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ABSTRACT

A critical task in query optimization is the join reordering problem
which is to find an efficient evaluation order for the join operators
in a query plan. While the join reordering problem is well studied
for queries with only inner-joins, the problem becomes consider-
ably harder when outerjoins/antijoins are involved as such oper-
ators are generally not associative. The existing solutions for this
problem do not enumerate the complete space of join orderings
due to various restrictions on the query rewriting rules consid-
ered. In this paper, we present a novel approach for this problem
for the class of queries involving inner-joins, single-sided outer-
joins, and/or antijoins. Our work is able to support complete join
reorderability for this class of queries which supersedes the state-
of-the-art approaches.
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1 INTRODUCTION

An important task in the optimization of join queries is to decide
on a join order, which determines a partial ordering in which the bi-
nary join operations are computed. As picking the right join order
has a significant impact on the efficiency of query evaluation, the
problem of finding optimal join orderings (known as the join re-

ordering problem) is a well-studied problem for inner-join queries
[15]. However, queries involving outerjoins and/or antijoins are
considerably more difficult to optimize because these join opera-
tors do not possess the nice properties of being both commutative
and associative.
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Not surprisingly, the join reordering problem for complex join
queries has been intensively researched by both the industry and
academia (e.g., [1, 2, 4–14]). The early research focused on outer-
join simplification and reordering [4–6, 13, 14]. These works do
not consider antijoins and are restricted to simple queries1. [1] ex-
tended these approaches to support complex join predicates that
could refer to more than two relations. Extensions to also handle
antijoins are presented in [9–11], but reorderings supported are
rather limited.

Another recent work [7] is an approach to convert outerjoin
queries to inner-join queries. The idea is to first compute a derived
relation from each join operand of an outerjoin, and then compute
an inner join of the derived relations. A derived relation for a join
operand R is a copy of R with additional columns and additional
tuples. While this approach is theoretically interesting, it is limited
to queries with binary join predicates and the cost for computing
derived relations could be as high as that for computing the orig-
inal outerjoin query. Moreover, it also does not handle antijoins
and semijoins.

In this paper, we use �,
pi j
→,

pi j
←,

pi j
↔,

pi j
� ,

pi j
� ,

pi j
� , and

pi j
� to de-

note, respectively, the outer-union, left outerjoin, right outerjoin,
full outerjoin, left semijoin, right semijoin, left antijoin, and right
antijoin operators with pi j denoting the join predicate between re-
lations Ri and Rj . We use CJ to denote the class of join queries
with join operators from the set J = {��,→,←,↔,�,�, �, �} and
with null-intolerant join predicates; C�

J
to denote the subset of

join queries in CJ that do not involve↔; and C�,�,�
J

to denote
the subset of join queries in CJ that do not involve ↔, �, and �.
Finally, we use ◦ to denote some join operator from J .

There are currently two state-of-the-art approaches for reorder-
ing complex join queries. The first approach is a transformation-
based approach (denoted by TBA) that enumerates all valid join re-
orderings using the associativity and commutativity properties of
the join operators [8]. For example, left outerjoins are known to
be non-associative and non-commutative, and for the query Q =

R1
p13
→ (R2

p23
→ R3), Q ′ = (R1

p13
→ R3)

p23
→ R2 is an invalid reordering

of Q .
The second approach is a compensation-based approach (de-

noted by CBA) that permits certain invalid join reorderings so long
as they could be compensated to become valid [12]. Continuing
with the earlier example, the invalid reordering Q ′ can be made
valid by rewriting it to β(λp23,R3 (Q

′)) using the compensation op-
erators β and λ. However, CBA has certain limitations in that certain

1A simple query is a query that satisfies the following properties: all outerjoin pred-
icates have only one conjunct and must be binary predicate referring to only two
relations, there are no cartesian products in the query, and all predicates are null-
intolerant. A predicate is classified as null-intolerant if it cannot evaluate to true when
referencing a null value; otherwise, it is a null-tolerant predicate.



valid reorderings that are supported by TBA are not possible with
CBA.

Thus, both the state-of-the-art approaches are incomparable in
terms of the join reorderings that could be supported. In this paper,
we present a novel approach to solve the join reordering problem
and make four contributions. First, we introduce a precise formal-
ization of complete join reorderability. Second, we develop a new
approach for the join reordering problem that strictly subsumes
the join reorderability of both the state-of-the-art solutions TBA
and CBA. For the class of queries C�

J
, our approach provides com-

plete join reorderability (in contrast to the partial join reorderabil-
ity supported by both TBA and CBA). For the class of queries CJ ,
although all three approaches support only partial join reorderabil-
ity, the set of join reorderings enabled by our approach strictly sub-
sumes that supported by TBA and CBA. Third, we develop a novel
top-down plan enumeration algorithm to compute optimal query
plans with compensation operators. Fourth, we perform an exper-
imental evaluation of our approach and our results show that our
approach can improve query execution time by up to factors of
2.84 and 6.14 on PostgreSQL and a commercial database system,
respectively.

The rest of this paper is organized as follows. Section 2 presents
the key ideas behind the two state-of-the-art approaches. In Sec-
tion 3, we formalize the notion of complete join reorderability and
compare the different approaches in terms of their completeness
for join reorderability. We present our new rewriting approach for
join reordering in Section 4. Section 5 presents a novel top-down
query plan enumeration algorithm for query plans with compen-
sation operators. We discuss implementation issues in Section 6.
Section 7 presents an experimental evaluation of our approach. Fi-
nally, Section 8 concludes the paper.

We end this section by introducing some of the basic notations
used in this paper.

Notations. Given a relation Ri , we use attr (Ri ) to denote the set
of all attributes in the schema of Ri ; and given a set of relations R ,
we use attr (R) to denote

⋃
Ri ∈R attr (Ri ). For a predicate p, we use

attr (p) to denote the set of attributes referenced by p. For conve-
nience, we write πattr (Ri ) as πRi to denote the projection of all the
attributes in the schema of Ri . Furthermore, we use πR to denote
πS where S =

⋃
Ri ∈R attr (Ri ).

2 RELATED WORK

In this section, we describe the key ideas behind the two state-of-
the-art approaches TBA[8] and CBA[12]. These two works are the
most closely related to our work as our approach uses some of their
ideas which are further discussed in Section 4.

2.1 Transformation-Based Approach (TBA)
TBA’s approach for reordering joins is based on three basic trans-
formations derived from the commutativity/associativity proper-
ties of join operators as illustrated in Figure 1. We use ei to denote
some relational expression; ◦x to denote some join operator; and
pi j
◦x to denote a join operation ◦x between ei and ej with join pred-
icate pi j . The three basic properties are defined as follows:

(1) ◦a and ◦b satisfy the associativity property (denoted as assoc(◦a ,
◦b )) if (e1

p12
◦a e2)

p23
◦b e3 = e1

p12
◦a (e2

p23
◦b e3).

(2) ◦a and ◦b satisfy the left asscom property (denoted as l-asscom(◦a ,
◦b )) if (e1

p12
◦a e2)

p13
◦b e3 = (e1

p13
◦b e3)

p12
◦a e2.

(3) ◦a and ◦b satisfy the right asscom property (denoted as r-
asscom(◦a , ◦b )) if e1

p13
◦a (e2

p23
◦b e3) = e2

p23
◦b (e1

p13
◦a e3).

p23
◦b

p12
◦a

e1 e2

e3
assoc
⇐⇒

p12
◦a

e1
p23
◦b

e2 e3
(a)

p13
◦b

p12
◦a

e1 e2

e3
l−asscom
⇐⇒

p12
◦a

p13
◦b

e1 e3

e2

(b)
p13
◦a

e1
p23
◦b

e2 e3

r−asscom
⇐⇒

p23
◦b

e2
p13
◦a

e1 e3
(c)

Figure 1: Basic transformation rules in TBA: (a) assoc rule (b)
l-asscom rule (c) r-asscom rule.

Corresponding to the above three basic properties, we have three
basic types of transformations: assoc(◦a , ◦b ), l-assoc(◦a , ◦b ), and
r-assoc(◦a , ◦b ).

A specific type of transformation for a pair of join operators
is said to be valid if the corresponding property holds; otherwise,
it is said to be invalid. Examples of valid transformations include
assoc(��,→) and l-assoc(→, �), while examples of invalid transfor-
mations include assoc(→, �) and r-assoc(→,→). Table 1 (from [8])
summarizes all the valid (+) and invalid (-) assoc/l-asscom/r-asscom
transformations introduced by TBA’s approach. Note that because
l/r-asscom are symmetric properties, Table 1(b) is symmetric across
the diagonal.

◦a ◦b
�� � � → ↔

�� + + + + -
� - - - - -
� - - - - -
→ - - - + -
↔ - - - + +

◦ �� � � → ↔

�� +/+ +/- +/- +/- -/-
� +/- +/- +/- +/- -/-
� +/- +/- +/- +/- -/-
→ +/- +/- +/- +/- +/-
↔ -/- -/- -/- +/- +/+

(a) assoc transformations (b) l/r-asscom transformations
Table 1: (a) Valid and invalid assoc transformations. (b) Valid

and invalid l/r-asscom transformations.

TBA is able to enumerate all reordered query plans by applying
valid transformations for all conventional join types. However, TBA
forbids join reorderings involving any invalid transformation.



