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ABSTRACT
Differential privacy provides a strong guarantee in protect-
ing privacy of individuals who contributed to a published
dataset. In this paper, we focus on spatial datasets and dy-
namic datasets, and attempt to exploit the intuition that
farther-apart entities should have lesser influences to each
other, and thus more privacy budget should be invested
to protect close-by entities. To capture such intuition, we
propose embedding the underlying spatial or temporal dis-
tance function into the notion of dataset neighbourhood.
We called the proposed neighbourhood δ-neighbourhood, and
discuss its implications in both spatial and dynamic datasets.
For dynamic datasets, while there are known negative results
on the standard differential privacy, it is possible to con-
tinuously and indefinitely publish under δ-neighbourhood
by reusing the privacy budgets. Although known mecha-
nisms, by definition, are also differentially private under δ-
neighbourhood, they are not designed to exploit the relaxed
notion for better utility. For spatial datasets, we propose an
approach on 2D spatial points that re-allocates more bud-
gets to nearby entities and thus obtains significantly higher
utility. In addition, we give mechanisms that achieve “sus-
tainable privacy”on dynamic datasets under both online and
offline setting.

Categories and Subject Descriptors
H.2.8 [Database management]: Database Administra-
tion—Security, integrity, and protection; K.4.1 [Computers
and Society]: Privacy
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Differential Privacy, Bounded Neighbourhood, Spatial and
Temporal Datasets
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1. INTRODUCTION
Many datasets contain useful statistical information for

public usage. To publish such information while preserving
privacy of each contributor is challenging. The recent notion
of differential privacy provides a strong form of assurance in
protecting individual contributors.

A probabilistic publishing mechanism A is ε-differentially
private if the published data is sufficiently noisy, so that it
is difficult to distinguish the membership of an entity in a
group. More specifically, the following bound holds for any
R ⊆ range(A):

Pr(A(D1) ∈ R) ≤ exp(ε) · Pr(A(D2) ∈ R), (1)

for any two neighbouring datasets D1 and D2 that differ on
at most one entity. A useful property of the formulation is
that, for two datasets D1 and D2 that differ in more than
one entity, there is still protection but with a weaker bound
exp(cε), where c is the “distance” between D1 and D2.

In this paper, we focus on spatial datasets and dynamic
datasets, and attempt to exploit the intuition that farther-
apart entities should have lesser influence to each other, and
thus more budget should be invested to protect close-by en-
tities. To capture the notion of spatial and temporal dis-
tance, we adopt a alternative definition of neighbourhood.
Under the original neighbourhood (let us call it the stan-
dard neighbourhood), two neighbouring datasets D1 and D2

differ by one entity, in the sense that D1 = D2 − {x}, or
D1 = D2 − {y} + {z} for some x, y, z. In other words, D1

and D2 are neighbours if one can be obtained from another
by either adding a new entity x or replacing an entity y by z.1

We propose an alternative form of neighbourhood: instead of
having arbitrary entity x and z, they have to meet some spa-
tial conditions. The new x must be near to some “sources”
and the replacement z must near to y within a threshold δ.
Such neighbourhood naturally arises from spatial datasets,
for example locations of Twitter users [12] where the dis-
tance between two entities is the geographical distance be-
tween them. We call this variant δ-neighbourhood, where δ
is the threshold.

Similar definitions of dataset neighbourhood have been
considered before. For example, Kifer et al. [14] consid-
ered the attribute differential privacy, where two datasets
are considered neighbours iff they differ at one attribute in
one record. Konstantinos et al. [2] consider broadening the
neighbourhood relationship with arbitrary metrics. Our no-

1
There are a few versions of standard neighbourhood, for example,

unbounded differential privacy [11, 25], and bounded differential pri-
vacy [24, 14].



tion of δ-neighbourhood can be viewed as a variant that
stresses on spatial and temporal locality.

