics Centes: L ¥ ‘Boinformatics Contes
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Applying PSTMM to Glycans

» Glycan classes

ol
sibling

w. (3t okl 1

pairs thin cach plycan

ey
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Glycan Data Experiment

» Data set consisted of
—true glycans
—“negative” data

o 1 « Negative data: randomly generated trees
e i i containing same distribution of parent-
dasses] —  OuGiyean 55 A child labels as true glycans
— Ghosamiscghism S 4l KD ) . i
e Ol + Five-fold cross validation
Mooy s 1 51 g
7% i 1.3
I S
W) 3 L]
—r Bioirformatics Cerder

% Glycan Results™™

1 1
08 08 |
Zos £os
= =
2 e
204 S04
02 MLPM —— 0.2
HTMM <
: PSTMM e 0
0 02 04 06 08 1 0 02 04 06 08 1

False positive rate

N-Glycan: AUC 92.0

False positive rate

O-Glycan: AUC 80.1

e o Cacem S, s iy
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Glycan Pattern Mining

Semim, L im
e i St b e
o ‘“\_‘ 1.-" ‘"\‘I_ e "\l
PR LT T e o o Wi, R S—— R W
tay i a ' S, "
i, - -, - =, =i
-
W _— i e, - -
LT i T
e arton A
o i
R i s e i fon R s L




‘Beoirdormatics Cenler
i o S M.t s
AT EIEE T P T e SR

Glycan Pattern Mining

- —

é Glycan Tree Allgnmenf

Kom iy w1y pm gy 1)

-

K im,
-5 e 5
‘f e 'H"'\
i K e N N "‘" '\I ‘\
i, st
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% Learned Classification ™"

e ] 5

\ N\,
S Sietet g p = SivSienS SemionS
a.-:.>"/ _:— : b ) >5‘/ s smsof
High Mannose @)‘? %.?
Hybrid bt
s e [ e \“ .
NS e RIL R TE & raSre=5.
Complex W e W

ey

Computational Complextty“ﬁf"’“”“’*
PSTMM

« Equivalent to context free grammars for
strings: maximal practical bound

Time Space
U, ¢y, 1 O(|T|-|S]*- V] | O(S]- V]
B, ¢p, T O(|T|- |S]*- [V]) | O(SF - |V])
F O(|T]- |S]*- VY | O(]S]*- [V])
D O(T]-[SPE- V) | O(S]-V])
Jila) O(T|- S - [V]-IC]) O[S
() O(TL-1S[- V) | OUSI- =D
() ot 15V | OUS)
i O(|T] - |S]*) O(|SH)
b O(T|- 18- v | OS]-1ZD
it O(|T] - |5]) O(]S])

% Drawbacks of PSTMM

« Computational complexity is maximal
practical bound

 Overfitting problems

« Difficult to retrieve patterns from learned
states

WY CPRE AR T AT AR

New Models of Labled Ordered
Trees

¢ Profile PSTMM
— Incorporate match, insert and delete states
— Utilize new state transitions: Down and Right
¢ Ordered Tree Markov Model (OTMM)

— Reduce dependencies on parents: State
depends on that at the immediately elder
sibling only, except that the eldest siblings
which depend on their parents
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é Outline

* What is a Glycan?

* Glycan = Labeled Ordered Tree

« Databases on Glycans

» Probabilistic Models for Labeled Ordered Trees
and their empirical experimental results

— Probabilistic Sibling Dependent Markov Model
(PSTMM)

— Profile PSTMM
— Ordered Tree Markov Model
* Concluding Remarks

e o S Mern, b e

ProfileHMMs = 777
D Match/Delete O Insert

n

« Match and Delete states can be found together
at same positions.

* Insert states loop back to themselves or to the
next position.

« Begin state at start and End state at end.

