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Abstract

We consider secure sketch construction in an asymmet-
ric setting, that is, multiple samples are acquired during
enrollment, but only a single sample is obtained during ver-
ification. Known protection methods apply secure sketch
constructions on the average of the samples, while publish-
ing the auxiliary information extracted from the set of sam-
ples, such as variances or weights of the features, in clear.
Since the auxiliary information is revealed, an adversary
can potentially use it to determine the relationship among
multiple sketches, and gather information on the identity of
the sketches. In this paper, we give a formal formulation
of secure sketch under the asymmetric setting, and propose
two schemes that mix the identity-dependent auxiliary in-
formation within the sketch. Our analysis shows that while
our schemes maintain similar bounds of information loss
compared to schemes that reveal the auxiliary information,
they offer better privacy protection by limiting the linkages
among sketches.

1. Introduction

Protection techniques for biometric templates, such
as fuzzy commitment [6], fuzzy vault [5], and secure
sketch [3], publish small pieces of data to aid reconstruc-
tion of the biometric secrets under inevitable noises. One
important goal of these techniques aims to minimize the in-
formation loss of the published data, which are also known
as secure sketches. Essentially, during enrollment, after the
biometric data X is obtained, its sketch S is constructed,
typically based on some error-correcting code. From anoth-
er X ′ obtained during verification, if X and X ′ are suffi-
ciently close, the original X can be reconstructed from X ′

and S. With the sketch released as public data and available
during verification, the exact X can be reconstructed when-
ever a close enough X ′ is presented. Thus, X can be used
as a consistent secret in cryptographic operations. Since the

sketch is to be revealed, it must not leak important infor-
mation on X and the identity of the enrollee. Known con-
structions of secure sketches, such as for fingerprints [1, 2]
or faces [13], generally handle biometric data that are mod-
eled as a set of feature points (either ordered or unordered)
under two types of noises. The first type perturbs each bio-
metric feature point by a small amount; and the second type
adds and removes some feature points. The differences un-
der the first type of noise can be measured using Euclidean
distance, whereas the second type can be measured using
set difference.

The constructions of sketches are typically applied in a
symmetric setting, that is, only one sample is acquired dur-
ing both enrollment and verification. To improve the perfor-
mance in terms of relative operating characteristic (ROC),
many applications [4, 12, 7] adopt an asymmetric setting.
During enrollment phase, multiple samples are obtained,
whereby an average sample and auxiliary information such
as variances or weights of features are derived. During veri-
fication, only one sample is acquired. The derived auxiliary
information can be helpful in improving ROC. For example,
it could indicate that a particular feature point is relatively
inconsistent and should not be considered, and thus reduc-
ing the false reject rate. Note that the auxiliary informa-
tion is identity-dependent in the sense that different identity
would have different auxiliary information. Li et al. [10] ob-
served that by using the auxiliary information in the asym-
metric setting, the “key strength” could be enhanced due to
the improvement of ROC, but there could be higher leakage
on privacy.

Current known works, for example, the schemes given
by Li et al. [10] and by Kelkboom [7], store the auxiliary
information in clear. Li et al. [10] employ a scheme that
carefully groups the feature points to minimize the differ-
ences of variance among the groups. The derived grouping
is treated as auxiliary information and is published in clear.
The scheme proposed by Kelkboom et al. [7] computes the
means and variances of the features from the multiple en-
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rolled face images, and selects the k features with least vari-
ances. The selection indices are also published in clear. The
revealed auxiliary information could potentially leak impor-
tant identity information as an adversary could distinguish
whether a few sketches are of from the same identity by
comparing the auxiliary information. Such leakage is simi-
lar to the sketch distinguishability in the typical symmetric
setting[11]. Therefore, it is desired to have a sketch con-
struction that can protect the auxiliary information as well.

In this paper, we construct two schemes where the auxil-
iary information is protected by “mixing” it into the sketch.
We extend the notation of entropy loss [3] and give a formu-
lation on information loss for secure sketch under asymmet-
ric setting (Section 2.2). We give two sketch constructions
for asymmetric setting under the two types of noise. The
first construction handles the Euclidean noise with auxiliary
information modeled by level of the noise (Section 3). The
second construction handles set difference with a weight
vector indicating the consistency of the biometric features
(Section 4).