There are a few ways to view the assurance provided by
the proposed neighbourhood. In some applications, the data
are subject to some constraints and thus not all possible
datasets are valid. For example, Blocki et al. [1] consider so-
cial network graphs where the degree of any node is bounded,
instead of all possible graphs. When such constraints are
captured by δ-neighbourhood, the guarantee provided by
both notions are equivalent.

Viewing from another perspective, if the domain (where
the entities of the datasets are drawn from) is connected
and bounded w.r.t. the underlying metric, then a mech-
anism that is differentially private under δ-neighbourhood
is also differentially private under the standard neighbour-
hood. However, the guaranteed bound (as in inequality (1))
is stronger when the entities are close-by. Hence, the pro-
posed δ-neighbourhood can be viewed as a “redistribution”
of assurance, instead of a relaxation of assurance when com-
pares to the standard neighbourhood. Illustrating examples
will be discussed in Section 4 and 6.

In addition, the δ-neighbourhood can also be adopted for
dynamic datasets where entities are added and removed over
time. One example is the scenario considered by Dwork et
al. [7], where aggregated information on users’ health con-
ditions in a region or building (say airport) is to be mon-
itored over time. Under the standard neighbourhood, due
to the fixed budget, it is impossible to publish the dataset
repeatedly with high utility. However, there are scenar-
ios where entities do not stay in the dataset for long and
thus, intuitively, the effect of information published earlier
would diminish over time, and hence we should be able to
continuously publish with high utility. We can define a δ-
neighbourhood that captures the above intuition, so as to
achieve sustainable privacy on dynamic datasets.

Existing differential private mechanisms designed for the
standard neighbourhood are, by definition, also differentially
private under the δ-neighbourhood. However, these mecha-
nisms may not fully exploit the δ-neighbourhood for better
utility. For example, publishing equi-width histogram of 1D
datasets induces the same amount of sensitivity under both
standard and δ-neighbourhood, and thus following the well-
known method of adding Laplace noise proportional to the
sensitivity would not achieve higher utility. We propose an
optimization approach and give a mechanism for 2D spatial
points that achieve significantly higher utility. Whereas for
dynamic dataset, we investigate how to allocate the privacy
budget to sustain the publishing process over time, so as to
minimize the expected total amount of noise in both offline
and online settings. On the other hand, some mechanisms
can be naturally extended to δ-neighbourhood, such as pub-
lishing sorted 1D points, and median publishing as described
in Section 5.5.

The rest of the paper is organized as follow: Section 2 in-
troduces the background on differential privacy, followed by
the proposed notion of δ-neighbourhood in Section 3. The
motivating examples on spatial datasets are given in sec-
tion 4, and the mechanisms catered for δ-neighbourhood are
given in Section 5. Section 6 and 7 are devoted to dynamic
datasets. We discuss the related works in Section 8 and
conclude our work in Section 9.

2. BACKGROUND
In this section, we briefly describe the notion of differential

privacy.

2.1 Neighbourhood and Differential Privacy
A dataset is a multiset (i.e. a set with possibly repeating

elements) of entities from the domainM, and let us denote
the collection of all datasets as D.

Definition (ε-differential privacy [4]) A mechanism A
satisfies ε-differential privacy if for all R ⊆ range(A), and
any pair of neighbours (D1, D2), we have:

Pr(A(D1) ∈ R) ≤ exp(ε) · Pr(A(D2) ∈ R). (2)

In the above definition, two datasets D1 and D2 are neigh-
bours if they “differ on one entity”. There are a few in-
terpretations of the above statement: some interpret it as
D1 = D2 ∪ {x} or D2 = D1 ∪ {x}, i.e. one dataset is a
proper subset of the other with one less in size [11][25]; and
in some literatures [24][14], it is interpreted as D1 − {x} =
D2 − {y} for some x, y. The former interpretation is also
known as the unbounded differential privacy, whereas the
latter as bounded differential privacy. In this paper, we con-
sider both, i.e. D1 and D2 are neighbours iff D1 = D2 ∪{x}
or D1−{x} = D2−{y} for some x, y ∈M, and call this the
standard neighbourhood. Such definition of neighbourhood
is also considered by Roth et al. [19].