2.2 Compensation-Based Approach (CBA)

Given a query Q on a set of relations R = {R1, · · · ,Rn}, CBA aims
to rewrite Q into an equivalent canonical form:

β(λp1,A1(· · · (λpk ,Ak
(R1 × · · · × Rn ))))

Here, × denotes the outer variant of the cartesian product operator
that preserves all tuples from non-empty relations. The operators
λpi,Ai

and β are the two new unary relational operators introduced
by CBA. They are used as compensation operators to compensate
for invalid join reordering. The first new operator, λpi,Ai

(R1×· · ·×
Rn ), which is referred to as the nullification operator, is defined
with respect to a predicate pi and a set of attributes Ai ⊆ attr (R)
such that for each tuple t ∈ R1 × · · · × Rn , if pi does not evaluate
to true for t , then the values for all the attributes in Ai will be set
to null for tuple t .

The second new operator, β(R), which is referred to as the best-
match operator, removes all the dominated or duplicated tuples in
its relational operand R. Given two tuples t , t ′ ∈ R, t is dominated
by t ′ if for every non-null attribute value in t , t ′ has the same value
in the corresponding attribute, and t has more attributes with null
values than t ′. We refer to the tuples being eliminated in R by β as
spurious tuples.

Example 2.1. This example illustrates the β operator on the re-
lation R(A,B,C) shown below. Observe that the last three tuples in
R are all spurious tuples dominated or duplicated by the first tuple,
while the second tuple is a non-spurious tuple.

R

A B C

a1 b1 c1
a1 null c2
a1 b1 null

null null c1
a1 b1 c1

β(R)

A B C

a1 b1 c1
a1 null c2

�

For notational convenience, given relations R1, R2 and a predi-
cate p, we use λp,R1 to denote λp,attr (R1), and use λp,R1∪R2 to de-
note λp,attr (R1)∪attr (R2 ). Given a set of relations R , we use λp,R
to denote λp,attr (R) .

Join queries are rewritten into the canonical form by applying
the following rewriting rules, where p1 is a predicate that refer-
ences only R1 and A1 ⊆ attr (R1).

R1
p12
�� R2 = β(λp12,R1∪R2 (R1 × R2)) (1)

R1
p12
→ R2 = β(λp12,R2 (R1 × R2)) (2)

β(β(R1)) = β(R1) (3)
β(R1) × R2 = β(R1 × R2) (4)

λp1,A1(R1) × R2 = λp1,A1(R1 × R2) (5)
β(λp1,A1(β(R1))) = β(λp1,A1(R1))

if p1 is a null-intolerant predicate (6)

The key idea is that with the rewritten query in the canonical
form, different join reorderings could be derived with the follow-
ing two-step approach. First, since the cartesian product operator

is both commutative and associative, the cartesian product order-
ing is first reordered to a desired ordering and the reordered form
is then converted back to a form with join operators by applying
the rewriting in the reverse direction. As an example, CBA is able
to reorder the joins in R1

p12
→ (R2

p23
�� R3) to the equivalent query

β(λp23,R2 ((R1
p12
→ R2)

p23
→ R3)). Note that as assoc(→, ��) is an in-

valid transformation, TBA is unable to reorder the joins. However,
CBA is able to achieve the reordering by adding two compensation
operators λp23,R2 and β .

CBA’s main focus is to maximize join reorderability for queries
with join operators in {��,→,←}. CBA also briefly discussed a pos-
sible approach to handle antijoins and full-outerjoins by basically
transforming the antijoins and full outerjoins in the query into
single-sided outerjoins. However, the reorderability achieved by
this approach using only the {β , λ} compensation operators is rather
limited in contrast to our approach.

3 JOIN REORDERABILITY

In this section, we formalize the notion of complete join reorder-

ability and compare this completeness for the two state-of-the-art
approaches and our approach.

Consider a query Q on the set relations {R1, · · · ,Rn+1} with
n join operators {◦1, · · · , ◦n} where each join operator ◦i is as-
sociated with a join predicate pi . A join ordering for Q is an un-
ordered binary tree T with internal nodes {p1, · · · ,pn} and leaf
nodes {R1, · · · ,Rn+1} such that for each internal node pi inT , the
relations referenced by pi are all contained in the subtree rooted at
pi and pi must reference some relation in each of its child subtrees.
Given a join query Q , we use JoinOrder (Q) to denote the set of all
join orderings of Q .

It is important to emphasize that our definition of join ordering
focuses on the order in which the join operands are combined but
not on the specific join operators used.

Given a join ordering θ ∈ JoinOrder (Q) and a set of compen-
sation operators O, we say that Q is θO -reorderable if Q can be
rewritten into an equivalent queryQ ′ (possibly using operators in
O) where the join operands in Q ′ are joined following the order
given by θ .

Example 3.1. Consider the query Q = R1
p12
→ (R2

p23
�� R3). We

have JoinOrder (Q)= {R1
p12
◦ (R2

p23
◦ R3), (R1

p12
◦ R2)

p23
◦ R3}. Consider

θ = (R1
p12
◦ R2)

p23
◦ R3 andO = {β ,λ}, which are the compensation op-

erators used by CBA. It is well known that Q is not θ ∅-reorderable;
however, Q is θO -reorderable. Specifically, CBA could reorder Q to
Q ′ = β(λp23,R2 ((R1

p12
→ R2)

p23
→ R3)). �

As illustrated by Example 3.1, in the reordered queryQ ′, the join
ordering θ only determines the order in which the join operands in
Q ′ are combined, but the join operators themselves could change
in Q ′. In Example 3.1, observe that R2 and R3 are combined using
p23
�� in Q but they are combined using

p23
→ in Q ′.

Given a query class C and a set of compensation operators O,
we say that C is completely reorderable with respect to O if for ev-
ery query Q that belongs to C and for every join ordering θ ∈

JoinOrder (Q),Q is θO -reorderable.



We conclude this section with a discussion on the reorderability
completeness of CBA, TBA and our approach. For TBA, O = ∅ since
it does not rely on any compensation operators. The join reorder-
ability of TBA is rather limited as the approach imposes a strong
requirement that the join operators in reordered queries remain
unchanged. Thus, TBA is unable to reorder the query given in Ex-
ample 3.1.

CBA uses two compensation operators given by O = {β ,λ}, and
it could produce join reorderings where the reordered join opera-
tors are different from the initial join operators. CBA can be easily
extended to achieve complete join reorderability for the query class
C
�,�,�
J

. However, CBA has very limited reorderability for queries
with join operators from {�, �,↔}.

Our approach introduces new compensation operators to sup-
port all valid and invalid transformations. The approach subsumes
both TBA and CBA in terms of join reorderability for the query
classes CJ , C�

J
, and C�,�,�

J
. Specifically, we have the following

results.

Theorem 3.2. (a) For C�
J

, our approach has complete join re-

orderability, but both TBA and CBA only have partial join re-

orderability.

(b) For CJ , all three approaches have only partial join reorderabil-

ity but our approach strictly supersedes both TBA and CBA.
�

The soundnesss of the above theorem is based on the follow-
ing properties. First, in terms of the structural transformations to
query plans for reordering adjacent join nodes in query plans, the
assoc, l-asscom and r-asscom properties discussed in Section 2.1
are the only possible basic transformations as pointed out by TBA.
Second, for C�

J
, our proposed approach has sound and complete

rewriting rules for all three basic transformations w.r.t. all the join
operators in C�

J
. Hence, we have Theorem 3.2(a). Third, for CJ ,

while our proposed approach does not support complete join re-
orderability for queries with full outerjoins, our approach is able to
support all the valid transformations supported by TBA, and also all
the reorderings supported by CBA; hence we have Theorem 3.2(b).

4 OUR APPROACH

In this section, we present a new approach for the join reordering
problem that achieves complete join reorderability for the class of
queries C�

J
.2

As discussed in Section 3, TBA supports only join reorderings
that are based on valid transformations (see Table 1). In particular,
among the nine transformations related to antijoins, only three of
them are valid. On the other hand, CBA focuses mainly on reorder-
ing inner joins and single-sided outerjoins, and it does not han-
dle antijoins well. Thus, both the state-of-the-art approaches have
very limited join reorderability for queries with antijoins.

4.1 Overview

In order to enable join reorderings beyond the valid reorderings in
TBA, a compensation-based approach (similar to CBA) is necessary.
2 Note that as a semijoin can be rewritten as an inner join followed by a projection,
the rewriting rules for inner joins could be used for semijoins. To avoid clutter, we do
not discuss rewriting rules for semijoins in this paper.

Hence our proposed solution also adopts a compensation-based
approach named Enhanced Compensation-based Approach (ECA).

A crucial design decision for our solution is the design of the
set of compensation operators which is guided by four desiderata.
First, the operators should maximize the join reorderability possi-
bilities to address the limitations of existing approaches. Second,
the approach should be supported by an efficient query plan enu-
meration algorithm with both cost-based pruning as well as reuse
of optimal subplans. Third, an elegant solution should have a small
set of operators to minimize implementation complexity. Finally,
each of the operators should be amenable to efficient implementa-
tion preferably at both the SQL language level as well as natively
at the system level. The former enables a less intrusive and easier
implementation, and the latter is crucial for performance reasons.

Our approach uses four compensation operators: the β and λ
operators from CBA, and two new operators γ and γ ∗. For both the
classes of join queries C�

J
and CJ , our approach with γ and γ ∗

enables more join reorderings than both TBA and CBA. In particu-
lar, we achieve complete join reorderability for C�

J
. Our approach

also supports an efficient query plan enumeration algorithm. As
our new operators are only mild extensions of existing relational
operators, they are amenable to efficient native implementations.
Moreover, the new operators are also implementable at the SQL
level as will be discussed in Section 6.