We analyze the proposed schemes under two security no-
tions, namely, the average min-entropy loss of the identi-
ty information, and the linkages of sketches. Our analy-
sis shows that, and yet our schemes have similar bound on
information loss compared to the straightforward methods,
they offer better privacy protection (Section 3.2, Section
4.2).

2. Preliminaries and Formulation
2.1. Symmetric Sketch

LetM be the set of biometric data with a closeness re-
lation D defined over M×M, two biometric samples X
and Y are closed to each other if (X,Y ) is in D. The secure
sketch for symmetric setting is define as follow:

Secure sketch [3]. A secure sketch scheme is a tuple
(M,D, Enc,Dec), where Enc : M → {0, 1}∗ is an en-
coder and Dec :M×{0, 1}∗ →M is a decoder such that
for all (X,X ′) ∈ D, Dec(X ′, Enc(X)) = X . The output
S = Enc(X) of the encoder, is called the sketch of X .

Since the exact X can be reconstructed with a close
enough X ′, X can be used as a consistent secret in known
cryptographic techniques, for example, a key in a encryp-
tion scheme.

2.2. Asymmetric Sketch

We now extend the definition of secure sketch to the
asymmetric setting. Let B and X be the information ob-
tained during registration and verification respectively, and
let V be the set of all B’s, and M be the set of all X’s.
Note that in the asymmetric setting, V is not the same as
M. Let C ⊂ V ×M be a relation where, (B,X) ∈ C if

the biometric data X obtained during verification should be
considered to be from the same enrollee who provides B.
We define asymmetric secure sketch as follow:

Asymmetric secure sketch. An asymmetric secure
sketch scheme is a tuple (M,V,C, P, Enc,Dec), where
Enc : V → {0, 1}∗ is an encoder and Dec : M ×
{0, 1}∗ → M is a decoder such that for all (B,X) ∈
C, Dec(X,Enc(B)) = P (B), where P is a projection
from V toM.

Similarly, P (B) can be used as a consistent secret as it
can be reconstructed exactly from S and X if B and X are
provided by the same person.

2.3. Entropy Loss from Sketches

The security of a sketch scheme relies on how much in-
formation of the biometric data is leaked from the sketch.
We follow Dodis et al.[3] notion which quantifies the lost in-
formation based on average min-entropy. The min entropy
H∞(A) of a variable A is defined as − log(maxa(Pr[A =
a])), and the average min-entropy of A given B is defined
as: H̃∞(A|B) = − log(Eb←B [2−H∞(A|B=b)]). Under
this notion, the remaining entropy of X given the sketch
S = Enc(X) is expressed by H̃∞(X|S), and the entropy
loss is measured by H∞(X)− H̃∞(X|S).

It can be shown [3] that:

H∞(X)− H̃∞(X|S) ≤ |S| −H∞(R) (1)

where R is the invested randomness in sketch construction
that can be recovered from X and the sketch S. This is a
useful inequality in bounding the (worst case) entropy loss
w.r.t any distribution on X .

In the asymmetric setting, we care about the leakage
on identity dependent information, and thus consider B
H∞(B)− H̃∞(B|S) as the security measurement. By the
same argument in (1), we can give a similar bound on the
entropy loss in asymmetric setting:

H∞(B)− H̃∞(B|S) ≤ |S| −H∞(R) (2)

2.4. Privacy of Schemes

The quantity of remaining entropy is not the only se-
curity concern. Even if the remaining entropy is large,
important information on identity might have been leaked
by a sketch. There are also other concerns, for example,
cross matching [8] and correlation attack [9]. Simoens et
al.[11] give a security model on the sketch distinguishabil-
ity. They examine the probability that an attacker can de-
termine whether two documents were encrypted using the
same biometric. We give a similar model in the asymmetric
setting: the adversary has two sketches and he wants to de-
termine whether they belong to the same identity. Formally,



for a sketch scheme, consider the following game between
the challenger C and an attacker A:

1. C randomly picks a biometrics B0 from the space V
and a bit a from {0, 1}.

2. (Same identity) If a = 0, C chooses B1 which is B0

perturbed by random noise;
(Different identity) If a = 1, C randomly selects a B1

from V .

