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Glycans
• Carbohydrate Sugar Chains = 

Glycans
• Third major class of 

biomolecules next to DNA 
and proteins

• Often found on cell surfaces
• Crucial to the development 

and function of multicellular
organisms

• However, many still 
unknowns in glycobiology

Glycans

Glycans

Glycolipids Glycoproteins

Cell membrane

Inside

Outside

Glycans: Third Major Class

• DNA: Genome - Genomics
• Protein: Proteome - Proteomics
• Glycan: Glycome - Glycomics

– The collective identity of the entirety of 
carbohydrates in an organism

– The collective identity of the entirety of 
carbohydrates in a cell

Glycan Structure

• DNA: String of four letters
– four kinds of nucleotides (A,G,C,T)

• Protein: String of twenty letters
– twenty types of amino acids 

• Glycan: Tree structure of monosaccharides
(sugars) and linkages
– More than 10,000 structures known
– ~twelve main types of monosaccharides (i.e., Glucose 

[Glc], N-acetylglucosamine [GlcNAc], Mannose [Man])
– 10-15 classes (i.e.,  N-Glycans, O-Glycans, GPI 

anchors, etc.)
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What Do Glycans Look Like?

• Variations in 
conformations 
between just two 
sugars 
(monosaccharides)

• Typical glycan 
structures contain 10-
15 sugars!

What Do Glycans Look Like?

• IUPAC 2D Representation
• Tree structures of 

monosaccharides and linkages
• Nodes = 

sugars/monosaccharides
• Edges = bonds/linkages
• Features:

1. Rooted tree
2. Monosaccharides = Labels
3. Ordered children

Root node
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β4

β4

β4

β4

Glycan Structure

• Glycan is
– Rooted Tree:

• Tree with root
– (Rooted) Labeled Tree:

• Tree whose nodes have labels attached
– Monosaccharide names

– (Rooted) Labeled Ordered Tree
• Labeled tree whose children are ordered
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• Concluding Remarks 

General Database Systems 
for Glycans

• CarbBank
• SWEET-DB / glycosciences.de
• KEGG GLYCAN 
• Consortium for Functional Glycomics
• EuroCarbDB

• Commercial databases:
– GlycoSuite (Proteome Systems, Ltd.)
– Glycomics DB (Glycominds, Ltd.)

CarbBank

• Developed by Complex Carbohydrate 
Research Center, University of Georgia

• Community database of carbohydrates
• Project ended due to lack of funding in 

1996
• Continued in Japan until around 2000
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SWEET-DB

• A part of Glycoscience.de
• http://www.dkfz-

heidelberg.de/spec/sweetdb/
• Combines CarbBank and Sugabase using 

a common web-based interface
• Provides searching by bibliography, 

structure, NMR and MS, as well as by 
LINUCS ID

SWEET-DB (2)

SWEET-DB (2) SWEET-DB (3)

SWEET-DB (4) SWEET-DB (5)
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SWEET-DB (6) KEGG GLYCAN

• http://www.genome.jp/kegg/glycan/
• Based on CarbBank as well as input from 

scientists
• All data is linked with KEGG’s other 

resources: GENES, PATHWAY, KO 
(KEGG Ontology) and literary databases

KEGG GLYCAN (2) Glycan Biosynthesis and 
Metabolism Pathways

N-Glycan biosynthesis  
High-mannose type N-glycan 

biosynthesis  
N-Glycan degradation  
O-Glycan biosynthesis  
Chondroitin / heparan sulfate 

biosynthesis
Keratan sulfate biosynthesis  
Glycosaminoglycan degradation  
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis

Glycosylphosphatidylinositol(GPI)
-anchor biosynthesis  

Glycosphingolipid metabolism  
Blood group glycolipid

biosynthesis - lactoseries
Blood group glycolipid

biosynthesis - neo-lactoseries
Globoside metabolism  
Ganglioside biosynthesis  
Glycan structures - biosynthesis 1
Glycan structures - biosynthesis 2  
Glycan structures - degradation 