It is important to note that although our solution is inspired by
the compensation-based approach of CBA, our approach for query
plan enumeration is totally different from CBA’s enumeration ap-
proach which is based on the concept of nullification sets.

4.2 Compensation Operators

In addition to the two operators (λ and β ) introduced by CBA, our
approach uses two new unary operators. The first operator, de-
noted by γA(R1), is a unary operator on R1 with A ⊆ attr (R1)
defined as follows:

γA(R1) = {r ∈ R1 | πA(r ) is null} (7)

The γA(R1) operator basically removes all tuples r ∈ R1 where
πA(r ) is not null.

The second operator, denoted by γ ∗
A,B(R1), is a unary operation

on relation R1 with A,B ⊆ attr (R1) defined as follows:

γ ∗A,B(R1) = β(γA(R1) ∪ R
′) (8)

where R′ = λf alse,attr (R1)−B (R1 − γA(R1)))

Unlike γA(R1) which simply removes all the tuples of R1 − γA(R1)
from R1, γ ∗

A,B
(R1) instead modifies the tuples in R1 − γA(R1) by

setting all the values of attributes in R1 (excluding the attributes in
B) to null.

Example 4.1. This example illustrates the γ and γ ∗ operators on
the relation R(A,B,C) shown below.γA(R) selects the second tuple
in R with a null value for attribute A. For the remaining two tuples
in R that are not selected byγA(R), their values for attributesA and
C are set to null and this resultant set is represented by R′. Finally,
γ ∗
A,B(R) removes the spurious tuples in γA(R) ∪ R

′.



R

A B C

a1 b1 c1
null b1 c2
a2 b1 c3

γA(R) ∪ R
′

A B C

null b1 null

null b1 c2
null b1 null

γA(R)

A B C

null b1 c2
γ ∗
A,B(R)

A B C

null b1 c2

�

For notational convenience, if R1, R2, R3, and R4 are relations
where attr (R2),attr (R3), attr (R4) ⊆ attr (R1), we use γ ∗

R2,R3
(R1)

to denote γ ∗
attr (R2 ),attr (R3)

(R1) and use γ ∗
R2,R3∪R4

(R1) to denote
γ ∗
attr (R2 ),attr (R3 )∪attr (R4)

(R1). Similarly, we use γR2 (R1) to denote
γattr (R2 )(R1), and γR2∪R3 (R1) to denote γattr (R2 )∪attr (R3 )(R1).

The rewriting rules for the new operators γ and γ ∗ are given in
Table 2, and we have the following result.

Theorem 4.2. The 13 rewriting rules in Table 2 are sound. �

A partial proof of Theorem 4.2 is given in Appendix A.
The rules in Table 2 are mainly for interchanging γ /γ ∗ with con-

ventional join operators which are essential for achieving join re-
orderability using γ /γ ∗ , as will be illustrated in Examples 4.5, 4.6
and 4.8.

We conclude this section with a brief discussion on the com-
pleteness of the rewriting rules in Table 2. Table 2 contains all the
rules needed for interchanging γ /γ ∗ with conventional join oper-
ators. The rules that appear to have been omitted in Table 2 are
actually not required for join reordering. For instance, Rule 2 re-
quires that p12 does not reference R3. It is actually impossible for
p12 to reference attributes of R3 in R2

p12
�� γR3 (R1) because γR3 must

come from an antijoin operation with R3 as the right operand of
the antijoin (this will become clear when we present Equation (9)
in Section 4.3 for rewriting antijoins). Hence, the attributes of R3

do not appear in the join operands of
p12
�� and will never be refer-

enced by p12.

4.3 Rules for Join Reordering

Having introduced our proposed compensation operators and their
properties, we now elaborate on how they are used in our approach.
We propose to use the following rewriting rule for antijoins:

R1
p12
� R2 = πR1 (γR2 (R1

p12
→ R2)) (9)

Semantically, the left antijoin of R1 and R2 can be computed by the
following two steps: (1) compute the left-outerjoin between R1 and
R2; and (2) prune the join results by removing those tuples in R1
that can join with some tuple in R2 and project out the attributes of
R1. Our proposed rewriting in Equation 9 is based on this idea and
it is the crux behind our approach for reordering join queries in-
volving antijoins. The reason why this two-step approach is effec-
tive is because it enables the pruning step to be postponed , which
is often necessary when performing join reorderings. We illustrate
this need for postponed pruning with the following example.

Example 4.3. Consider the queryQ = R1
p12
� (R2

p23
�� R3). Suppose

that we want to reorder the joins in Q so that the join between R1
and R2 is computed first. For the reordered join expression to be
equivalent to Q , the pruning step for the left-antijoin operation

must be postponed after the completion of the second join with
R3. Thus, by expressing the antijoin

p12
� in terms of

p12
→ and γR2 , it

becomes possible to reorder the joins
p12
→ and

p23
�� , and to postpone

γR2 till all the joins have been computed. In this example, Q can
be rewritten into the equivalent queryQ ′ = πR1 (γR2 (β(λp23,R2 ((R1
p12
→ R2)

p23
→ R3)))), as will become clear after we give the complete

list of join reordering rules in Table 3. Observe that if R1
p12
→ R2 has

a lower evaluation cost than that of R2
p23
�� R3, then Q ′ is likely to

have a lower evaluation cost than Q . �

Based on the rewriting rules in Table 2, Table 3 shows the new
join reorderings, given by Rules 14 to 20, that are enabled by our ap-
proach. None of these seven join reorderings are possible with the
existing approaches [8, 12]. Since our approach also uses the com-
pensation operators β and λ, the join reorderings given by Rules
21 to 25 (from [12]) are also supported by our approach. We have
the following new result.

Theorem 4.4. Rules 14 to 20 in Table 3 are sound. �

A partial proof of Theorem 4.4 is given in Appendix A.
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Figure 2: Query Rewriting for Example 4.5

The following two examples serve to illustrate how we derive
rules for join reordering using γ /γ ∗ . Example 4.5 shows how γ
helps to derive a valid join reordering. The second example gives
the derivation for Rule 18 in Table 3 with the help of γ and γ ∗. A
formal proof of Rule 18 can be found in Appendix. Other rules in
Table 3 can be proved similarly.

Example 4.5. Consider the reordering of the joins in the query
Q = R1

p12
�� (R2

p23
� R3) such that the join between R1 and R2 is

computed first. By applying Equation 9, Q is rewritten to Qa as

p12
→

R1 πR2

γR3
p23
→

R2 R3

π{R1,R2 }
p12
→

R1 γR3
p23
→

R2 R3
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→
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γ ∗
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(a) Qa (b) Qb (c) Qc (d) Qd

Figure 3: Query Rewriting for Example 4.6



Rule 1 γR3 (γR4 (R1)) = γR4 (γR3 (R1))

Rule 2 R2
p12
�� γR3 (R1) = γR3 (R2

p12
�� R1), where p12 does not reference R3

Rule 3 R2
p12
→ γR3 (R1) = γ

∗
R3,R2

(R2
p12
→ R1), where p12 does not reference R3

Rule 4 γR3 (R1)
p12
→ R2 = γR3 (R1

p12
→ R2), where p12 does not reference R3

Rule 5 γR3 (R1)
p12
� R2 = γR3 (R1

p12
� R2), where p12 does not reference R3

Rule 6 γ ∗R3,R4
(R1)

p12
�� R2 = γ

∗
R3,R4

(R1
p12
�� R2), where p12 does not reference R3

Rule 7 γ ∗
R3,R4

(R1)
p12
→ R2 = γ

∗
R3,R4

(R1
p12
�� R2), where p12 does not reference R3

Rule 8 R2
p12
→ γ ∗

R3,R4
(R1) = γ

∗
R3,R4∪R2

(R2
p12
→ R1), where p12 does not reference R3

Rule 9 γ ∗
R3,R4

(R1)
p12
� R2 = γ

∗
R3,R4

(R1
p12
� R2), where p12 does not reference R3 and p12 references R4

Rule 10 γ ∗R3,R4
(R1)

p12
� R2 = πR1 (γR2 (γ

∗
R3,R4

(R1
p12
→ R2))), where p12 references neither R3 nor R4

Rule 11 R2
p12
� γ ∗R3,R4

(R1) = R2
p12
� R1, where p12 does not reference R3 and p12 references R4

Rule 12 R2
p12
� γ ∗R3,R4

(R1) = πR2 (γR1 (γ
∗
R3,R4∪R2

(R2
p12
→ R1))), where p12 references neither R3 nor R4

Rule 13 R2
p12
� γR3 (R1) = πR2 (γR1 (γ

∗
R3,R2

(R2
p12
→ R1))), where p12 does not reference R3

Table 2: Rewriting rules for γ and γ ∗. Note that attr(R3), attr(R4) ⊆ attr(R1).

