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Background: Differential Privacy

A mechanism A achieves (Bounded) e-Differential Privacy, if

A
A
for any published o and any pair of “neighbouring” datasets
and
Pr[ A(D) = d]
et < < et

Pr[ A(D’) = d]



“Bounded” diff. privacy

and D’ are neighbours
iff
can be obtained from D by replacing one
element.



Background: Sensitivity

D > f >V _
sensitivity Af
~ is a bound on the
, | difference.
D’ > f » V

The sensitivity of f:D—> R" , denoted as Af, is defined as:

Af=max;, . |f(D)-A(D')],
where max is taken over all neighbouring D,D".
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Background: Sensitivity =2 diff. priv.
[Dwork06]

If sensitivity of a function f is Af then the
mechanism

(D) = (D) + LAP( Af /<)

achieves c-differential privacy.



Problem: illustrating examples

 We want to publish the “distribution” of a dataset D in
a differentially private manner.

— e.g. incomes of a group of taxpayers,
D={ $10031, $8931, $3001, $21530, ...., $32320}

— e.g Locations of individuals
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Existing approach: Equi-width Histogram

The actual histogram with 30 bins.
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Existing approach: Equi-width Histogram

Adding Laplace noise to the counts.
40

Noise increases counts

® Noise reduces countg
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Existing approach: Equi-width Histogram

The published noisy histogram.
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Problem with Equi-Width Histogram
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Enhancements and variations

 Wavelet-based: Publishing a series of
histograms [Xia010, Hay10,Chan11].

* Exploit dependencies in the published data
[Li10,Barak07, Hay10].

* Construct varying bin-width histograms from
previously released data[Machanavajjhala08],
synthetic data[Xiaol1l], and from an equi-
width histogram|[Xul2].



Instead of adding noises to the
frequency counts, can we publish
the data directly?
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Our Approach: main idea

e Sort the data; add noise directly to the data;
and publish the noisy data.

D

sorting
S(D) =< Xy, Xy, Xz, o) X
add Laplace noise

S(D) ={x,+n, X, +N,, X3 +N,, .., X +N_)



Our Approach: main idea

* Sort the data; add noise directly to the data;
and publish the noisy data.

D
Will the published data too noisy?

add Laplace noise

S(D)) =< x,+n;, X, +N,, X5 +N5, ..., X_+0n
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Our Approach: main idea

* Sort the data; add noise directly to the data;
and publish the noisy data.

D
Will the published data too noisy?

S(D) =< Xy, Xy, Xz o) X )

How to extend to higher dimension?

S(D) ={x,+Nn;, X, +N,, X3 +N5 ..., X_+N_)
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Observations & Techniques

1. Show that the sensitivity of “sorting” is not too
large.

2. Exploit redundancy using Isotonic regression.

3. Grouping to tradeoff generalization errors with
the level of Laplace noise.

4. Extension to higher dimension through location
preservation mapping.



1. Sensitivity

For two neighbouring D and D’ C [0,1]
Sort(D)= ¢

Sort(D’)=¢



1. Sensitivity

For two neighbouring D and D’ C [0,1]
Sort(D)= ¢

Sort(D’)=¢

| sort (D) —sort (D’) |,



1. Sensitivity

For two neighbouring D and D’ C [0,1]
Sort(D)= ¢

Sort(D’)=¢

| sort (D) —sort(D’) |, £ 1



2. Isotonic regression

Note that the sorted data are constrained: the
elements are increasing.

Isotonic regression: Given a sequence
find an non-decreasing sequence

minimizing the distance of X from



3. Grouping

Group consecutive elements and publish its

noisy sum.

Sort(D)= { x X X X
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3. Grouping

Group consecutive elements and publish its
noisy sum.

Sort(D)= ¢

Grouping does not affect sensitivity.



3. Grouping

Group consecutive elements and publish its
noisy sum.