——> Do » Two types of transitions:
— parent-child
— between siblings

» Begin state transitions
down to root node

10N
—===» Right 1 N\
—— Down/Right \\
[ wacvodee j

O v é/

EL a — Also represents End state
// \ D * Positions (1, ...,i, ... n)
) are fixed
A\ 8 8 8

» Each position has C(i)
children positions

b

%ProfiIePSTMM Stateﬁéla'a‘:; % Probability Paramé'f%%mz;

 Similar Forward, Backward, Upward and
Downward parameters

 State positions are fixed:
— Tree is traversed together with state model

— No need to traverse every combination of
states (as when they are free)

— Much more efficient

« Profiles could be retrieved directly from
match states’ label output probabilities

Bioirformatics Cerder
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% Synthetic Experiment

* Three types of

profiles .
. . [0] [o-o]
« Fifty trees containing :) o
a profile [¢]
8 Profilel by Profile2 ©) Profile3

« Fifty negative data
trees with same
parent-child label
distribution

» Fixed state model

State model

P o Cacem S, s iy

%ynthetic Experiment RESUTE™

| iy
— «1a” X Pl P2 P3
b 1o Accuracy | 914 78R 8§92
/ Precision | 843 974 926
20 AUC 910 868 903
—— w107 Profilel
(i 58 N L \
P— \ ¢
) o1 \,. 0t
VARNEY /

2 1n” Profiled
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% Glycan Class Experiment

» Test the three sub-classes of N-Glycans:
— High-mannose, Hybrid, Complex type

» 50 examples for each subtype (positive
examples)

« 50 negative examples generated from
distribution of positive examples

BeoarsorTatos Certet
e o S B s e

:>':.>-\"—l-- l'“'/\J:“\/"Ow—--u--—‘l .:.._;.:!.>:"' e —

% Glycan Class Experlmeﬁ"t”

0N D. (N
L i Y S
s —5 ¢ '“/_..,.. -

« Galectins are glycan-binding proteins
* Recognize galactose at leaves
« Details still not completely understood

for major galectins in Hirabayashi et al.
2002.

« Positive data: 30 weighted glycans

* Negative data: 30 glycans with same
parent-child label distributions

LS

% Galectin Experim&nit """

 Binding affinity for specific glycans tested

[, Hgh-mannose Hybrid Complex
i — _>llh Al — Hl;uh-m,u\mm' Hvbrid  Complex
LB Accuracy | 978 9852 a0
mple: Precision | 882 04 882
AUC 959 966 954
e, Boinformatios Senter G ‘Bcinformatios Contes

e
AT TRE—

alectin Binding Glycan Data
'IBDP & .'osjﬂ I“iﬂ_ﬂ‘ﬂ‘ﬂ }ﬁ:“ ..::G::F.U'D ‘;..:;?‘-ﬂ

o 8 e o =t
sopeh sobab ¥ "hipas sshes "bipee
-f‘. o+ :5:}?'1. e 2 “-3“, x_-:ﬁ‘.
-8 1EIII .ﬂll __"ll 'i-._‘ E"I‘I ‘%.ii
;;;"Ix’* '5;4 -8 e F Y] fﬂ.. ac®®
."I 'g" .-u"" "_P.-

1 g et s  ope

@aleotm Binding Affinity Data™

Gal-3 afinity (weight)  Gal-9N affinity !\\L‘i;]ill

P o S S s sy

ble 3. Binding atfimties and weights for Galectin-3 and Galecun-9N
Adfinaty values are normalized and inverted from the onginal data by Hiraba-
yashi [16] such that higher values indicate higher affinity. Abbreviations:
NAJ triantenmary N-Glycan; fuc. NAJZ: core-fucosvlated NAJ: NA4:
tetranntennary N-Gilyean: fuc. NA4: core-fucosylated NA4L penta.: penta-
saccharide; A-hexa: A-hexasaccharide; LN3: LAcNAc: LN3: (LacNAck

NAZ 1.28205(1) 2.6316(2)

fue. NAS L21951 (1) 22222(2)
NAJ typel 108696 (1) 1.6949 (0)
NA4 LA4928 (1) 5.5556 (5)

e, NA4 LAUB45 (1) 43478 (4)
Gl penta 147059 (1) 0.2273(0)
Forssman penta 016129 (0) TLITEGE)
A\-hexa L3873 (1) 38462 (3)
N3 2E5TI442) 12346 ()

L.N3 3.26316(5) 8.3333 (8)

e o Cacemc S, s iy

@Ieotm Binding Glycan” F"B‘FTes

. 55
'Jf.l
| e
B o.n
O s— =
| e
1 Q8 L
=1 K
| > [

Ao
. A1
[o B pu— ;
= 2 . 20 @
a} Galeztin=3 hindirg profile b Galectin-ON binding profile