Rule 14 assoc(�, ��) R1
p12
� (R2

p23
�� R3) = πR1 (γR2 (β (λp23,R2 ((R1

p12
→ R2)

p23
→ R3))))

Rule 15 assoc(�, �) R1
p12
� (R2

p23
� R3) = πR1 (γR2 (γ

∗
R3,R1

((R1
p12
→ R2)

p23
→ R3)))

Rule 16 assoc(�,→) R1
p12
� (R2

p23
→ R3) = πR1 (γR2 ((R1

p12
→ R2)

p23
→ R3))

Rule 17 assoc(→, �) (R1
p12
→ R2)

p23
� R3 = π{R1,R2}(γR3 (R1

p12
→ (R2

p23
→ R3)))

Rule 18 assoc(→, �) R1
p12
→ (R2

p23
� R3) = π{R1,R2}(γ

∗
R3,R1

((R1
p12
→ R2)

p23
→ R3))

Rule 19 r-asscom(�, ��) R2
p23
� (R1

p13
�� R3) = πR2 (γR3 (β (λp13,R3 ((R2

p23
→ R3)

p13
→ R1))))

Rule 20 r-asscom(�,→) R1
p13
� (R2

p23
→ R3) = πR1 (γR3 (β (λp23,R3 ((R1

p13
→ R3)

p23
→ R2))))

Rule 21 assoc(→, ��) (R1
p12
→ R2)

p23
�� R3 = R1

p12
�� (R2

p23
�� R3)

Rule 22 assoc(→, ��) R1
p12
→ (R2

p23
�� R3) = β (λp23,R2 ((R1

p12
→ R2)

p23
→ R3))

Rule 23 r-asscom(��,→) R1
p13
�� (R2

p23
→ R3) = R2

p23
�� (R1

p13
�� R3)

Rule 24 r-asscom(��,→) R2
p23
→ (R1

p13
�� R3) = β (λp13,R3 ((R2

p23
→ R3)

p13
→ R1))

Rule 25 r-asscom(→,→) R1
p13
→ (R2

p23
→ R3) = β (λp23,R3 ((R1

p13
→ R3)

p23
→ R2))

Table 3: Join reorderings enabled by compensation operators λ, β , γ , and γ ∗. Rules 14 to 20 are new results, while Rules 21 to

25 (which are also supported by our approach) are from CBA[12].

shown in Figure 2(a). To perform
p12
�� ahead of

p23
→, we need to push

p12
�� in Qa below both πR2 and γR3 . The swap between

p12
�� and πR2

is trivially accomplished by applying the following rewriting rule,
where A ⊆ attr (R1) and attr (p12) ⊆ A ∪ attr (R2):

πA(R1)
p12
◦ R2 = π{A,R2 }(R1

p12
◦ R2) (10)

where ◦ ∈ {��,→,←,↔}

After this swapping, we obtain Qb in Figure 2(b). Next, pushing
p12
�� in Qb below γR3 is achieved by applying Rule 2 in Table 2 to

produce Qc in Figure 2(c). Now that
p12
�� and

p23
→ are both adjacent

operators in Qc , we apply the associativity property between ��
and→ (i.e., (R1

p12
�� R2)

p23
→ R3 = R1

p12
�� (R2

p23
→ R3)) to swap these

operators to obtain Qd in Figure 2(d). Finally, we apply Equation
(9) once more to rewrite Qd to Qe in Figure 2(e). �

The next example illustrates the need for γ ∗ operator in join
reorderings.

Example 4.6. Consider the reordering of the joins in the query
Q = R1

p12
→ (R2

p23
� R3) such that the join of R1 and R2 is computed

first. By applying Equation (9), Q is rewritten to Qa as depicted in
Figure 3(a). We apply Equation (10) to get Qb . Then by pushing
down the join

p12
→ below γR3 in Qb , we get the query Qc . However,

this rewriting actually does not preserve the equivalence ofQb and
Qc because while all the tuples in R1 are preserved in the result of
Qb , some of the tuples from R1 could be removed by γR3 in the
result of Qc .

Intuitively, to preserve equivalence for the rewriting that pushes
p12
→ below γR3 in Qb , we should restrict γR3 ’s power such that it
cannot remove tuples from R1. To achieve this, we need to replace
γR3 by the more general form γ ∗

R3,R1
after the rewriting to obtain

the query Qd shown in Figure 3(d). By the definition of γ given in



Equation (8), γ ∗
R3,R1

will not remove any tuple from R1. Note that
Qd and Qb , Qa are equivalent. A more precise formulation of this
rewriting is given by Rule 3 in Table 2. �

We conclude this section with a brief discussion on the com-
pleteness of the rewriting rules in Table 3. In general, each assoc/l-
asscom/r-asscom transformation for a given pair of join operators
should be associated with two rewriting rules: one for rewriting
from the LHS to RHS, and the other from rewriting from the RHS
to LHS. For instance, Table 3 has two rewriting rules associated
with the assoc(→, �) transformation. However, for some transfor-
mations such as assoc(�, ��), the schema of its LHS, i.e., (R1

p12
� R2)

p23
��

R3, is actually not meaningful: the output schema of (R1
p12
� R2) is

the schema of R1 and it does not make sense to join (R1
p12
� R2)with

R3 using the join predicate p23. For such cases, there is only one
rewriting rule associated with the transformation.

4.4 Pulling Up Compensation Operators

As illustrated by Examples 4.5 and 4.6, the compensation opera-
tors λ/γ /γ ∗ generated during the query rewriting process could get
sandwiched between other operators on top (e.g., π , other join op-
erators) and a subtree of join operators below. In order to facilitate
the reordering of the join operators, the compensation operators
need to be pulled up to bypass other join operators above them.

Pulling up γ /γ ∗ to bypass join operators can be achieved using
rewriting rules in Table 2. For pulling up λ, we introduce two ad-
ditional rewriting rules in Table 4. We have the following results.

Theorem 4.7. Rules 26 and 27 in Table 4 are sound. �
Based on Rules 26 and 27, Table 5 in Appendix B shows the

complete rewriting rules for pulling up the λ operator.

Rule 26 λP1,M (λP2,N (R)) = λP2,N (λP1,M (R)),
if P1 does not reference N

Rule 27 λP1,M (λP2,N (R)) = λP2,M∪N (λP1,M (R)),
if P1 references N

Table 4: Rewriting rules for swapping λ. Note that λP1,M

comes from a join node above λP2,N .

The next example shows how the rewriting rules help to pull up
compensation operators in join reordering.

Example 4.8. Suppose that we want to reorder the join opera-
tions in query Qa in Figure 4(a) such that the join of R1 and R2 is
computed first, followed by the join of R1 and R4. To achieve this,
we first reorder

p12
◦ and

p23
◦ by Rule 14 in Table 3 to getQb . Next, we

need to pull up the path of non-join operators (πR1 ,γR2 ,β ,λp23,R2 )

in Qb so that
p14
◦ becomes adjacent to

p23
◦ to facilitate

p14
→ to be re-

ordered ahead of
p23
→. The pulling up of πR1 and γR2 can be done by

applying Equation (10) followed by Rule 4 in Table 2. The pulling
up β is achieved by applying Equations (2), (4) and (6) in Section 2.2.
Finally, the pulling up of λp23,R2 is achieved by applying Rule 30
from Table 5. The resultant query is Qc in Figure 4(c) which now
enables

p14
→ to be swapped with

p23
→. �

Algorithm 1: TopDown(Q, R)
Input: Query Q over a set of relations R = {R1, · · · , Rn }
Output: An optimal query plan for Q

1 let Pinit be the initial query plan derived from Q

2 foreach Ri ∈ R do

3 bestAccess[Ri ] = best access method for Ri
4 foreach S ⊆ R, |S | > 1 do

5 initialize bestPlan[S ] = null
6 return GenerateSubplan(Pinit , null, R)

5 TOP-DOWN PLAN ENUMERATION

In this section, we present a top-down plan enumeration strategy
to compute an optimal query plan for an input query Q on a set of
relations R = {R1, · · · ,Rn}.

In conventional top-down plan enumeration (e.g., [3]), an op-
timal query plan for Q is computed by enumerating all feasible
decompositions of R into two non-empty, disjoint subsets S1 and
S2 that could be joined together, and recursively finding optimal
subplans for each of S1 and S2. Moreover, the best query subplan
found for each subset of R is cached for reuse in subsequent enu-
merated query plans.

As our approach for reordering joins could introduce compensa-
tion operations which are generally different even for joining the
same subset of relations under different query plans, this creates
additional challenges for enumerating and reusing query subplans.
The following example illustrates these additional complexities.

Example 5.1. Consider the query planQd for joiningR = {R1,R2,
R3,R4,R5} shown in Figure 4. Qд and Qh are two query plans
with different join reorderings that are each equivalent to Qd . In
terms of top-down plan enumeration, if we use S to denote the
set {R3,R4,R5}, then Qд is formed by first decomposing R into
(S∪{R1})◦ {R2}, followed by decomposing (S∪{R1}) into S ◦{R1}.
In contrast, Qh is formed by first decomposing R into S ◦ {R1,R2}.
Suppose that Qд is enumerated before Qh and that Pд = (R3

p34
��

R4)
p45
→ R5 is the best query subplan for joining S in Qд . As part

of the construction of Qh , we need to determine the best plan for
joining S . If we were to reuse the best plan found in Qд for S (i.e.,

replace the subplan Ph = (R3
p34
�� R4)

p45
� R5 in Qh with Pд ), the

resultant query plan will not be equivalent to Qh because Pд and
Ph are not equivalent. �

The above example highlights two key complications with com-
pensation operators. First, the enumeration of query subplans needs
to keep track of any compensation operations generated. Second,
the reuse of optimal query subplans requires more careful reason-
ing to ensure correctness.