Overall Relationship of Glycan
Related Pathway Maps

G00078
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“View Structure”

Glycan Search
G00078
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Consortium for Functional 
Glycomics

• Consortium home page: 
http://www.functionalglycomics.org/

• Consortium of major universities and research 
institutes worldwide

• Aim: to provide a central resource for glycomics
research

• Also provides requested resources to promote 
participating investigators’ research
– Glycan arrays and data
– Mass spectra analysis…

• CFG glycan database web page: 
http://www.functionalglycomics.org/glycomics/molecule/jsp/carbohyd
rate/carbMoleculeHome.jsp

CFG (2) CFG (3)

CFG (4) CFG (5)
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CFG (6) CFG (7)

EuroCarbDB

• http://www.eurocarbdb.org/
• Based in Europe, but participants from 

universities and research groups 
worldwide

• Distributed infrastructure to integrate 
multiple resources with a single interface

EuroCarbDB
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– Ordered Tree Markov Model

• Concluding Remarks 

Where to Begin?

• Glycan Structure:
– Rooted Tree:

• Tree with root
– (Rooted) Labeled Tree:

• Tree whose nodes have labels attached
– Monosaccharide names

– (Rooted) Labeled Ordered Tree
• Labeled tree whose children are ordered
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Motivation (from Biological Side)

• Glycans = Labeled Ordered Trees
• Many unknowns in glycobiology

– High uncertainty and noisy
• The leaves of glycans are important in 

recognition by various pathogens
• Differences in these patterns affect 

biological functions
• Pattern mining method robust against 

noise required

Motivation (from Informatics Side)
• Labled Ordered Trees: Semi-structured (or 

Unstructured) data
– Other examples found in web and text mining, e.g. 

XML 
• Mining semi-structured data, like graphs and/or 

trees, becoming important in machine learning 
and data mining

• Frequent pattern mining and kernels already 
developed recently

• New mining approaches robust against noise 
required

Probabilistic Modeling

• Statistical machine learning
• Represent uncertainty
• Robust against noise in data
• Efficient learning schemes already known
• Modeling labeled ordered trees not 

developed yet

Mining Labeled Ordered Trees 
Based-on Probabilistic Modeling

• To “learn” patterns from the tree structures 
of glycans by estimating the probability 
parameters of our model

Three Problems
• Must be solved to be used in real-world 

applications
1. Computing likelihood: computing how likely 

a given example can be generated from a 
model

2. Learning: estimating probability parameters 
of a model from given data

3. Parsing: finding the most likely state 
transition on an example given a model

Three Problems

1. Computing the likelihood of a set of trees:  
– To determine which data are considered to 

belong to same class as training (learned) 
data

2. Estimating the parameters:
– To “learn” patterns found in given data

3. Finding the most likely state transition: 
– To retrieve the learned patterns
– To apply to multiple alignments



9

Three Problems

• Learning (estimating probability 
parameters) is the most important, 
since …

• Computing the likelihood is a part of 
learning

• Parsing can be done by modifying the 
likelihood computation

Three Problems
• Must be solved to be used in real-world 

applications
1. Computing likelihood: computing how likely 

a given example can be generated from a 
model

2. Learning: estimating probability parameters 
of a model from given data

3. Parsing: finding the most likely state 
transition of a tree given a model

Hidden Markov Model (HMM)

• Model: set of states connected by directed edges
• Parameters:

– State transition probability:
– Label output probability (at state):

• Operation: series of Markov transition on states, 
generating sequence of labels (string) with 
likelihood

: Label output

: state transition

: state

ija
)(kbj

Three Problems
• Hidden Markov model case:

1. Computing likelihood: computing auxiliary 
probabilities: Forward or Backward 
probabilities

2. Learning: Maximizing the likelihood by 
Baum-Welch (Forward-Backward) algorithm, 
an EM (Expectation-Maximization) algorithm

