Robust Extraction of Secret Bits from Minutiae

Ee-Chien Chang

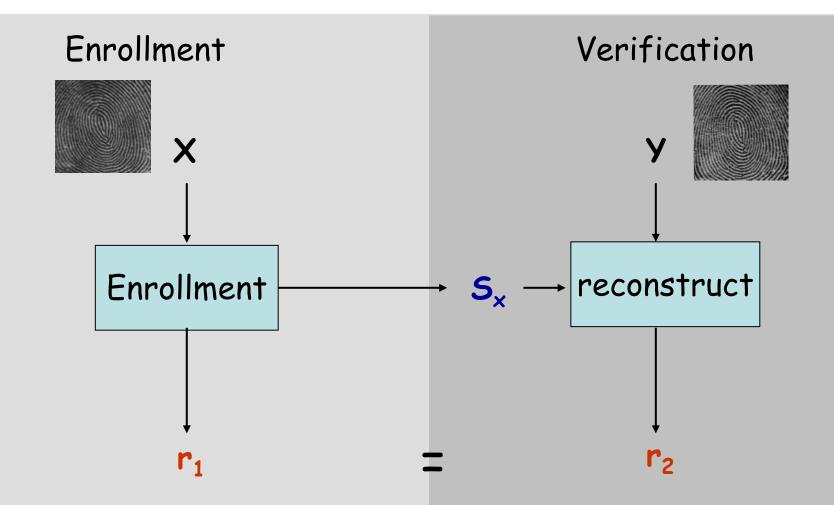
Sujoy Roy

School of Computing National University of Singapore Institute for Infocomm Research Singapore

Motivation

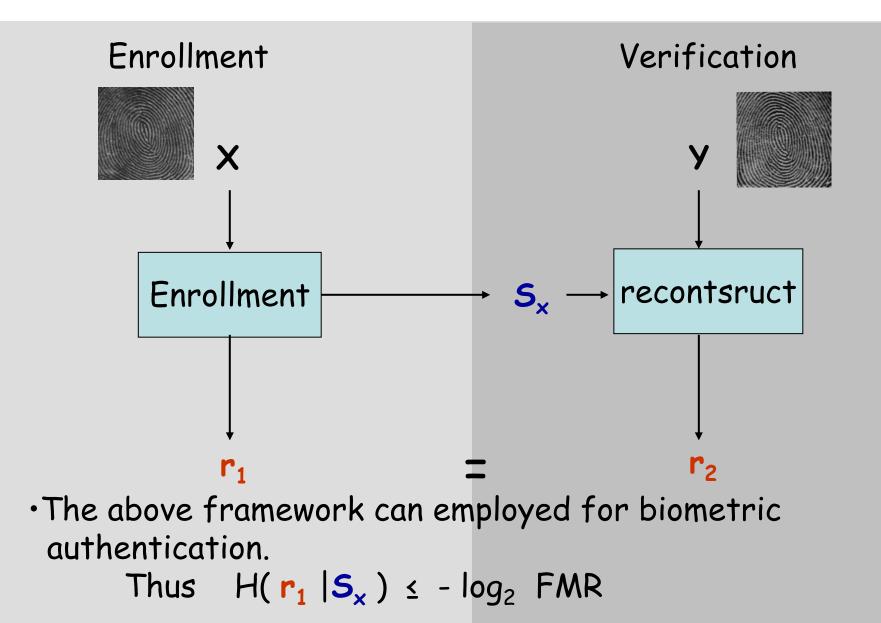
- To extract consistent bits from different scans of a same finger. From two different scans, the extracted bits must be *exactly* the same.
- Such bits can be used as the secret in cryptographic applications.





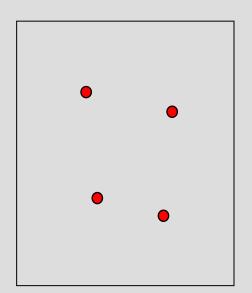
• S_x may reveal some information of r_1 and S_x must be made public.

• entropy of secret bits. H($r_1 | S_x$)

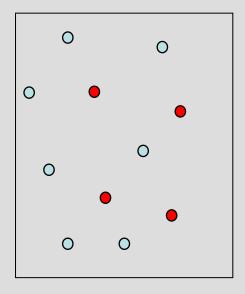


So, if the state-of-the-art authentication system achieves FMR=0.001. Probably we can't extract more than 10 bits.