To simplify the presentation, we first discuss our approach for
the class of join queries without full outerjoins C�

J
in Sections 5.1

and 5.2, and then present an extension in Section 5.3 to handle all
join queries including full outerjoins. Section 5.1 presents a basic
approach that keeps track of compensation operations generated
during plan enumeration without any reuse of optimal query sub-
plans. Section 5.2 presents a refinement that also enables the reuse
of optimal query subplans.
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Figure 4: Query plans for Example 4.8 and Example 5.1

Algorithm 2: GenerateSubplan(P , i, S)
Input: P is a query plan, i is either null or a join node in P , S is a

subset of relations in P

Output: A query plan P ′ that is derived from P that contains an
optimal subplan SP for joining S . If i � null , then SP is a
child subtree of i ; otherwise, P ′ = SP

1 if S = {Ri } then

2 return P with Ri replaced by bestAccess[Ri ]
3 foreach joinable pair (S1, S2) of S do

4 initialize P ′ = P

5 let j be the join node in P ′ that joins S1 and S2
6 while par (j) � i do
7 P ′ = Swap(P ′, j)
8 P ′ = GenerateSubplan(P ′, j, S1)
9 P ′ = GenerateSubplan(P ′, j, S2)
10 if cost(subtree(P ′, S )) < cost(subtree(bestPlan[S], S)) then

11 bestPlan[S ] = P ′

12 return bestPlan[S ]

5.1 Basic Approach

To facilitate the tracking of compensation operators in query plans,
our approach enumerates each query subplan SP for joining S ⊆ R
within the context of some complete query plan P (i.e., query plan
for the entire query). Given a queryQ to be optimized, the simplest
choice of an initial complete query plan for Q is the query plan
that is directly translated from the specification ofQ . We use Pinit
to denote this initial query plan for Q . Note that our interest in
Pinit is in both the logical join operators as well as join ordering
specified in Pinit , which are essential for generating appropriate
compensation operators as the joins in Pinit are being reordered
to enumerate query subplans. Thus, Pinit is a logical (and not a
physical) query plan.

Algorithm 1 shows the main driver of our top-down enumer-
ation approach. An array bestAccess[Ri ] is used to store the best
access plan for each relation Ri ∈ R; and another array bestPlan[S]

Algorithm 3: Swap(P , i)
Input: P is a query plan where i is an internal non-root join node in

P

Output: A modified query plan P with i swapped with its parent
join node

1 let j be the parent join node of i in P

2 if there are compensation operators between i and j then

3 apply appropriate rewriting rule in Table 2, 4 or 5 to pull all
compensation operators above j

4 letT� and Tr denote the left and right child subtrees of i in P

5 if j refers to T� and not to Tr then

6 P = apply appropriate assoc rewriting rule to swap i and j

7 else

8 if j refers to Tr and not to T� then

9 if i is the left child of j then

10 P = apply appropriate l-asscom rewriting rule to swap i

and j

11 else

12 P = apply appropriate r-asscom rewriting rule to swap i

and j

13 return P

is used to store the query plan P that contains a best subplan SP
for joining S ⊆ R .3

GenerateSubplan returns an optimal subplanSP (within a given
query plan P forQ) to join an input set of relations S ⊆ R such that
SP is a child subtree of a given internal node i in P if i � null ; oth-
erwise, P = SP .

The for-loop (step 4) iterates all feasible query subplans to join
S . We define (S2, S2) to be a joinable pair of S if there exists a join
ordering of Q with an internal node such that S1 and S2 are pre-
cisely the set of relations in the child subtrees of that node and
S = S1 ∪ S2.

Both the checking of whether (S1, S2) is a joinable pair of S (step
4) as well as identifying the join node j for this pair (step 5) can be
3 Although our basic approach does not reuse optimal query subplans and therefore
does not really need to use bestPlan[], we maintain this structure for ease of transition
when we present our enhanced algorithms later.



efficiently performed based on the following property: (S1, S2) is a
joinable pair of S with join node j if j is the only join node in P
that refers to some relation in each of S1 and S2. As an example,
consider the query plan P = Qa in Figure 4. If S = {R1,R2,R3,R4},
then ({R1,R3}, {R2,R4}) is not a joinable pair of S because there is
more than one join node in P ′ (i.e., p14 and p23) that refers to each
of {R1,R3} and {R2,R4}. On the other hand, ({R1,R2,R3}, {R4}) is
a joinable pair of S as there is exactly one join node p14 in P ′ that
refers to each of {R1,R2,R3} and {R4}.

Given the join node j for a joinable pair (S1, S2) of S , GenerateSubplan
first moves j so that i becomes the parent join node4 of i in P ′ (steps
6 and 7); if i = null , then j becomes the root join node5 in P ′. This
transformation of P ′ is performed by calling the Swap function (Al-
gorithm 3) iteratively to swap j with its parent node in P ′. In step
6, par (j) denotes the parent join node of j in P where par (j) = null
if j is the root join node in P .

After the relocation of j in P ′, GenerateSubplan recursively
generates an optimal subplan for each of S1 and S2 (steps 8-9).
Steps 10 uses the best plan found so far to eliminate non-optimal
subplans. Step 11 stores the cheapest query plan P ′ for joining S
in bestPlan[S]. The evaluation cost of a query plan P is given by
cost(P); if P = null, then cost(P ) =∞. The cost model for estimating
the cost of query plans is discussed in Section 6.2.

Since the query subplan SP for joining S is embedded within a
complete query plan P ′, we use subtree(P , S) to denote SP . More
precisely, subtree(P , S) denote the smallest subtreeSP in P (in terms
of the number of relations in SP ) that satisfies the following two
properties: (1) SP contains all the relations in S , and (2) SP con-
tains all the compensation operators that are between the root
join node r in SP and the closest ancestor join node r ′ of r (if
r ′ does not exist, then SP = P ). As an example, in Figure 4(b),
subtree(Qb , {R1,R2,R3}) is the subplan of Qb rooted at the node
πR1 .

Given a query plan P and an internal non-root join node i in P ,
the function Swap (Algorithm 3) transforms P by swapping i with
its parent join node j in P . If there are compensation operators be-
tween i and j, we first pull these compensations above j by apply-
ing appropriate rewriting rules from Table 2, 4 or 5, to make i and j
adjacent. Then we swap i and j by applying an appropriate assoc/l-
asscom/r-asscom rewriting rule. The structural transformation for
this kind of swap is illustrated in Figure 1. Since our approach pro-
vides complete join reorderability for C�

J
, it is always possible to

find appropriate rewriting rules to perform the swap operation.

5.2 Enabling Reuse of Query Subplans

In this section, we present a refinement of the basic approach pre-
sented in the previous section to enable the reuse of optimal query
subplans whenever possible.

As illustrated by Example 5.1, the compensation operators gen-
erated from an invalid transformation could affect the reusability
of query subplans. The following example provides the intuition
for the condition under which it is correct to reuse the best query

4 Given two nodes i and j in a query plan P , we say that i is the parent join node of
j if i is the closest ancestor join node of j in P .
5 Given a query plan P , we define the root join node in P to be the top-most join node
in P .

subplan for joining some subset of relations S (w.r.t. some complete
query plan) in a different complete query plan for joining S .

Example 5.2. Consider the three query subplans for joining S =
{R1,R2,R3} in Figures 4(a), (b), and (c). Note that subtree(Qb , S)
rooted at πR1 is equivalent to subtree(Qa , S) because the compen-
sation operators (πR1 ,γR2 , β , λP23,R2 ) generated by swapping the
two join operators p12 and p23 in Qa to derive Qb are all within
subtree(Qb , S). On the other hand, subtree(Qc , S) rooted at

p23
→ is

not equivalent to subtree(Qa , S) rooted at
p12
� because all the com-

pensation operators associated with the swap of the join operators
are outside of subtree(Qc , S). �

The above example illustrates that query subplan equivalence
needs to take into account of the compensation operators that are
associated with the join operators within the subplans. Specifically,
a join operator depends on a compensation operator in two scenar-
ios. First, if a sequence of compensation operators C is generated
when a join operator ◦1 is swapped above another join operator
◦2, then both ◦1 and ◦2 depend on each operator in C . Second, if a
compensation operator c is swapped above a join operation ◦ and
it causes the join type of ◦ to be changed, then ◦ depends on c.

To capture the dependencies among join and compensation op-
erators, we introduce a new labeled edge type in query plans termed
dependency edge (d-edge). For the first scenario, for each ◦i , i ∈
{1, 2}, we add a d-edge from ◦i to a virtual node v that represents
C with label (◦1, ◦2) to indicate that C is generated when ◦2 is
swapped above ◦1. For the second scenario, we add a d-edge from ◦
to c with label (◦, c) to indicate that the join type of ◦was changed
from c is swapped above ◦. We denote a d-edge from node v to w

with label � by v
�
�−→ w .

Example 5.3. Referring once more to Figure 4, when the join op-
erators

p12
� and

p23
�� inQa are swapped to deriveQb , it generates the

sequence of compensations C = (πR1 ,γR2 , β , λp23,R2 ). To represent
the dependency of the join operators on C , our approach would

add two d-edges: e1 :
p12
◦
(
p12
� ,

p23
�� )

�−→ v and e2 :
p23
◦
(
p12
� ,

p23
�� )

�−→ v , where v
is a virtual node that represents C . �

We now state the precise conditions for two query subplans
to be considered equivalent. Given two d-edges, e1 and e2, where

each ei :
pi
◦i

labeli
�−→ vi , e1 and e2 defined to be equivalent if and

only if p1 = p2 and label1 = label2. Note that the definition does
not require that v1 = v2 because compensation operators could
change form when they are swapped (e.g., Rules 3 and 8 in Ta-
ble 2). Given a query subplan SP , we use ExtDEdдe(SP) to denote
the set of d-edges whose source nodes are within SP but their
destination nodes are outside of SP . We use ExtDEdдe(SP1) ≡
ExtDEdдe(SP2) to denote that the d-edges in both ExtDEdдe(SP1)
and ExtDEdдe(SP2) are equivalent. We have the following result.

