On-line Scheduling with level of Services

Ee-Chien Chang
School of Computing
National University of Singapore
changec@comp.nus.edu.sg

Chee Yap
Courant Institute of Mathematical Science
New York University
Motivated by an application in visualization across network, we study an abstract on-line scheduling problem. Our schedulers can gain partial merit from a partially served request. Thus the problem embodies a notion of “level of services”.

We give 2 schedulers FirstFit and EndFit which based on 2 simple heuristics. Both are 2-competitive. We generalize them to a class of Greedy schedulers. Any greedy scheduler is 3-competitive.
An instance I is a sequence of n requests.

Each request is parameterized by $q = (\text{start-time, deadline, volume, weight})$.
Each request is parameterized by
\(q = (\text{start-time}, \text{deadline}, \text{volume}, \text{weight}) \).
Each request is parameterized by \(q = (\text{start-time, deadline, volume, weight}) \).
Each request is parameterized by \(q = (\text{start-time}, \text{deadline}, \text{volume}, \text{weight}) \).
Each request is parameterized by $q = (\text{start-time}, \text{deadline}, \text{volume}, \text{weight})$.

$wt(q)$
q_1

$\overrightarrow{q_2}$

$\overrightarrow{q_3}$
A valid schedule H.

$\text{merit (} H \text{) = } \sum_{q} \text{(weight of } q \text{)} \ast \text{(total size of } q \text{ served in } H)
1. Unlike most scheduling problems, a partially served request contributes to the merit.

2. Each request can be broken into finite number of pieces.

3. We consider online scheduling, i.e., at time t, the server only sees requests whose start-time is earlier than t.

```
t_0  t_1  t_2
q_1
q_2
q_3
```
4. A scheduler S is c-competitive if for any I,
$\text{merit}(S(I)) \geq \text{merit} (\text{offline_optimal}(I))$
Two schedulers

1. **FirstFit**: always serves the current heaviest residual request.

2. **EndFit**: always serves according to the off-line optimal schedule of the residual requests.
1. **FirstFit**: always serves the current heaviest residual request.
1. **FirstFit**: always serves the current heaviest residual request.

![Diagram of FirstFit](image)
1. **FirstFit**: always serves the current heaviest residual request.
1. **FirstFit**: always serves the current heaviest residual request.

![Diagram showing FirstFit algorithm]

- FirstFit(I)
 - q_1
 - q_2
Theorem 1
FirstFit is 2-competitive.

For any instance I and any schedule H for I

$$2 \text{ merit} (\text{ FirstFit } (I)) \geq \text{ merit} (H).$$
2. **EndFit**: always serves according to the off-line optimal schedule of the residual requests.
2. **EndFit**: always serves according to the off-line optimal schedule of the residual requests.
2. \textit{EndFit}: always serves according to the off-line optimal schedule of the residual requests.

\[\text{EndFit}(I) \]
2. **EndFit**: always serves according to the off-line optimal schedule of the residual requests.
2. **EndFit**: always serves according to the off-line optimal schedule of the residual requests.
2. **EndFit**: always serves according to the off-line optimal schedule of the residual requests.
EndFit always delays the service of a heavier request to the latest possible time slot.

offline optimal schedule
FirstFit always serve a heavier request in the earliest possible time slot.

 offline optimal schedule
Theorem 2

EndFit is 2-competitive.

Lemma

For any instance I

\[\text{merit}(\text{EndFit} (I)) \geq \text{merit}(\text{EndFit}(\text{trim}(I))). \]
Greedy Schedulers

Computes a plan for the residual requests. Serves according to the plan until a new request arrives.
EndFit and FirstFit are greedy schedulers.

Theorem 3
Any greedy scheduler is 3-competitive.

We can find a greedy scheduler that is not better than 3-competitive.

With additional constraints, we can show that any greedy scheduler is not better than 2-competitive.
All online schedulers are not better than 1.17-competitive.

FirstEndFit: Toss a fair coin. If the outcome is *head*, then simulates **FirstFit**. If *tail*, then simulates **EndFit**.