Sort(D)= ¢

Grouping does not affect sensitivity.



lllustration

The Grouped Sorted data

072

0.7
0.68
0.66
0.64
0.62

0.6
0.58
0.56
0.54

0.52

July 11, 2012

i o
L = ,_//
d—r"{f
/—ff
i ,.:/
e
: o
_——'_'_’d_’__’d_'_’-‘__
e
L") 1 1 1 1 1 L 1
0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
5
¥ 10

Adaptive Differentially Private Histogram of Low-
Dimensional Data

24



lllustration

With Laplace Noise
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lllustration

|Isotonic regression.

July 11, 2012

072

07

0.68

0.66

0.64

0.62

06

0.58

0.56

0.54

0.52f

1
L !
_‘,
1
r 1
)
I
E I
L +*T
4
! ]
} Y-
L +
J +1+
+
- + + g
+
+ ¢ ¥ o4+ i
L 4 Ty ol i
+ O ¢ Ty
+ _’-(_?_ +
i+ s ‘ﬁﬁ- ++
i +
T W %’f o +
31++t ++ +++ gﬁﬁ % i
o, +
fr %+ Tr
& -ku.. | L 1 1 1
095 1 E|5 1.1 1.15 1.2 1.25 1.3 1.35
}<105

Adaptive Differentially Private Histogram of Low-
Dimensional Data

26



Grouping: what should be the
appropriate group size?

We give a model to estimate the expected error
based on the (1) group size k, (2) size of dataset
and (3) privacy requirement .

Database size

_ _ > Error Model > expected error
Privacy requirement

I

Group size

From the model, we can estimate the optimal group
size k, given n and
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Accuracy of Error Model

11X 10
----- Error on Kaluza’s data
10F ; - - -Error on Twitter data
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g_
8_
S 7]
L
6_
5_
4k
3[] 50 100 150 200 250 300
Group size
Kaluza's data: [Kaluzal0] Twitter data:[Twitterdatal0]
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4. Extension to Higher Dimension

* Consider location preserving mapping
T:[0,1]%x[0,1] - [O,1]
Ss.t,,
if T(x)and T(y) are “close-by” in [0,1]
then x,y are “close-by” in [0,1]%[0,1]



Extension to Higher Dimension

 Example of such mapping: Hilbert space filling
curve.
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Putting all together: Proposed
mechanisms

Given the dataset D, privacy requirement ¢, the
publisher performs:

1. Determines the group size k from n=|D]|, and

2. Maps Dto[0,1]. Let the mapped points be T(D).

3. Sorts T(D).

4. Groups k consecutive elements.

5. Adds noise to the sum in each group. Publishes the noisy sums.

Given the published data, a user performs:

1. Isotonic regression.
2. Inverse of the location preserving mapping.
3. Subsequent operations, like query, visualization, & data mining.



Evaluation: Datasets

e Profile of Twitter users.[Twitterdatal0]

50 .ﬂ.'
. 481 } "
Locations of il T P
180,000 profiles in o * ; _' “‘ .
North America. B
"

* The distance of the

locations to New York City is taken as the 1D
data.



Adaptive Resolution

* A visualization of our method and equi-width
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Evaluation: Range Query

Range q

D"

published data

Number of points in D within the range g

* We repeat the experiment 1,000 times for
each size of the range g. We compare our
algorithm with equi-width histogram and
wavelet-based method [Xiao10].



Range Query: 2D domain
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Range Query: 1D domain
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Evaluation: Median-Finding

D - dl d d d published median

m *"* ¥2m-1 m

Original sorted data

 We compare our algorithm with the smooth-
sensitivity approach [NissimO07].



Evaluation: Median-finding
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Discussion: Complementary
e Alternative direction” of the Laplace noise
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Conclusion

 We proposed an approach that publishes the data directly.
— Simple.
— The main parameter (group size) can be determined without the

dataset D. In contrast, optimal parameters of many existing
mechanisms heavily rely on the dataset.

— Leads to adaptive histograms. Achieve high utility.

— Complementary to the frequency-counts methods and potentially can
be combined for higher utility.

 We proposed using location preservation mapping for
extension to low-dimensional data (for e.g. 2D and 3D).
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