Theorem 5.4. Given two query plans P1 and P2 where each Pi
contains a subplan SPi for joining a set of relations S , SP1 and SP2
are equivalent subplans if ExtDEdдe(SP1) ≡ ExtDEdдe(SP2). �

The algorithms for our enhanced approach are given in Appen-
dix C.



Example 5.5. Consider the two query subplans for joining S =
{R3,R4,R5} in Figures 4(g) and (h). Note that there are three d-

edges in Qд : e1 :
p12
◦
(
p13
� ,

p12
� )

�−→ v1, e2 :
p13
◦
(
p13
� ,

p12
� )

�−→ v1 and e3 :
p45
◦
(C1,

p45
� )

�−→ v1, where v1 represents C1 = (π{R3,R4 },γR1 ,γR5 ,γ
∗
R2,R3
).

Both e1 and e2 are added from the swapping of
p13
� and

p12
� in Qd

to deriveQe , while e3 is added from the pulling up of compensation
operatorsC1 above ◦p45 to deriveQf . SinceExtDEdдe(subtree(Qд , S))
= {e3} and ExtDEdдe(subtree(Qh , S)) = ∅, subtree(Qд , S) and
subtree(Qh , S) are not equivalent query subplans. �

5.3 Handling Full-Outerjoins

In this section, we explain how our join enumeration approach can
be easily extended to handle the class of all join queries CJ includ-
ing those queries with full outerjoins. As discussed in Section 3,
although our approach does not provide complete join reorderabil-
ity for CJ , any join reordering supported by TBA is also supported
by our approach.

Since our approach provides only partial reorderability for CJ ,
it might not be always possible for Algorithm 3 to find an appli-
cable rewriting rule to perform a swap operation involving a full
outerjoin. For such cases, Swap simply returns null to indicate that
the swap cannot be performed. If a call to Swap returns null , then
GenerateSubplan would abandon the construction of that query
subplan to join S1 and S2.

5.4 Discussion

To the best of our knowledge, our approach is the first top-down
plan enumeration for query plans with compensation operators.
CBA [12] described a bottom-up plan enumeration algorithm (based
on the concept of Nullification Sets) for query plans containing λ
and β compensation operators. However, their algorithm simply
enumerates all possible join plans without any pruning or reusing
of query subplans.

Incorporating cost-based pruning and dynamic programming-
style reusing of query subplans is difficult for bottom-up plan enu-
meration because of the presence of compensation operators in
query plans. As we have explained in Example 5.1, compensation
operators complicate the reasoning about query subplan equiva-
lence. Therefore, we have chosen to design a top-down approach
for plan enumeration in this paper that is able to to incorporate
both cost-based pruning as well as reusing of optimal subplans.

6 IMPLEMENTATION ISSUES

In this section, we discuss how the compensation operators in our
approach can be implemented. In general, there are two ways to
implement new query operators. The first is a language-based ap-
proach that implements the new operators at the SQL language
level. Given a query plan P produced by the optimizer, if P con-
tains any compensation operator, P will be rewritten into a SQL
query that enforces the join ordering in P for execution. The sec-
ond approach is a native approach that implements at least one
evaluation algorithm for each compensation operator.

In this paper, we focus on the first approach as it is a less intru-
sive approach that can be more easily implemented.

6.1 SQL-level Implementation

Among the four compensation operators (λ, β , γ , γ ∗) used in our
approach, there already exists SQL-level implementations for both
λ and β operators, which were introduced by CBA [12]. We first
overview how λ and β are implemented in CBA, and explain the
implementation of the operators γ and γ ∗ introduced by our ap-
proach. A complete example showing the SQL implementation of
a query plan with compensation operators is given in Appendix E.

The nullification operator λpi,Ai
(see Section 2.2) is easily imple-

mented using SQL’s case expression for each attribute Ai, j ∈ Ai
as follows: “CASE WHEN pi THEN Ai, j END AS Bi, j”. Here, Bi, j
is set to Ai, j if pi is true ; and null , otherwise.

For the best-match operation β(R), the key idea behind CBA’s im-
plementation is to sort R to generate R′ in such a way that for each
spurious tuple t ∈ R′, t is immediately preceded by a tuple in R′

that dominates or duplicates t . In this way, the spurious tuples in
R′ can be easily eliminated by a scan of R′. Depending on the λ op-
erators in a query plan, the implementation of β in general might
require more than one sorting of R (with different orderings) to
completely eliminate all its spurious tuples. The sorting and spuri-
ous tuple elimination operations in β are implemented using SQL’s
window function construct.

We now discuss how the two new operators introduced by our
approach can be easily implemented following their definitions in
Section 4.2. The γA(R) operation is simply implemented using a
SELECT subquery to eliminate all tuples in R with a non-null value
for some attribute in A.

Theγ ∗
A,B(R) operation is implemented directly following its def-

inition using a combination of SELECT subquery, λ operation, and
β operation. A SELECT subquery is first used to find the tuples in
R with non-null values for all attributes in A, and a λ operation is
applied on these tuples to nullify all its attribute values except for
the attributes B. Finally, we apply the β operation to eliminate all
the spurious tuples.

In summary, all the compensation operators used in our approach
can be easily implemented at the SQL level.

6.2 Cost Model

In this section, we discuss the cost models for the four compensa-
tion operations, λ, β , γ , and γ ∗.

For λ and γ , which are essentially selection operations, the cost
for them is simply the cost of a scan through its operand.

As the evaluation of β is dominated by the the cost of sorting,
the cost for β isO(nloдn), where n is the size of its operand. For γ ∗,
since it is semantically equivalent to a λ operation followed by a β
operation, the cost for γ ∗ is alsoO(nloдn), where n is the size of its
operand.

7 EXPERIMENTAL RESULTS

In this section, we present an experimental evaluation to demon-
strate the performance improvements that can be achieved by our
approach of supporting more join reorderings. Our results show
that our approach can improve the running time performance by
up to a factor of 2.84 for a 5-table join query in PostgreSQL. Ad-
ditional performance results using a commercial database system
and discussions are presented in Appendix F.
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Figure 5: Query plans for Q1, Q2 and Q3

Our experiments were conducted on an Intel Xeon Processor
E5-2603 v2 server running Ubuntu Linux 14.04 with 32GB mem-
ory and two 1TB SATA disks (one for the OS and database server
installation and the other for database files storage). The queries
were run on PostgreSQL 9.6.1 database server with shared_buffers
= 5GB and work_mem = 1GB.

We evaluated the following three queries (with increasing com-
plexity) on three TPC-H benchmark datasets (with scaling factors
1, 10, and 100, respectively):

Q1: R1
p12
� (R2

p23
� R3)

Q2: R1
p12
� ((R2

p24
�� R4)

p23
�� R3)

Q3: R1
p12
� ((R2

p24
�� (R4

p45
�� R5))

p23
�� R3)

where R1 = Supplier , R2 = Partsupp, R3 = σp_name=c1(Part),
R4 = Lineitem,R5 = σo_totalpr ice>c2(Orders),p12 is “(s_suppkey =
ps_suppkey)∧(s_acctbal > v×ps_supplycost)”,p23 is “ps_partkey =
p_partkey”, p24 is “(ps_suppkey = l_suppkey) ∧ (ps_partkey =
l_partkey)”, p45 is “l_orderkey = o_orderkey”. Here, c1 and c2 are
some constant values, and v is a parameter that is used to vary the

selectivity factor of R1
p12
� R2 (denoted by f12); i.e., f12 =

|R1
p12
� R2 |
|R1 |

.
As it will become clear later, f12 affects the relative performance
of the compared query plans.

For each queryQi , we compared its running times for two query
plans: the query plan produced by PostgreSQL’s query optimizer
(denoted by P

pд
i ) and the query plan produced by our approach

(denoted by PECAi ). Each reported timing for a query plan is the
average of three executions of the plan with a cold cache.
Query Q1. The two query plans for Q1 are shown in Figures 5(a)
and (b). Since Q1 has two antijoins and assoc(�, �) is an invalid
transformation, it is not possible to reorder these two joins using
a conventional optimizer. Hence, the only possible join ordering
considered by PostgreSQL is Ppд1 . In contrast, our approach could
reorder the joins inQ1 to produce the plan PECA1 by applying Rule
15 in Table 3. We expect PECA1 to outperform P

pд
1 when f12 is large

(i.e., a large proportion of tuples in R1 do not join with any tuple
in R2) as this would reduce the cost of joining the R1 tuples from
the first join with R3 in PECA1 . The SQL queries corresponding to
these two query plans are given in Appendix E.