3. Parsing: Viterbi algorithm

Forward Probability, HMM Case
• The probability that the current state is j and 

string [1..t] is already generated: 
• Dynamic programming over t available
• Updating formula:

],[ jtσα

∑ −=
i

tjij itbait ],1[)(],[ σσ ασα

Computing Likelihood, HMM Case

• Compute forward probabilities over whole 
a given string

• Use final forward probabilities
• Likelihood: ∑

i
iT ],[σα
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Learning, HMM Case
• Baum-Welch (Expectation-Maximization) 

algorithm
1. Compute forward probabilities
2. Compute backward probabilities:

• Probability that the current state is j and string [t..T] is already 
generated 

3. Compute expectation value of transition ij:

4. Update transition probability     using expectation 
values:

• The above steps iterated until convergence

],[ jtσβ

∑ +∝ +
t

tjijP jtbaitjiE ],1[)(],[]),,(([# 1 σσ βσασ
σ

ija

∑
=

j
P

P
ij jiE

jiE
a

]),,(([#
]),,(([#

ˆ
σ

σ

σ

σ

Supplement for HMM Learning
• Computing backward probabilities

• Computing expectation values 

)(),()()( 11 ++∑= tj
j

tt bjiaji σββstates

time

i
j

states

time

i
j

tt-1 t+1 t+2

),( jia

)(itα

)(1 jt+β

Learning, HMM Case
Summary

• Maximizing the Likelihood
• Baum-Welch: EM algorithm
• Repeat the following two steps alternately 

until some stopping condition satisfied
– E-step:

1. Compute forward and backward
2. Compute expectation values

– M-step: 
1. Update transition probabilities 

Back to 
Probabilistic Models for Trees

• Notations
– Tree: T
– Node: x
– State type: s
– State of node: z
– Label: o

Related work:
Hidden Tree Markov Model (HTMM)

• Probabilistic model for labeled trees, not 
for labeled ordered trees

• State depends on that of the parent only

Tree
Dependencies

[Deligenti et al., 2003]

HTMM Cannot Capture Sibling 
Dependencies!
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Proposed model
• Probabilistic Sibling dependent Tree 

Markov Model (PSTMM)
– Modeling sibling dependency as well as 

parent-child dependency
– Extension of hidden Markov model (HMM) 

and hidden tree Markov model (HTMM)

PSTMM

• State depends on those of both the parent 
and the immediately elder sibling

Tree

Dependencies

Define PSTMM Parameters
• Three probability parameters

– Initial state probability:
• Probability that the state of the root is 

– State transition probability:

• Probability that the state of j is         given that the 
state of the immediately elder sibling is       and the 
sate of the parent is      

– Label output probability:
• Probability that the state        outputs 

),|(](},,[{ l
u
iq

u
pm

u
jmlq szszszPsssa ====

qs ls
ms

],[ hlsb σ
hσ

))(]([ 1 l
u

l szPs ==π

ls

ls

Auxiliary Probabilities for PSTMM

• Extension of HMM for Labeled Ordered 
Trees

• Labeled Ordered Tree
– Two directions:

• Parent-Child directions
• Sibling directions

– Sibling: Forward and Backward
– Parent-Child: ?

Downward and Upward!

Four Auxiliary Parameters

• Define the following four 
probabilities for a tree u with 
nodes x1, …, xn
– Forward Fu (sq, sl, xj)
– Backward Bu (sq, sm, xj)
– Upward Uu (sq, xp)
– Downward Du (sl, xi)

• Each computed by dynamic 
programming (DP) 

F B

U

D
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Upward Uu (sq, xp)Downward Du (sl, xi)

Forward Fu (sq, sl, xj)                 Backward Bu (sq, sm, xj)

Dynamic Programming for 
Computing Auxiliary Probabilities

Computing Backward and 
Upward with DP• Example S1

S2 S3

S2 S4 S3

a

b

a d

c

b

S3

b

Backward:

Upward:
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Computing Backward and 
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Computing Backward and 
Upward with DP
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Computing Backward and 
Upward with DP

S1

S2 S3

S2 S4 S3
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Computing Backward and 
Upward with DP
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Computing Backward and 
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Backward:

Upward:

Estimating Parameters
• Maximum Likelihood and EM (Expectation-

Maximization) as shown for HMMs
• E-step computes three expectation values in E-

step:
– η(sm ) = initial state expectation value
– γ({sq, sm}, sl) = state transition expectation value
– δ(sl,σh) = label output expectation value 

• M-step updates our probability parameters π[sl], 
a [{sq, sl}, sm], and b [sl,σh] using these 
expectation values

• Repeat E-M until likelihood is maximized

Estimating Parameters:
Iteration Procedure

U
UF FBB

U,F

U,F,B D

B

D D


a 
b 

η
γ
δ

E-step M-step

U,F,BD

U,F,B

D

D

L

Computing the Likelihood

• The likelihood of tree Tu given a set of 
parameters θ can thus be found at 
the root node x1 as: 
– L(Tu ;θ) = Σπ[sl] Uu (sl , x1)

• The likelihood for a set of trees 
T = {Tu,…, Tn} given a set of parameters θ can 
thus be computed as a product of the likelihood 
of each tree: 
– L(T ;θ) = ΠuΣπ [sl] Uu (sl , x1)  

= Πu L(Tu ;θ)
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Most Likely State Transition

• HMMs:
– Viterbi algorithm
– Used for multiple sequence alignment

• PSTMMs:
– Viterbi algorithm
– For Multiple tree alignment

The Most Likely State Transition

• Based on maximum likelihood parameters, 
we can calculate:
–φB(sq, sm, xj) = maximum state transition 

probability
–φU (sq, xp) = maximum output label probability
–τB (sq, sm, xj) and τU (sq, xp), which retrieve 

the actual states corresponding to these 
maximum values (argmax of φ)

Empirical Experiments

• Experimental Setting
– Synthetic

• Performance comparison
– Capture sibling-dependent patterns
– Discriminate between those that do and do not contain 

these patterns 
– Use five-fold cross validation

– Real data: glycans
• Performance comparison
• Analyzing patterns found

Synthetic Data Experiment 

• Compared to five models that 
do not incorporate any 
dependencies among children.
– HTMM
– Label model (LM)
– Mixture of label model (MLM)
– Label pair model (LPM)
– Mixture of label pair model 

(MLPM)
a

b

a

b

LPM MLPM

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

LM

a

b

a

b

MLM

a

b

a

b

a

b

a

b

Synthetic Data Experiment

• Positive data set consisted of trees of equivalent 
size, embedded with various types of patterns:

• Negative data set (which is used only for test) 
consisted of trees of equivalent size, keeping 
the same distribution of parent-child pairs as 
that in positive data set

Results
• Trees with patterns vs. ones without patterns.

– AUC (Area under the ROC curve)
• Equivalent to Mann-Whitney-Wilcoxon text and Gini index

– PSTMM outperformed being statistically significant (t-test).
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Results
• Trees with patterns vs. ones without patterns.

– Accuracy
• (TP+TN)/(TP+FP+FN+TN)
• Threshold is selected such that the accuracy is maximized.

– PSTMM outperformed being statistically significant (t-test).

Results

• Trees with patterns vs. ones without patterns.
– Precision at recall of 30%

• TP/(TP+FP)
• Threshold is selected where the recall TP/(TP+FN) = 0.3

– PSTMM outperformed being statistically significant (t-test).