Chaff-based method

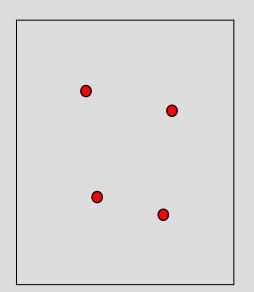


adding random chaff

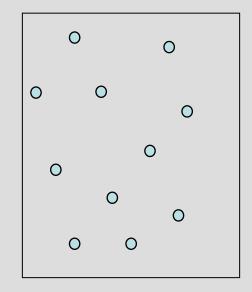


Secret points

Chaff-based method



adding random chaff



Secret points

Form one part of the sketch. This is made public

Limitations of chaff-based methods

- Large sketch size.
- Inflexible to incorporate statistical properties of the data and noise.
- Difficult to give a statement on its security.

Our approach

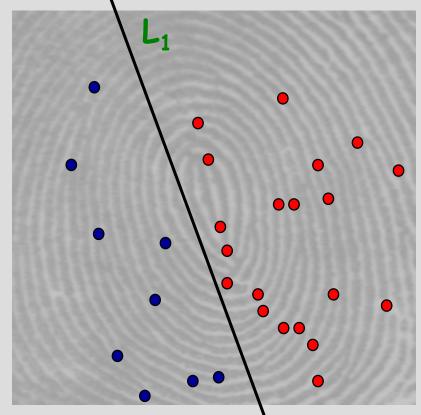
- Employ a locality preserving function to map the set of minutiae to a real vector.
- Using error-correcting codes on binary string to construct the sketch.

Mapping minutiae to real vector

Choose many lines (for e.g. 600).

For a given line, and a set of minutiae X, determine the different of the number of minutiae on the left and right

9-20 = -11



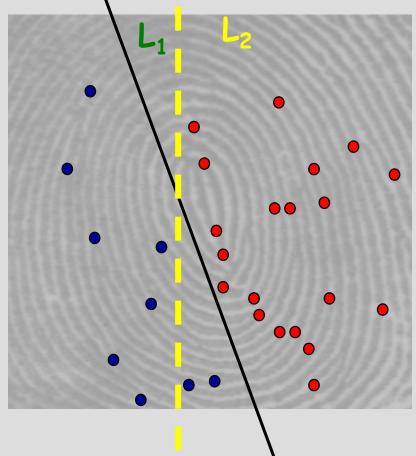
Mapping minutiae to real vector

Choose many lines (for e.g. 600).

For a given line, and a set of minutiae X, determine the different of the number of points on the left and right

9-20 = -11

7-22 = -15



Enrollment

- Map the minutiae X to a real vector. $X \rightarrow v_x$
- De-correlate and keep k coefficients (PCA during design stage).

 $v_x \rightarrow h_x$

- Convert to a **k**-bits string $\mathbf{b}_{\mathbf{x}}$. $\mathbf{h}_{\mathbf{x}} \rightarrow \mathbf{b}_{\mathbf{x}}$
- Find the nearest codeword in a codebook of size 2^m.
 c = nearest codeword to b_x.
- Compute sketch

$$s_x = b_x$$
 .xor. c

• The secret bits are c or the message associated with c

Enrollment

- Map the minutiae X to a real vector. $X \rightarrow v_x$
- De-correlate and keep k coefficients (PCA during design stage).

 $v_x \rightarrow h_x$

- Convert to a k-bits string b_x . $h_x \rightarrow b_x$ $h_x \rightarrow b_x$ distributed. Assume that
- Find the nearest codeword in a codebook of size 2^m.
 c = nearest codeword to b_x.
- Compute sketch

$$s_x = b_x$$
 .xor. c

• The secret bits are c or the message associated with c

Verification

- Same as enrollment, obtain a k-bits string by.
- compensate for noise using sketch
 c = b_v .xor. s_x
- Maximum likelihood decoding to find the "enrolled" codeword. (nearest codeword w.r.t. to a weighted Hamming distant derived from statistical properties of noise).

Experiment

• We use NIST 4 database (2000 fingers with 2 scans each).

100 pairs for training.