A consequence of the bound provided by differential pri-
vacy is that, when two datasets D1 and D2 differ by c en-
tities, then if a mechanism A is ε-differentially private, we
have:

Pr(A(D1) ∈ R) ≤ exp(cε) · Pr(A(D2) ∈ R), (3)

for all possible R ⊆ range(A). In other words, although
the definition only explicitly dictates the relationship among
neighbours, there are still protections on datasets that are
far apart, but with a weaker bound.

2.2 Sensitivity and Laplace Mechanism
It is shown [6] that given a function f : D→ Rk for some

k ≥ 1, the probabilistic mechanism A that outputs:

f(D) + (Lap(4f/ε))k,

achieves ε-differential privacy, where (Lap(4f/ε))k is a vec-
tor of k independently and randomly chosen values from the
Laplace distribution, and 4f is the sensitivity of the func-
tion f . The sensitivity of f is defined as the least upper
bound on the `1 difference of all possible neighbours:

4f := sup‖f(D1)− f(D2)‖1,

where the supremum is taken over pairs of neighbours D1

and D2. Here, Lap(b) denotes the zero mean distribution
with variance 2b2, and a probability density function:

`(x) =
1

2b
e−|x|/b.

3. δ-NEIGHBOURHOOD
We assume that there is a distance function d :M×M→

R on the domain that captures the distance between a pair
of entities, and there is a set of sources S ⊆ M. With
this distance function and sources, for a threshold δ, we say
that two datasets D1, D2 are δ-neighbours if, and only if the
following holds:



1. there exists x1 and x2 ∈ M, such that d(x1, x2) ≤ δ,
and D1 − {x1} = D2 − {x2}, or

2. there exists an x3 and s ∈ S s.t. d(x3, s) ≤ δ, and
D1 − {x3} = D2 or D2 − {x3} = D1.

In other words, either D1 can be obtained from D2 by re-
placing an entity x2 with a nearby entity x1, or by adding
a new entity x3 emerged near a source s. Note that if S is
empty, then the size of D1 and D2 must be the same.

Given two datasets D1, D2 ∈ D, we say that D1 and D2

are connected if there exists a finite sequence E0, E1, E2, . . . ,
Em with E0 = D1 and Em = D2 s.t. for any i, the consecu-
tive Ei and Ei+1 are δ-neighbours, and call the smallest such
m the distance between D1 and D2. If any two datasets in
D are connected, we say that D is connected, and call the
least upper bound on the distance, if it exists, the diameter
of D.

3.1 Differential Privacy under δ-Neighbourhood
We say that a mechanism A is ε-differential privacy under

δ-neighbourhood if for all R ⊆ range(A) and any pair of
δ-neighbours (D1, D2):

Pr(A(D1) ∈ R) ≤ exp(ε) · Pr(A(D2) ∈ R). (4)

Similar to standard neighbourhood, we can define the sen-
sitivity of a function f : D → R with respect to the δ-
neighbourhood, which is

sup‖f(D1)− f(D2)‖1,

where the supremum is taken over all pairs (D1, D2) of δ-
neighbours.

3.2 Properties
Since δ-neighbours are also neighbours under the stan-

dard neighbourhood, thus an ε-differentially private mech-
anism under standard neighbourhood is also ε-differential
private mechanism under δ-neighbourhood. The converse
also holds but with a weaker bound, as stated in the follow-
ing lemma(proof omitted):

Lemma 1 If a mechanism A is ε-differential private under
the δ-neighbourhood and the diameter of D is d, then it is
(dε)-differential private under the standard neighbourhood.