Applying PSTMM to Glycans
• Glycan classes

Tested
classes

Glycan Data Experiment
• Data set consisted of 

– true glycans
– “negative” data

• Negative data: randomly generated trees 
containing same distribution of parent-
child labels as true glycans

• Five-fold cross validation

Glycan Results

O-Glycan: AUC 80.1 N-Glycan: AUC 92.0

Glycan Pattern Mining
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Glycan Pattern Mining Glycan Tree Alignment

Learned Classification

High Mannose

Hybrid

Complex

Computational Complexity of 
PSTMM

• Equivalent to context free grammars for 
strings: maximal practical bound

Drawbacks of PSTMM

• Computational complexity is maximal 
practical bound

• Overfitting problems
• Difficult to retrieve patterns from learned 

states

New Models of Labled Ordered 
Trees

• Profile PSTMM
– Incorporate match, insert and delete states
– Utilize new state transitions: Down and Right

• Ordered Tree Markov Model (OTMM)
– Reduce dependencies on parents: State 

depends on that at the immediately elder 
sibling only, except that the eldest siblings 
which depend on their parents



18

Outline
• What is a Glycan?
• Glycan = Labeled Ordered Tree
• Databases on Glycans
• Probabilistic Models for Labeled Ordered Trees 

and their empirical experimental results
– Probabilistic Sibling Dependent Markov Model 

(PSTMM)
– Profile PSTMM
– Ordered Tree Markov Model

• Concluding Remarks 

ProfileHMMs
Match/Delete Insert

B
1

E
i n

• Match and Delete states can be found together 
at same positions.

• Insert states loop back to themselves or to the 
next position.

• Begin state at start and End state at end.

ProfilePSTMM State Model

Match/Delete

Insert

Right

Down B

Down/Right

q

q

i

i

j

j

1

• Two types of transitions:
– parent-child 
– between siblings

• Begin state transitions 
down to root node
– Also represents End state

• Positions (1, …,i, … n) 
are fixed

• Each position has C(i) 
children positions

Probability Parameters

• Similar Forward, Backward, Upward and 
Downward parameters

• State positions are fixed:
– Tree is traversed together with state model
– No need to traverse every combination of 

states (as when they are free)
– Much more efficient

• Profiles could be retrieved directly from 
match states’ label output probabilities

Synthetic Experiment

• Three types of 
profiles

• Fifty trees containing 
a profile

• Fifty negative data 
trees with same 
parent-child label 
distribution

• Fixed state model

4
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State model

Synthetic Experiment Results
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Glycan Class Experiment

• Test the three sub-classes of N-Glycans:
– High-mannose, Hybrid, Complex type

• 50 examples for each subtype (positive 
examples)

• 50 negative examples generated from 
distribution of positive examples

Glycan Class Experiment

Galectin Experiment

• Galectins are glycan-binding proteins
• Recognize galactose at leaves
• Details still not completely understood
• Binding affinity for specific glycans tested 

for major galectins in Hirabayashi et al. 
2002.  

• Positive data: 30 weighted glycans
• Negative data: 30 glycans with same 

parent-child label distributions

Galectin Binding Glycan Data

Galectin Binding Affinity Data Galectin Binding Glycan Profiles
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Testing Profile Differentiation
• Train two profiles on 

different data sets
• Test both on both 

data sets to assess 
differentiation ability

Improvement in Computation TIme

• Efficiency increased by O(|S|)
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Ordered Tree Markov Model 
(OTMM)

• State depends on that of the immediately 
elder sibling, except the eldest siblings 
which depend on the parents

Tree
Dependencies

Define OTMM Parameters
• Three probability parameters

– Initial state probability:
• Probability that the state of the root is 

– State transition probability (two cases):

• Probability that the state of j is         given that the state of 
the parent is         (eldest siblings)

• Probability that the state of j is         given that the state of 
the immediately elder sibling is        (otherwise)

– Label output probability:
• Probability that the state        outputs 
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Ordered Tree Markov Model 
(OTMM)

• Same learning scheme applied, i.e. EM 
algorithm

• Need four auxiliary probabilities again: 
Forward, Backward, Upward and 
Downward