The performance comparisons for Q1 are shown in Figures 6(a)
to (c) for the 1GB, 10GB, and 100GB TPC-H databases with the se-
lectivity factor of R1

p12
� R2 (i.e., f12) being varied. The performance

results follow our expectation: PECA1 outperforms Ppд1 except for a
few cases when f12 is small. Moreover, the performance improve-
ment of PECA1 over Ppд1 also increases with the database size: our
approach wins by up to a factor of 1.36, 1.47, and 1.65 for the 1GB,
10GB, and 100GB databases, respectively.
Query Q2. A straightforward query plan obtained from a direct
translation of Q2 is Pdirect2 shown in Figure 5(c). PostgreSQL is
able to reorder the joins in Pdirect2 to the plan P

pд
2 in Figure 5(d)

by applying the l-asscom(
p24
�� ,

p23
�� ) rule (which is a valid transforma-

tion). PostgreSQL chooses P
pд
2 over Pdirect2 because performing

R2
p23
� R3 first would reduce the size of R2 and hence reduce the

cost of R2
p24
→ R4.

In contrast, our approach is able to first apply the assoc(
p12
� ,

p23
�� )

rule (i.e., Rule 14 in Table 3) to obtain the intermediate plan P int2

(Figure 5(e)), and then apply the assoc(
p12
→,

p24
�� ) rule (Rule 22 in Table

3) and l-asscom(
p24
→,

p23
→) rule to derive PECA2 in Figure 5(f). Similarly

as for Q1, we expect PECA2 to outperform P
pд
2 when the join selec-

tivity f12 is large, because a larger f12 means that there would be
fewer R2 tuples to join with R4 and R3, and thus reducing the join
cost.

The performance results comparing Ppд2 and PECA2 are shown in
Figures 6(d) to (f) for the 1GB, 10GB, and 100GB TPC-H databases.
The results show that our approach wins by up to a factor of 2.20,
2.17, 2.35 for the 1GB, 10GB, and 100GB databases, respectively.
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Figure 6: Performance results for QueriesQ1, Q2 and Q3

QueryQ3.Q3 has one additional join with R5 compared toQ2. The
two query plans obtained are shown in Figure 5(g) and (h). Their
performance comparison in Figures 6(g) to (i) shows that our ap-
proach wins by a factor of 2.20, 2.45, 2.84 for the 1GB, 10GB, 100GB
databases, respectively. The explanation for this performance trend
is similar to that Q2 and we omit a detailed discussion.

8 CONCLUSIONS

The join reordering problem is a fundamental task in query opti-
mization. While this is a well studied problem for inner-join queries,
there is currently no single best solution for reordering joins in
complex queries involving non-inner joins. In this paper, we have
formalized the notion of complete join reorderability and devel-
oped a new approach for join reordering that enables more join
reorderings compared to the state-of-the-art solutions. Our perfor-
mance study has demonstrated that enabling more join reorderings
can improve query execution time by up to a factor of 2.84 for a

5-table join query. As part of our future work, we plan to inves-
tigate enabling complete join reorderability for queries with full
outerjoins.
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A PROOFS FOR REWRITING RULES 3 & 18

In this section, we present partial proofs of Theorems 4.2 and 4.4
by presenting the proofs of two rewriting rules: Rule 3 in Table 2
and Rule 18 in Table 3. The other rewriting rules can be proved
similarly.

Rule 3: R2
p12
→ γR3 (R1) = γ ∗

R3,R2
(R2

p12
→ R1), where p12 does not

reference R3.

Proof. Let LHS denoteR2
p12
→ γR3 (R1) and RHS denoteγ ∗

R3,R2
(R2

p12
→ R1). By the definition of γ , attr (R3) ⊆ attr (R1). LHS removes
all tuples in R1 with non-null values for attr (R3) (by γR3 ) and com-
putes a left outerjoin between R2 and γR3 (R1). RHS first computes
a left outerjoin between R2 and R1, and for the tuples in the join
result with non-null values for attr (R3), their values for attributes
in attr (R1) are set tonull (by γ ∗). Thus, each tuple in LHS and RHS
is either of the form (r2,null) or (r2, r1), where r2 ∈ R2 and r1 ∈ R1.

First, we show that LHS ⊆ RHS. For a tuple t of the form (r2, r1)
in LHS, we know that the values of attr (R3) for t are null; other-
wise, t would have been removed by γR3 . Moreover, the join predi-

cate p12 must evaluate to true for t . Therefore, t ∈ R2
p12
→ R1, and t

is not removed or modified by γ ∗
R3,R2

which implies that t ∈ RHS .
For a tuple t of the form (r2,null) in LHS, this implies that ei-

ther (a) r2 does not join (w.r.t. p12) with any tuple in R1 or (b) r2
joins (w.r.t. p12) only with tuples in R1 that have non-null values
for attr (R3). For case (a), t ∈ R2

p12
→ R1 and t is not removed or

modified by γ ∗
R3,R2

; thus, t is also in RHS. For case (b), γ ∗
R3,R2

will

set the values for attr (R1) to null, and therefore (r2,null) is in RHS.
Therefore, LHS ⊆ RHS.

Next, we show that RHS ⊆ LHS. For a tuple t of the form (r2, r1)
in RHS, we know that join predicate p12 evaluates to true for r2
and r1, and that the t ’s values for attr (R3) are null. Therefore, t is
also in LHS. For a tuple t of the form (r2,null) in RHS, either r2
does not join (w.r.t. p12) with any tuple from R1, or r2 joins (w.r.t.
p12) only with tuples in R1 that have non-null values for attr (R3).
By the definition of left outerjoin, t is also in LHS. Thus, RHS ⊆
LHS. �

Rule 18: R1
p12
→ (R2

p23
� R3) = π{R1,R2 }(γ

∗
R3,R1
((R1

p12
→ R2)

p23
→ R3))

Proof.

R1
p12
→ (R2

p23
� R3)

= R1
p12
→ πR2 (γR3 (R2

p23
→ R3)), by Equation 9 in Section 4.3

= πR1,R2 (R1
p12
→ γR3 (R2

p23
→ R3)), by Equation 10 in Section 4.3

= π{R1,R2 }(γ
∗
R3,R1
((R1

p12
→ R2)

p23
→ R3)), by Rule 3 in Table 2

�

B RULES FOR PULLING λ
Based on Rules 26 and 27 discussed in Section 4.4, Table 5 shows
the rewriting rules for pulling λ above join operators.

C ENHANCED APPROACH

This section presents the details of our enhanced approach intro-
duced in Section 5.2 to enable the reuse of optimal query subplans.

The enhanced approach consists of the same main driver as
the basic approach (Algorithm 1 in Section 5.1) and modified ver-
sions of GenerateSubplan and Swap (shown as Algorithms 4 and
5). GenerateSubplan uses two additional functions, GetBestPlan
(shown as Algorithm 6) and UpdateBestPlan (details are not shown)
to reuse optimal subplans when applicable.

Recall from the discussion in Section 5.2 that for a set of rela-
tions S to be joined, there could be multiple query plans each con-
sisting of a different subplan for joining S , and these subplans are
not necessarily equivalent. Our enhanced approach uses bestPlan[S]
to store these incomparable optimal subplans for joining S .

Specifically, in GenerateSubplan, if there is no reusable optimal
subplan for joining a set of relations S , steps 7 to 15 will compute
an optimal subplan P ′ for S and invoke UpdateBestPlan(S ,P ′ ) to
insert P ′ into bestPlan[S]. On the other hand, if an applicable opti-
mal subplan for S is available (retrieved by GetBestPlan in step 3),
it will be reused (step 5). The correctness of GetBestPlan is based
on Theorem 5.4.

Steps 5 and 17 in Swap function generate appropriate d-edges
in query plans when operators are swapped to enable reasoning
about query subplan equivalence.

D HANDLING NULL-TOLERANT JOIN
PREDICATES

Although we have so far restricted the discussed query classes to
contain only null-intolerant join predicates, our approach can be



Rule 28 λp,R3 (R1)
p12
�� R2 = β (λp,R3 (R1

p12
�� R2)), where p12 does not reference R3

Rule 29 λp,R3 (R1)
p12
�� R2 = β (λp,R1∪R2∪R3 (R1

p12
�� R2)), where p12 references R3

Rule 30 λp,R3 (R1)
p12
→ R2 = β (λp,R3 (R1

p12
→ R2)), where p12 does not reference R3

Rule 31 λp,R3 (R1)
p12
→ R2 = β (λp,R2∪R3 (R1

p12
→ R2)), where p12 references R3

Rule 32 R1
p12
→ λp,R3 (R2) = β (λp,R3 (R1

p12
�� R2)), where p12 does not reference R3

Rule 33 R1
p12
→ λp,R3 (R2) = β (λp,R2∪R3 (R1

p12
�� R2)), where p12 references R3

Rule 34 λp,R3 (R1)
p12
� R2 = πR1 (γR2 (β (λp,R3 (R1

p12
→ R2)))), where p12 does not reference R3

Rule 35 λp,R3 (R1)
p12
� R2 = πR1 (γR2 (β (λp,R2∪R3 (R1

p12
→ R2)))), where p12 references R3

Rule 36 R1
p12
� λp,R3 (R2) = πR1 (γR2 (β (λp,R3 (R1

p12
→ R2)))), where p12 does not reference R3

Rule 37 R1
p12
� λp,R3 (R2) = πR1 (γR2 (β (λp,R2∪R3 (R1

p12
→ R2)))), where p12 references R3

Table 5: Rewriting rules for pulling λ above join operators

Algorithm 5: Swap(P , i)
Input: P is a query plan where i is an internal non-root join node in

P

Output: A modified query plan P with i swapped with its parent
join node

1 let j be the parent join node of i in P

2 if there are compensation operators between i and j then

3 apply appropriate rewriting rule(s) in Table 2, 4 or 5 to pull these
compensation operators above j