Sequential composition: The composition of two differen-
tially private mechanisms is also differentially private. It is
easy to show that this property also holds under δ-neighb-
ourhood: given a sequence of k mechanisms, A1,A2, . . .Ak,
where Ai is εi-differentially private under δ-neighbourhood,
then the mechanism

A∗(D) = A1(D,A2(D, . . .))

is (
∑k
i=1 εi)-differentially private under δ-neighbourhood.

4. SPATIAL DATASETS
The δ-neighbourhood can be naturally defined on spatial

points, sayM = [0, 1]k for some k ≥ 1. The underlying dis-
tance function d(·, ·) can be the Euclidean distance and the
sources can be the boundary ofM, which implies that enti-
ties enter through the boundary, or simply none, correspond-
ing to the bounded differential privacy. Let us investigate a
few scenarios where the proposed notion is meaningful.

4.1 Example 1
Consider a situation where the dataset is constrained, in

the sense that not all multisets of entities from M are in
D (recall that D is the set of all possible datasets). Let
us call the multisets that are not in D invalid datasets. If
those invalid datasets are excluded by the restriction on
δ-neighbourhood, then essentially the two assurances, ei-
ther under standard neighbourhood or δ-neighbourhood, are
equivalent. For instance, consider a D that contains the lo-
cations of a vehicle sampled at periodic intervals, say at time
1, 2, . . . , n, and is represented as a set of tuples where each
tuple (t, x) indicates that the vehicle is at location x on time
t. Suppose D is to be published by a mechanism A that is
ε-differentially private under the standard neighbourhood,
then for any possible output r, any D, (t, x) and (t, y), we
have

Pr(A(D + {(t, x)}) = r) ≤ exp(ε)Pr(A(D + {(t, y)}) = r).

Since D essentially represents a sequence, the two tuples in
the above inequality must have the same t.

We can take a step further. Due to speed limit of the
vehicles (which is public knowledge), some datasets are in-
valid. For example, if D1 is a valid dataset, a location y
that is far from x will lead to an invalid dataset. Since the
bound is not required to hold for the invalid datasets, thus,
with an appropriate metric and a sufficiently large δ, the
assurance provided under δ-neighbourhood is equivalent to
the assurance provided under the standard neighbourhood.
Similar examples are considered by Blocki et al. [1]. They
consider social networks where the maximum degree of any
node is likely to be bounded by a number k that is much
smaller than the network size n. In such situations, an in-
teresting question is whether the utility can be improved by
exploiting the constraints. To illustrate, it is not clear how
to improve the well-known histogram-based mechanisms on
the constrained datasets, since the sensitivity incurred under
the standard and δ-neighbourhood is the same.

4.2 Example 2
In this example, we want to publish a dataset D which

contains locations of n entities drawn from the domain M.
Consider in an extreme case, where an adversary knows the
locations of n-1 entities in D (let us denote this D′). The
adversary wants to guess whether x is in D, in other words,
whether the unknown entity is x. Under the standard neigh-
bourhood, differential privacy guarantees that the published
data does not help the adversary in guessing whether x or
y is in D, where y is another location the adversary does
not know, by bounding the distance of the two probabili-
ties P (A(D′ + {x}) ∈ R) and P (A(D′ + {y}) ∈ R). Hence,
from the perspective of any contributor Bob, if Bob accepts
the assumption that there is at least one entity of whom
the adversary does not have background information, he is
comfortable in contributing his location.

Under δ-neighbourhood, the same guarantee holds when
x and y are close-by. From the perspective of Bob, if he
accepts the assumption that there is at least one entity y
near Bob, say within δ =40km, of whom the adversary has
no background knowledge, then differential privacy with δ-
neighbourhood suffices for Bob to contribute.