3. C computes the asymmetric sketches onB0 andB1 and
sends Enc(B0), Enc(B1) to A.

4. A on receiving Enc(B0), Enc(B1), outputs a bit a′.

5. A wins if a′ = a.

The random noise model in second step of the above
game is determined by the enrollment process, which mod-
els the noise between two enrollments of the same identity.
The value |Pr[a′ = a] − 1

2 | reflects effectiveness of the at-
tacker in distinguishing the identity given two sketches. In
Section 3, we will show that compared to the straightfor-
ward scheme, our construction is able to hide the auxiliary
information while the entropy loss remain unchanged. Note
that when a = 1, there is a chance that the randomly select-
ed B1 is close to B0. Such probability corresponds to the
false accept rate and should be small.

3. Asymmetric Sketch under Euclidean
Distance

In this section, we give a construction for Euclidean dis-
tance. Let us illustrate our idea with a simple case where
a biometric sample is represented as an integer in [0, n).
During enrollment, multiple samples are acquired and the
information B are derived and represented by two integers
(b, v): b ∈ [0, n) is the mean of the samples and v ∈ [1, q] is
a threshold based on the variance of the samples. During the
verification, a sample X in [0, n) is acquired. X is consider
to be from the same identity who enrolls B if |X − b| < v,
i.e. the close relation C = {(X,B) | |X − b| < v}. The
choice on the value of v will determine the false reject rate,
where a larger v gives lower false reject rate but lowers the
key strength.

Let us first describe a straightforward sketch scheme
SS1 as follow: (1) Enc1 on input B = (b, v) outputs t-
wo integers c = (b mod (2v − 1)) and v; (2) Dec1 on
X outputs the integer in the set {a|a ≡ c(mod2v − 1)}
that is closest to X; and (3) the function P (B) projects
B = (b, v) to b. It is easy to verify that for all (B,X) ∈
C, Dec1(X,Enc1(B)) = P (B). Essentially, scheme SS1

divides [0, n) into intervals of length ` = 2v − 1 where b is
at the center of one of the intervals as shown in Figure 1(a).

(a) Sketch with same length ` = 2v − 1

(b) Sketch with different lengths

Figure 1. Two sketch schemes over a simple 1D case.

One weakness of scheme SS1 is that the auxiliary in-
formation v is revealed in clear. We give a simple sketch
scheme SS2 which protects the auxiliary information. The
main idea of the construction is to partition the domain
[0, n) into intervals of different lengths, with the interval
(b− v, b+ v) among one of them, as shown in Figure 1(b).
Given B = (b, v) , the encoder Enc2 constructs the sketch
S in the following steps:

1. Let G be a set of two integers {b− v, b+ v}.

2. Randomly generates an integer r from [1, q] and inserts
the value (min(G) − (2r − 1)) into G, repeats Step 2
until min(G) ≤ 0.

3. Randomly generates an integer r from [1, q] and inserts
the value (max(G) + (2r − 1)) into G, repeats Step 3
until max(G) ≥ n.

4. Let k be the number of elements in G, sorts G in as-
cending order and let the sorted list be 〈g1, . . . , gk〉,
note that g1 is negative and gk > n.

5. Let `i = gi+1 − gi for i in [1, k), returns the sequence
〈g1, `1, `2, . . . , `k−1〉 as the sketch S.

Intuitively, the `i’s are the lengths of the intervals as
shown in Figure 1(b). The Dec2 algorithm on X and S,
reconstructs the set G = 〈g1, g2, . . . , gk〉, and finds the first
i such that gi > X (note that i > 1 since g1 < 0), and
returns (gi−1 + gi)/2. The projection P (B) outputs b as in
scheme SS1.