4 if swapping the of j and some compensation operator c has

changed the join type of j then

5 add a d-edge j
(j,c)
�−→ c to P

6 let T� and Tr denote the left and right child subtrees of i in P

7 if j refers to T� and not to Tr then

8 P = apply appropriate assoc rewriting rule to swap i and j

9 else

10 if j refers to Tr and not to T� then

11 if i is the left child of j then

12 P = apply appropriate l-asscom rewriting rule to swap i

and j

13 else

14 P = apply appropriate r-asscom rewriting rule to swap i

and j

15 if the swapping of i and j has produced a set of compensation operators

C then

16 let v be a virtual node representing C

17 add d-edges i
(j,i)
�−→ v and j

(j,i)
�−→ v to P

18 return P

Algorithm 6: GetBestPlan(S, P )
Input: P is a query plan, S is a subset of relations in P

Output: A query plan Popt in bestPlan[S ] where subtree(Popt , S ) is
equivalent to subtree(P , S )

1 SP1 = subtree(P , S )
2 foreach query plan Popt in bestPlan[S ] do

3 SP2 = subtree(Popt , S )
4 if ExtDEdдe(SP1) ≡ ExtDEdдe(SP2) then
5 return Popt

6 return null

Algorithm 4: GenerateSubplan(P , i, S)
Input: P is a query plan, i is either null or a join node in P , S is a

subset of relations in P

Output: A query plan P ′ that is derived from P that contains an
optimal subplan SP for joining S . If i � null , then SP is a
child subtree of i ; otherwise, P ′ = SP

1 if S = {Ri } then

2 return P with Ri replaced by bestAccess[Ri ]
3 Popt = GetBestPlan(S,P)
4 if Popt � null then
5 replace subtree(P, S ) in P by subtree(Popt , S )
6 return P

7 foreach joinable pair (S1, S2) of S do

8 initialize P ′ = P

9 let j be the join node in P ′ that joins S1 and S2
10 while par (j) � i do
11 P ′ = Swap(P ′, j)
12 P ′ = GenerateSubplan(P ′, j, S1)
13 P ′ = GenerateSubplan(P ′, j, S2)
14 if cost(subtree(P ′,S )) < cost(subtree(GetBestPlan(S, P ′),S)) then

15 UpdateBestPlan(S, P ′)
16 return GetBestPlan(S, P )

easily extended to handle queries with null-tolerant join predicates.
As can be expected, we will only have partial join reorderability for
queries with null-tolerant predicates.

Indeed, most of the valid transformations summarized in Table 1
do not require the join predicates to be null-intolerant [8]. To han-
dle null-tolerant join predicates, the key modification required to
our approach is in query plan enumeration (Section 5): whenever
a swap is being considered between a pair of join nodes that in-
volves some null-tolerant join predicate, the Swap function permits
the swap if it is allowed by the corresponding valid transforma-
tion [8]; otherwise, the Swap function returns null to indicate that
the reordering is infeasible.

Let C∗
J

denote the class of join queries with join operators from
the set J = {��,→,←,↔,�,�, �, �} where the join predicates
could be null-tolerant or null-intolerant. We have the following
result.



Theorem D.1. For C∗
J
, our approach strictly supersedes both TBA

and CBA. �
The soundness of the above theorem follows from the fact that

our approach allows all valid transformations involving null-tolerant
join predicates that are supported in TBA, and CBA does not support
join reordering with null-tolerant join predicates.

E SQL QUERIES FOR Q1 IN SECTION 7

The SQL queries executed by PostgreSQL and our approach forQ1
in Section 7 are shown in Figure 7(a) and (b), respectively.

F ADDITIONAL PERFORMANCE RESULTS &
DISCUSSIONS

F.1 Experiments with a Commercial DBMS

In this section, we present additional performance results with
the same queries from Section 7 on a commercial database system
which we refer to as CDB.

For queries Q2 and Q3, CDB generated the same logical query
plans (in terms of join ordering) as those from PostgreSQL. Sim-
ilar to the results for PostgreSQL, our approach outperforms the
conventional query plans produced by CDB for Q2 and Q3. How-
ever, the performance gains of our approach are more significant
on CDB than on PostgreSQL: the improvement factors for Q2 and
Q3 on CDB are, respectively, 2.60 and 6.14 (compared to 2.35 and
2.84 on PostgreSQL). The reason for this is that CDB was able to
choose a more efficient algorithm (e.g., hash join over sort merge
join) for the join operations resulting in larger improvement fac-
tors for the more complex query plans from Q2 and Q3.

For query Q1, the conventional query plan produced by CDB

performs unexpectedly much worse than the plan generated by
our approach (by a factor of 500). It turns out that CDB had cho-
sen to use the nested-loop algorithm to compute the NOT EXISTS
subquery in the translated SQL query (refer to Figure 7(a)). To get
around this inefficient conventional query plan picked by CDB, we
rewrite the SQL query to express the antijoin operation in terms of

a left outerjoin with a null-tolerant selection predicate “p_partkey
IS NULL”. With this revised SQL query, CDB was able to produce a
much more efficient query plan for Q1 that has a comparable per-
formance as the query plan produced by our approach. Interest-
ingly, the query plan produced by CDB for the revised SQL query
corresponds to R1

p12
� ((R2

p12
�� R1)

p23
� R3) which introduces an ad-

ditional join with another instance of R1. We also tried similar re-
vised SQL queries for both Q2 and Q3 but this did not change the
conventional query plans produced by CDB for these queries.

F.2 Additional Experimental Discussions

In this section, we provide a more detailed explanation of the exper-
imental results with PostgreSQL that were presented in Section 7.

Observe from Figure 6 that while the improvement factors of
our approach for bothQ1 andQ3 grow with the data size, this is not
the case for Q2. The reason is as follows. We observe that for each
of the three databases D, the running time for Ppд2 on D is about
9-12 times longer than that for Ppд1 onD. This behaviour also holds
for our query plans but only on the 10GB and 100GB databases; for
the 1GB database, the running time for PECA2 is only 5 times longer
than that for PECA1 . This is because for the 1GB database, R4 fits in

main memory, and since
p12
◦ is performed first in PECA2 to obtain a

small intermediate result, joining this intermediate result with R4
also produces a small result. Thus, having an additional table R4 in
Q2 does not significantly increase the running time of PECA2 over
PECA1 . In contrast, for Ppд2 on the 1GB database, although R4 also
fits in main memory, joining R4 in P

pд
2 produces a large intermedi-

ate result which does not fit in main memory, so the running time
for Ppд2 is about 9 times longer than that for Ppд1 . For the 10GB and
100GB databases, since neither R4 nor the intermediate result after
joining with R4 can fit completely in main memory, the running
time for Q2 is 9-12 times longer than that for Q1 using each of the
approaches. ForQ3, as the additional R5 is a large table, the perfor-
mance is affected more by the database size, and the improvement
factor of our approach increases with database size.



SELECT s_suppkey
FROM supplier
WHERE NOT EXISTS

(
SELECT NULL
FROM (

SELECT ps_suppkey, ps_supplycost
FROM partsupp
WHERE NOT EXISTS

(
SELECT NULL
FROM part
WHERE ps_partkey = p_partkey

AND p_name = 'cyan orchid indian cornflower saddle'
)

) AS pruned_partsupp
WHERE ps_suppkey = s_suppkey

AND s_acctbal > :v * ps_supplycost
)

(a) SQL query executed by PostgreSQL for Q1

SELECT s_suppkey
FROM (

SELECT s_suppkey, ps_suppkey, ps_partkey, p_partkey,
max(s_suppkey) OVER (ORDER BY s_suppkey, ps_suppkey, ps_partkey, p_partkey

ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING) AS s_suppkey_p,
max(ps_suppkey) OVER (ORDER BY s_suppkey, ps_suppkey, ps_partkey, p_partkey

ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING) AS ps_suppkey_p,
max(ps_partkey) OVER (ORDER BY s_suppkey, ps_suppkey, ps_partkey, p_partkey

ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING) AS ps_partkey_p,
max(p_partkey) OVER (ORDER BY s_suppkey, ps_suppkey, ps_partkey, p_partkey

ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING) AS p_partkey_p,
row_number() OVER (ORDER BY s_suppkey, ps_suppkey, ps_partkey, p_partkey

ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING) AS row_num
FROM (

SELECT s_suppkey,
CASE WHEN p_partkey IS NULL THEN ps_suppkey END AS ps_suppkey,
CASE WHEN p_partkey IS NULL THEN ps_partkey END AS ps_partkey,
CASE WHEN p_partkey IS NULL THEN p_partkey END AS p_partkey

FROM
(

(supplier LEFT JOIN partsupp
ON s_suppkey = ps_suppkey AND s_acctbal > :v * ps_supplycost)

LEFT JOIN
(SELECT p_partkey FROM part WHERE p_name = 'cyan orchid indian cornflower saddle')
AS part ON p_partkey = ps_partkey

)
) AS nullified

) AS window_table
WHERE

(
s_suppkey <> s_suppkey_p OR
ps_suppkey <> ps_suppkey_p OR
ps_partkey <> ps_partkey_p OR
p_partkey <> p_partkey_p OR
row_num = 1
) AND
ps_suppkey IS NULL

(b) Rewritten SQL query executed by our approach for Q1

Figure 7: SQL Queries for Q1 (Section 7)