Now let us consider another more resourceful adversary
who has more accurate background information on region
near Bob. With respect to this background information, the



indistinguishable entities similar to Bob can be 40 to 80 km
away. In this case, when D is published by an ε-differential
private mechanism under 40 km-neighbourhood, Bob’s pri-
vacy is still protected but with a weaker assurance similar
to a 2ε-differential privacy. Thus, compared to the standard
neighbourhood, δ-neighbourhood “redistributes” the assur-
ance by placing more emphasis on close-by entities, with
the value of δ determines the rate the assurance decreases
over distance. Hence, we can view the δ-neighbourhood not
as a relaxation of the standard neighbourhood, but as a re-
distribution of assurance, where δ is a parameter controlling
the rate of redistribution.

5. PUBLISHING SPATIAL DATASET
Although an ε-differentially private mechanism under the

standard neighbourhood is also ε-differentially private under
δ-neighbourhood, it may not achieve our intention of invest-
ing more budget on nearby entities. In this section, we con-
sider publishing histogram of 2D spatial points to be used
for subsequent range queries. Essentially, we want to de-
termine an “optimal” linearly transformed histogram similar
to the work by Li et al. [15], but with a different sensitiv-
ity function derived from the δ-neighbourhood. We observe
that the sensitivity function in 2D leads to an interesting
combinatoric structure in the design of the linear transfor-
mation, and propose a few constructions. We also note that
for 1D spatial points, a known technique under standard
neighbourhood [9] can be easily modified to achieve high
utility under δ-neighbourhood, as shown in Section 5.5.

5.1 Illustration
Let us demonstrate how to capitalize the notion of δ-

neighbourhood with the following simple example in 1D.
Consider a dataset containing (possibly with repetitions) 4
possible values: { 1

4
, 2
4
, 3
4
, 1}. Let ci be the number of points

with value i/4. Table 1 gives a 1-differentially private mech-
anism under the standard neighbourhood that publishes the
counts (c1, c2, c3, c4).

Let us compare the case under 0.25-neighbourhood, and
with a source of {0}, i.e. points are added/removed within
distance of 0.25 from 0. The mechanism in Table 1 is also
1-differentially private under 0.25-neighbourhood.

Now let us publish the counts as shown in Table 2, where
a linear transformation is applied before adding noise. Our
main observation is that, the sensitivity of publishing the
values (a1, a2, a3, a4) is 1 with respect to the 0.25-neighb-
ourhood: changing a single entity by a distance of 0.25, or
adding an entity within 0.25 to the source affects only one ai
for some i. Hence, a Laplace noise of Lap(1) is sufficient to
guarantee 1-differential privacy under 0.25-neighbourhood.
However, under the standard neighbourhood, an entity chang-
ing from value 1

4
to 1 will decrease each a1, a2, a3 by 1,

leading to a sensitivity of 3.
By publishing the a′i’s in Table 2, we can answer range

queries with higher accuracy through linear combination of
the ai’s. For example, when a query asks for the frequency
counts in the range [0.4, 0.6], reporting the value c′2 leads
to an unbiased estimator with variance 8, which is the vari-
ance of Lap(2). On the other hand, from Table 2, it can
be estimated by a′1 − a′2 giving an unbiased estimator with
a smaller variance of 4, which is the variance of the sum
of two independent Laplace noises, Lap(1) + Lap(1). Such
difference is more significant for larger query range. The

comparisons are shown in Table 3: row i of the table shows
the noise variances when the query range covers exactly i
number of the counts ci’s.

Table 1: Publishing ci’s directly.

Actual Values Published values

c1 c′1 = c1 + Lap(2)

c2 c′2 = c2 + Lap(2)

c3 c′3 = c3 + Lap(2)

c4 c′4 = c4 + Lap(2)

Table 2: Publishing a linearly transformed his-
togram.

Actual values Published values

a1 = c1 + c2 + c3 + c4 a′1 = a1 + Lap(1)

a2 = c2 + c3 + c4 a′2 = a2 + Lap(1)

a3 = c3 + c4 a′3 = a3 + Lap(1)

a4 = c4 a′4 = a4 + Lap(1)

Table 3: Variance of the estimator for different range
size.