Gal-3  Gal-9N
Acc 547 91
Prec 1.0 918
AUC 93 931
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Testing Profile Differentiation

e o Do Sern, b s

@provement in Computation TTme ™~

 Train two profiles on « Efficiency increased by O(|S|)
. .8
different data sets o
* Test both on both =1 & e 600 | profile;’§¥mm —
data sets to assess  , ;| . 2 ol
. . . e -1 o
differentiation ability £ A 8
g -4 d < 400 f
Table 5. 2x2 Contingency matrix for O- O L o * £
Glycan wvs. Sphingolipid (Sphingo) class A8 é ¥ 3 300 +
differentiation, The resulting discrimination E
rate is 923/968=95 4% 18l g 2007
O-Glyean  Sphingo Q-Glycan 5 100
nnsih‘l II!l\l‘LT| -2 Sehingo ooy
O-Glycans 445 34 -2 -18 -16 -14 -1.2 -1 -08 0
Sphingo | 478 Sphingolipids 5 10 X ft115 20
number of states
g ‘Boinformatios Cante - ‘Bicinformatics Centes
. . PR B 3 RS SR . Ordered Tree Markovmﬁum—
Outline (OTMM)

* What is a Glycan?
» Glycan = Labeled Ordered Tree
» Databases on Glycans
» Probabilistic Models for Labeled Ordered Trees
and their empirical experimental results
— Probabilistic Sibling Dependent Markov Model
(PSTMM)
— Profile PSTMM
— Ordered Tree Markov Model

e Concluding Remarks

« State depends on that of the immediately
elder sibling, except the eldest siblings
which depend on the parents

Dependencies
3 —— % Ordered Tree Markov Moder——-
Define OTMM Parameters (OTMM)
 Three probability parameters » Same learning scheme applied, i.e. EM

— Initial state probability: z[s](=P(z; =5,))
* Probability that the state of the root is SI
— State transition probability (two cases):
als, S, 1(= Pz} =5, 125 =5,)
 Probability that the state of j is Sm given that the state of
the parentis S, (eldest siblings)
a[s;,s,1(= P(ZT =s,1z/ =5)
« Probability that the state of j is Sm given that the state of
the immediately elder sibling is SI (otherwise)
— Label output probability: bls,, o]
* Probability that the state 5| outputs Oy,

algorithm

< Need four auxiliary probabilities again:
Forward, Backward, Upward and
Downward

* However, significant modification required
for dynamic programming updating, since
a state in OTMM does not depend on that
of a parent, except the eldest siblings

20



P for Computing Four m::mmy:;
Probabilities for OTMM

...... ' _@m_ﬂ .8

Himgel)
Downward Upward

Bl 1

P -

Comparison with PST IVIM“"“”“

 Relatively similar two auxiliary probabilities
— Upward: child to parent

(5
PSTMM: 3 OTMM:

Reai. 1

L

- " . F’ZL S, 1 - Backward younger sibling to elder
| I| hr'{%‘:__:.—:-‘g__{ ._E i ._j. E ;" = '8 PSTMM: : 3, ,l|
||| : i g a4 = " OTMM: 'B 8 -8
¥, 1 i U, i1 B 1)
Forward Backward Lidm, f¥
‘Baoinformatics Centes: L ‘Boinformatics Contes

LS

Comparison with PSTMM™™

« Significantly different auxiliary probabilities
— Downward: parent to child

— Forward: older sibling to younger

PSTMM: .4-"'7"4[

e

% EM update e crmat ez

* The same as that of PSTMM
» E-step computes three expectation values:
N(s,,) = initial state expectation value
- VY(s, S) = state transition expectation value
— (s, ;) = label output expectation value

» M-step updates our probability parameters 1t[s],
a[s, syl and b [s;,o}] using these expectation
values

- [ '.'_I'-,'_"'l _,_«_..__ = * Repeat E-M until some stopping condition
ﬂj:r‘ w  OTMM: lll;fé}j."‘ulill I!ifﬁ‘lr-il =2 |\ satisfied
& Computational CompleXiiy—- . -~
% P S OTMM % Experimental Setfifig
 Comparison with PSTMM and HTMM » Synthetic

— Efficiency always increased by O(|S])

Time
OTMM o(T|-[S]*- V]
HTMM O(|T|-|S|” - V]
PSTMM o(|T| - |5)? - [V]-|C])