The correctness (i.e. Dec(X,Enc(B)) = P (B)) of the
scheme can be easily verified: if X and B are from the
same identity, then we have b − v < X < b + v, and thus
gi = b+ v, gi−1 = b− v and (gi−1+ gi)/2 = b. This leads
to Dec(X,S) = P (B) as required.

3.1. Analysis of Entropy Loss

The following analysis gives a bound on the entropy loss
(Section 2.3) and gives the comparison on privacy (Section
2.4) of scheme SS1 and SS2. Note that such bound holds
for any distribution on X .



Lemma 1 The entropy loss of the sketch produced by SS2

is at most 1 + 2 log q.

Proof Since Step 2 of Enc2 completes when min(G) ≤ 0,
g1 is in (−2q + 1, 0] and thus H∞(g1) ≤ log 2q. The
`i = gi+1 − gi are odd numbers in [1, 2q − 1], thus
H∞(`i) ≤ log q. When Dec reconstructs G from X and
S, the randomness (i.e. the r added in each iteration of Step
2 and 3 in Enc2) used in generating the k − 2 intervals can
be recovered. By equation (2), the entropy loss is at most
log 2q + (k − 1) log q − (k − 2) log q = 1 + 2 log q. �

For the scheme SS1, since the number of bits required to
describe the sketch is |v| + |c|, and there is no randomness
involved, the entropy loss is bounded by |v| + |b mod 2v|.
Note that v is in range [1, q], H∞(v) ≤ log q, and H∞(c) =
H∞(b mod 2v − 1) ≤ log 2q, thus, the entropy loss of
scheme SS1 is bounded by 1 + 2 log q.

3.2. Analysis of Sketch Distinguishability

While the entropy loss of schemes SS1 and SS2 are
bounded by a same value, scheme SS1 reveals the auxiliary
information in clear, whereas scheme SS2 protects the aux-
iliary information by “mixing” it with the biometric secret
and giving different sketches for different enrollments. In
this section we will analyze the impact of such difference.

For the discussion to be meaningful, let us assume that
the auxiliary information is identity dependent and there are
two thresholds t and ε such that for two biometric data B =
(b, v) and B′ = (b′, v′) obtained from the same identity,
we will have Pr[|v − v′| ≥ t] < ε, and for two biometric
data B = (b, v) and B̃ = (̃b, ṽ) obtained from two different
identities, Pr[|v − ṽ| < t] < ε.

For scheme SS1, let C1 and A1 be the challenger and
attacker described in Section 2.4, let B0 = (b0, v0), B1 =
(b1, v1) be the two sketches output by C1. There is an effec-
tive algorithm A1 in guessing a′: it outputs 0 if and only if
|v0 − v1| < t. In this case, the probability Pr[a′ = a | a =
0] ≥ 1− ε and Pr[a′ = a | a = 1] ≥ 1− 2t−1

q − ε.
For scheme SS2, one strategy ofA2 is to count the num-

ber of “similar intervals”: two overlapping intervals are
similar if the ratio between the length of their intersection
and the length of their union is greater than the threshold
t+q
q . A2 outputs 0 if the number of “similar intervals” be-

tween Enc(B0) and Enc(B1) is larger than a threshold it
learnt, and output 1 otherwise.

The intuition of the above strategy is that, when a = 0,
the count is expected to be larger. However, when n is large
and q is small, the domain [0, n) is divided into many inter-
vals and this will reduce the effectiveness of the strategy of
A2. Thus, the attack will depends not only on the parameter
q, t but also on n.

Figure 2 shows how the parameters will affect the priva-
cy protection. We implement the scheme SS2 and for dif-

ferent values of n and q with t = 1 and ε = 0.001, we ran-
domly generated 106 biometrics B0, construct Enc(B0),
Enc(B1) with different randomness then count the number
of similar intervals, where B1 is a noisy version of B0. The
histogram of the counts is shown by the red dotted line in
the figure. We then randomly generated 106 pairs of B0,
B1, construct Enc(B0) and Enc(B1) and count the num-
ber of similar intervals, where B0 and B1 are two different
biometric templates. The histogram of the counts is shown
by the blue solid line in the figure.