• However, significant modification required 
for dynamic programming updating, since 
a state in OTMM does not depend on that 
of a parent, except the eldest siblings
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DP for Computing Four Auxiliary 
Probabilities for OTMM

Downward Upward

BackwardForward

Comparison with PSTMM
• Relatively similar two auxiliary probabilities

– Upward: child to parent

– Backward: younger sibling to elder

OTMM:

OTMM:

PSTMM:

PSTMM:

Comparison with PSTMM
• Significantly different auxiliary probabilities

– Downward: parent to child

– Forward: older sibling to younger

OTMM:

OTMM:
PSTMM:

PSTMM:

EM update
• The same as that of PSTMM
• E-step computes three expectation values:

– η(sm ) = initial state expectation value
– γ(sm, sl) = state transition expectation value
– δ(sl,σh) = label output expectation value 

• M-step updates our probability parameters π[sl], 
a [sl, sm], and b [sl,σh] using these expectation 
values

• Repeat E-M until some stopping condition 
satisfied

Computational Complexity
of OTMM

• Comparison with PSTMM and HTMM
– Efficiency always increased by O(|S|)

Experimental Setting

• Synthetic
– Performance comparison with PSTMM

• Capture sibling-dependent patterns
• Discriminate between those that do and do not 

contain these patterns 
• Evaluate predictive accuracy and computation time 

using five-fold cross validation

• Real data: glycans
– Performance comparison
– Analyzing patterns found
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Synthetic Data Experiment

• Data set consisted of trees of equivalent size, 
embedded with various types of patterns:

• Parameters:
– K: generated patterns
– |T|: #training trees
– |S|: #states

Synthetic Data Results
• Trees with patterns vs. ones without patterns.

– Fixed Q1, |T|=100 and, K=1, 
– Changed |S|=2,…,12
– AUC (Area under the ROC curve) for both training and test
– OTMM avoided overfitting to the data found in PSTMM.

Synthetic Data Results
• Trees with patterns vs. ones without patterns.

– Fixed Q1 and K=3, 
– Changed |S|=2,…,12 and |T|=100,…,600 
– Computation time in training
– AUC (Area under the ROC curve) for test
– OTMM avoided overfitting, keeping much less computation 

time

Synthetic Data Results
• Trees with patterns vs. ones without patterns.

– Fixed Q1 and |T|=200 
– Changed |S|=2,…,12 and K=1,…,4
– Computation time in training
– AUC (Area under the ROC curve) for test 
– OTMM avoided overfitting, keeping much less computation 

time

Synthetic Data Results
• Trees with patterns vs. ones without patterns.

– Fixed K=2, |T|=400 and |S|=6 where overfitting avoided for 
both OTMM and PSTMM

– Computation time in training
– AUC (Area under the ROC curve) 
– OTMM reduced the computation time drastically, keeping 

the same predictive performance.

Glycan Data Experiment
Performance Comparison

• Data set consisted of
– Positives: N-glycans
– Negatives: O-glycans

• Used cross-validation in the same manner 
as synthetic data

• Used parameter settings achieved the 
best performance in synthetic data
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Glycan Data Experiment
Performance Comparison Results

• OTMM more efficient computationally, 
keeping the same predictive performance

Glycan Data Experiment
Glycan Pattern Mining 1

• N-Glycan

Glycan Data Experiment
Glycan Pattern Mining 2

• Three subclasses in N-glycan

Summary
• Proposed a family of probabilistic models for labeled 

ordered trees and their efficient learning scheme
– OTMM reduced the complexity reasonably, avoiding overfitting

and keeping the predictive performance
• Structure-based analysis: First step of glycome

informarics
• There indeed seem to exist sibling-dependent 

relationships in glycans!
• Statistical analysis of glycans seem appropriate 

considering the noisiness of the data
• Important to link with other information

– Functional annotations of genes and proteins that interact and 
bind with glycans
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