Space
OTMM max{O([S] - [V]), O(|S]?), O(IS| - | )}
HTMM max{O(|S] - |V]), O(|S[*),0(S]- | D}
PSTMM | max{O(|S|" - |V]),O0(|S[*),O(]S]" - | 3 |)}

— Performance comparison with PSTMM
« Capture sibling-dependent patterns

« Discriminate between those that do and do not
contain these patterns

« Evaluate predictive accuracy and computation time
using five-fold cross validation

» Real data: glycans
— Performance comparison
— Analyzing patterns found
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é Synthetic Data Expefiment

» Data set consisted of trees of equivalent size,
embedded with various tvoes of patterns:

Rl

& o/-ﬁ\o :‘.&o & o S

¢ Parameters:
— K: generated patterns
— |T|: #training trees
— |S|: #states

s o S e, b e
AT G AR T AT 4 SR

Synthetic Data Results

« Trees with patterns vs. ones without patterns.

Fixed Q1, |T|=100 and, K=1,

Changed |S|=2,...,12

— AUC (Area under the ROC curve) for both training and test
OTMM avoided overfitting to the data found in PSTMM.

joo  PETM fbmn)

- OThelihd R

LG %)

]
" CTIIA fhersl
B

]

-]

- ‘Bhoinformatics. Cendes
LS
PN 4 A T T FR A

Synthetic Data Results

« Trees with patterns vs. ones without patterns.
— Fixed Q1 and K=3,
— Changed |S|=2,...,12 and |T|=100,...,600
— Computation time in training
— AUC (Area under the ROC curve) for test

— OTMM avoided overfitting, keeping much less computation
time

- ‘Bioinformatics. Centes.
e
S AT T AT TR —

Synthetic Data Results

« Trees with patterns vs. ones without patterns.
— Fixed Q1 and |T|=200
— Changed |S|=2,...,12 and K=1,...,4
— Computation time in training
— AUC (Area under the ROC curve) for test

— OTMM avoided overfitting, keeping much less computation
time

i | » [ = {
= ! - ! | — ' | = |
[k |25 A 7| Ry o b T = F a7t / Pl = / s
S L Al A P Vel ) g-Sint Paprain
- & | i il = P | =T | ol i P ¥ o P 1
=t : ; ik ol e i . -
Flgr 001 ALY sl woa Figur i AL i b e T
-, Bhordormatics Cariee -

P o S S s sy
SRR 4 T T e FR A

Synthetic Data Resuits

« Trees with patterns vs. ones without patterns.

— Fixed K=2, |T|=400 and |S|=6 where overfitting avoided for
both OTMM and PSTMM

— Computation time in training
— AUC (Area under the ROC curve)

— OTMM reduced the computation time drastically, keeping
the same predictive performance.

Glycan Data Experimigit—==-
Performance Comparison

» Data set consisted of
— Positives: N-glycans
— Negatives: O-glycans

» Used cross-validation in the same manner
as synthetic data

« Used parameter settings achieved the
best performance in synthetic data
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% Glycan Data Experimiggat-o===-
erformance Comparison Results

Glycan Data Experineitm .
Glycan Pattern Mining 1

* OTMM more efficient computationally, * N-Glycan "
keeping the same predictive performance -
) ® i
2 2R
100 < OTHM £00 i b
D o & emd
£ / ) P
) =
2 o0 PSTMM > | 300
< PETMM -
" OTMM -> 5
80 = L ] ¢ 8 '
2 4 B B 10 Figure 14: Example of the states ing
L OTMM for n specific glycan structm
# slates ([3])
‘Boinformatics Centes: -, ‘Boinformatics Contes

Glycan Data Experiment-——-===-
Glycan Pattern Mining 2
» Three subclasses in N-glycan

Figure 15: (top) Tho sctusl glycans, and (bottom) the most likely state pot b

% Summary =TT

* Proposed a family of probabilistic models for labeled
ordered trees and their efficient learning scheme
— OTMM reduced the complexity reasonably, avoiding overfitting

and keeping the predictive performance

« Structure-based analysis: First step of glycome
informarics

+ There indeed seem to exist sibling-dependent
relationships in glycans!

+ Statistical analysis of glycans seem appropriate
considering the noisiness of the data

» Important to link with other information

— Functional annotations of genes and proteins that interact and
bind with glycans

-, BaoindorTatics Certer
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