(a) n = 100, q = 10 (b) n = 1000, q = 10

(c) n = 1000, q = 5 (d) n = 10000, q = 5

Figure 2. The histogram of number of intervals for different n and
q.

Let us consider Figure 2(c) where n = 1000 and q = 5
as an example. When given two sketches with k “similar
intervals”, A2 looks at the probability distribution approxi-
mated by Figure 2(c). He checks whether the the red dotted
line (which approximates the probability that two sketch-
es are from the same identity) is higher than the blue solid
line, and then guess the b′ which gives the maximum like-
lihood. When n = 1000 and q = 5, A2 should guess
b′ = 0 when k > 21 and the probability of A2 wins the
game is less than 0.55. In contrast, under the same parame-
ters, the adversary A1 for the straightforward Scheme SS1

is able to distinguish two sketches with a probability at least
(1 + 1 − 2t−1

q )/2 = 0.9. Figure 2 also shows that when n
gets larger and q gets smaller, the success probability of A2

approaches 1
2 .



4. Asymmetric Sketch for Set Difference
In this section, we give an extension of fuzzy vault

scheme by Juels and Sudan[5] to handle the set difference,
where a biometric sample can be represented as a set of
elements in a space Zp. Under asymmetric setting, multi-
ple sets are enrolled and two sets can be extracted: a set
X = {x0, x1, . . . , xm−1} where xi ∈ Zp of the elements
appeared, and a set V denoting the importance, derived by
the consistency, of each element.

Let us first describe the fuzzy vault scheme[5]:

1. Randomly picks a polynomial F of degree m− 2t− 1
in field Zp.

2. Constructs a set (1, y1), (2, y2), . . . , (p, yp) in this
way: For each i ∈ Zp, if i ∈ X , then yi is chosen to
be F (i), otherwise, randomly picks an element from
Zp − {F (i)} to be yi.

3. outputs S = {(1, y1), (2, y2), . . . , (p, yp)}.

Given a X ′, the reconstruction process attempts to find
the polynomial F using the points {(i, yi)|i ∈ X ′}, and
then reconstructs X . When there is at least m− t common
points inX andX ′, the polynomial F can be reconstructed.
Let us call this Scheme SS3.

4.1. The Asymmetric Setting

One possible auxiliary information set difference is the
importance and consistancy of the elements in the set.
Let us consider the case where during enrollment, B =
(X,V ) is extracted from the multiple samples, where X =
{x0, x1, . . . , xm−1} is a vector of m elements with xi ∈
Zp, and V = {(x0, v0), (x1, v1), . . . , (xm−1, vm−1)} is the
corresponding weights of the elements, with each vi ∈ Zq .
During verification, X ′ = {x′0, x′1, . . . , x′k−1} is obtained
from the single sample of the biometrics. X ′ and B are in
the close relation C if the sum of the weights of the com-
mon elements is larger than a threshold t, i.e.

∑
v∈W v > t

where W = {v|∃x, (x, v) ∈ V and x ∈ (X ∩ X ′)}.
Scheme SS3 can be considered as a special case where
m = k and all the vi’s are 1.

The main idea of our construction is to extend the above
scheme by associating the more important elements to more
points to the polynomial F so that they will contribute more
roots in verification. Let H(x, y) = (x+ qy) be a function
on Zq×Zp → Zpq , and the sketch construction is as follow:

1. Randomly picks a polynomial F of degree g− 2t′ − 1
in field Zpq , where g =

∑
v∈V (v) and t′ = (g − t).

2. Starts with a set Y = X and an empty set S.

3. For i = 0 to m − 1, computes Gi =
{H(0, xi), H(1, xi), . . . ,H(q − 1, xi)}, and random-
ly picks vi elements from Gi and get the set G′i.

Inserts (H(j, xi), F (H(j, xi))) to S for H(j, xi) ∈
Gi and inserts (H(j, xi), yj,xi

) to S for H(j, xi) ∈
(Gi −G′i) where yj,xi is randomly chosen from Zp −
{F (H(j, xi))}.