- PCA

- the weights in the weighted Hamming distance
- Using random codebook.
 (for different parameters, k, m)

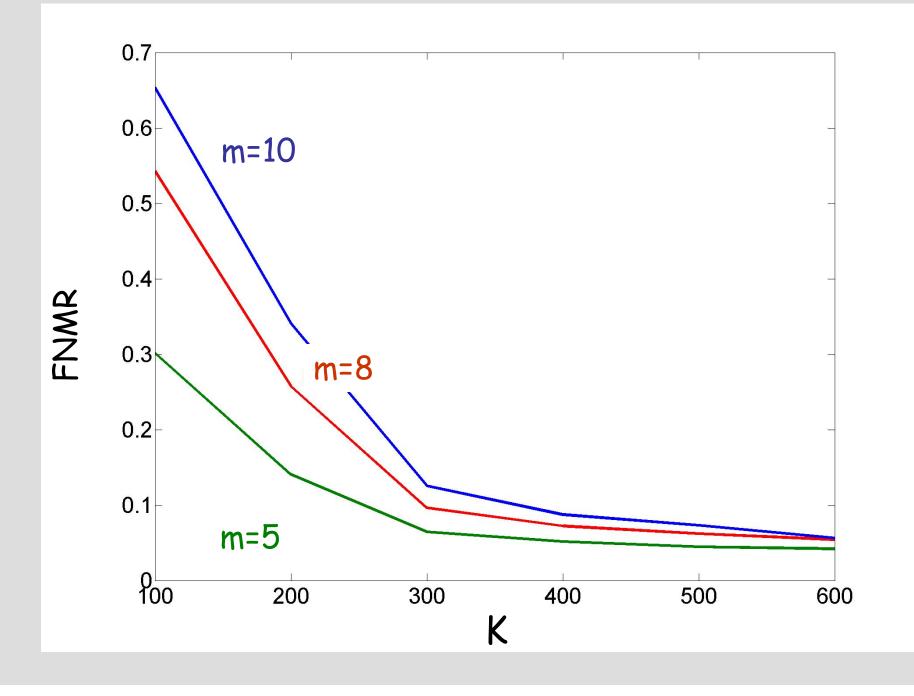
Performance

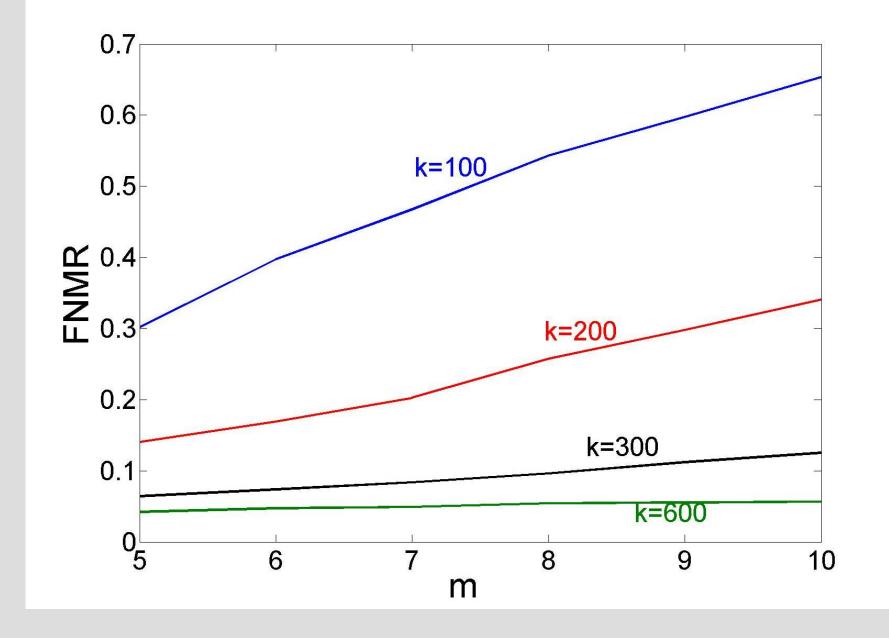
Parameters:

- 1. k: Number of coefficients retained after PCA.
- m: 2^m is the number of codewords in the codebook. (number of secret bits, -log₂ FMR)

Performance measures:

- 1. FNMR
- 2. Size of the sketch.





Conclusion

- Short sketch. (≈320 bits, no randomness)
- Able to incorporate statistical properties of minutiae. (PCA)
- Able to incorporate statistical properties of noise. (Maximum likelihood decoding)
- Able to make a statement on the number of secret bits.
 - At most 320 bits revealed.

- If an intermediate representation is uniform distributed, then the number of secret bits is ≈ 10 .

Change occurrences of

"FNMR 0.09%" \rightarrow "FNMR 0.09"