4. For i = m to r, randomly picks xi /∈ Y , inserts xi
to Y , computesGi = {H(0, xi), H(1, xi), . . . ,H(q−
1, xi)} and inserts (xi, yi) to S, (H(j, xi), yj,xi) to S
for H(j, xi) ∈ (Gi) where yj,xi

is randomly chosen
from Zp − {F (H(j, xi))}.

5. Output S.

During verification, given a X ′ = {x′0, x′1, . . . , x′k−1},
Dec first computes the set S′ of {H(j, x′i)|x′i ∈ X ′, j ∈
[0, q − 1], and then finds the polynomial F of degree g −
2t′−1 with points in the set. If such F is found, the original
X can be reconstructed. The projection P (B) maps B =
(X,V ) to X . Let us call this Scheme SS4.

4.2. Security Analysis

Now let us bound the entropy loss of sketch by Scheme
SS4. The recoverable randomness involved is the coeffi-
cients of the polynomial F , as well as the generated yj,i.
Thus the amount of randomness is (g − 2t′ − 1) · log p +
(qp − g) · log(p − 1). By setting the parameter r = p, we
can omit theH(j, xi) and have a compact description of the
sketch. Hence, the size of sketch is pq ·log p and the entropy
loss can be bounded as follow:

H∞(B)− H̃∞(B|P )
= pq log p− (g − 2t′ − 1) log p− (qp− g) log(p− 1)

= pq log
p

p− 1
+ g log

p

p− 1
+ (2t′ + 1) log p

≤ q log e+ g log
p

p− 1
+ (2t′ + 1) log p

When q is small, and p is large, the bound is similar to
symmetric case. However, when q is large, i.e. when the
auxiliary information has high entropy, and the amount of
information leak can be high.

In the work by Juels and Sudan [5], the security strength
is given by the number of spurious polynomials, i.e. poly-
nomials that have degree m − 2t − 1 and m roots in the
sketches. For the symmetric scheme described above, with
probability 1−µ, there exists at least µ3 p

(m−2t−1)−m( rm )m

spurious polynomials.
Similarly, in the asymmetric scheme, with probability

1−µ, there will be at least µ3 p
(g−2t′−1)−g( qr

g−2t′−1 )
g−2t′−1

polynomials with degree g− 2t′− 1 and g roots. Let us call
these polynomials in asymmetric setting the spurious poly-
nomials. However, the analysis of the spurious polynomials
is not sufficient for asymmetric setting as the likelihood of
a spurious polynomial to be F depends on the distribution



of the roots. Let us call a spurious polynomial a candidate
polynomial if the number of distinct Di’s that contains the
roots of the polynomial is less than a threshold a.

The probability that a random spurious polynomial is a
candidate polynomial can be view as a variance of the birth-
day attack analysis. For example, the probability of the case
when q = 2 (i.e. the consistent elements are twice impor-
tant as the inconsistent) is as follow:

1(
2r
g

) g/2∑
x=g−a

(
2g−x ·

(
r

g − x

)(
g − x
x

))
.

For r = p = 104, t = 2,m = 22 there is 9.7629× 1033

spurious polynomials with probability 1 − 1/104 in sym-
metric setting; and with g = 35 and a = 32, (i.e. the sum of
weights is 35, and polynomials with weight higher than 32
are candidate polynomials). There is in total 2.6996× 1047

spurious polynomials with probability 1− 1/104. Note that
the reason it has more spurious polynomials than symmet-
ric setting is because each element contributes two (chaf-
f) points. Therefore, approximately 2.4113 × 10−5 of the
spurious polynomials are candidate polynomials, which is
6.5095× 1046.

5. Conclusion
We pointed out that, sketches that reveal auxiliary infor-

mation could leak important information leading to sketch
distinguishability. To reduce the linkages among sketches,
we proposed two schemes. The first scheme handles Eu-
clidean distance and it outputs sketches with intervals of
unequaled size. The second scheme handles set-differences
and caters the different consistency and importance of the
set elements. Our schemes and analysis demonstrate that,
by mixing the auxiliary information within the biometric
data appropriately, we can reduce the linkage of sketches
while acquiring the same bound in overall identity informa-
tion loss measured by entropy loss.
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