Number of number of Derived from Derived from

ci’s covered queries Table 1 Table 2

1 4 8 4

2 3 16 4

3 2 24 4

4 1 32 2

By exhaustive checking, it can be verified that, in terms of
minimizing the total variance of all possible range queries,
i.e. the weighted sum of the variance in the rightmost col-
umn with the weights in the second column in Table 3, the
construction in Table 2 is optimal among all linear combi-
nations of c1, c2, c3 and c4 where the coefficients are binary,
i.e. either 0 or 1.

Note that the above methods estimate the query results
using linear combinations of the published values. One could
enforce the constraints that all ci’s are non-negative, leading
to a non-linear estimator. Although this may create bias, it
further lowers the variance of the estimation.

5.2 Generalization
Let us generalize the illustrating example. The method

shown in Table 1 corresponds to the direct method of adding
noise to the frequency counts of an equi-width histogram,
whereas Table 2 corresponds to a method that applies a lin-
ear transformation before adding noise. Li et al. [15] studied
such general form of publishing under the standard neigh-
bourhood. In this section, we extend it to δ-neighbourhood.
As illustrated in the example, the key difference of our method
is the lower sensitivity incurred under δ-neighbourhood.

Formally, a histogram HB(D) for a partition of the do-
main B = {b1, . . . , bk} on D gives a column vector of fre-
quency counts c = (c1, . . . , ck)t where ci = |D ∩ bi|. We call
each set in the partition B a bin. In particular, an equi-
width histogram corresponds to a partition whose bins are



of the same size. Since all the bins do not overlap, the ef-
fect of replacing an entity in D affects frequency counts in
at most two bins, and thus the sensitivity of HB(·) is 2 un-
der the standard neighbourhood. Hence the mechanism of
publishing c + Lap(2/ε)k is ε-differential private under the
standard neighbourhood.

We consider queries whose answers are linear combination
of counts in c, and can be expressed as qc where q is a row
vector. For example, a range query can be a summation of
counts in some bins. For a sequence of m queries, let us
express it as an m by k matrix Q and hence the answer to
the queries are the coefficients in Qc. As proposed by Li
et al., to answer the query Q, one may employ a strategy
A, which is represented as a k by n matrix for some n, and
publish

c̃ = Ac + Lap(4A/ε)
n,

where 4A is the sensitivity of the function that on input
D, returns Ac. From the published c̃, we want to estimate
the query results. It can be shown [21] that the following
estimate is unbiased:

A+c̃,

where A+ = (AtA)−1At is the pseudo-inverse of A, and
the variance of the estimator is

(4A)2trace(Q(AtA)−1Qt). (5)

Now, given Q, we want to find the A s.t. the variance is
minimized. In the illustrating example, Q is a 10 by 4 matrix
where each row corresponds to a range queries, and

A =


1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

 (6)

Now let us look at the problem in the context of δ-neighb-
ourhood. The sensitivity of A under δ-neighbourhood leads
to an interesting combinatoric structure that is not present
in the standard neighbourhood. Under the standard neigh-
bourhood, the sensitivity of A is

max
i,j∈Zn

{ ‖ai − aj‖1 }, (7)

where each ai’s is a column vector in A, that is, A =
[a1,a2, . . . ,an]. To understand the above expression, note
that ‖ai − aj‖1 is the sum of L1 difference when an entity
change between bin i and bin j. Since the sensitivity is
the least upper bound on all possible pairs of neighbouring
datasets, we have the above expression.

Under the δ-neighbourhood, the sensitivity of A is

max
(i,j)∈N

{ ‖ai − aj‖1 },

where N is a set induced from the requirement on δ-neighb-
ourhood,

N = {(i, j) | ∃ x ∈ bi, y ∈ bj , s.t. d(x, y) ≤ δ}.

Compare to the expression in (7), the maximum is taken
over a smaller set N and thus could be smaller.

For the matrix A in the illustrating example, we have
N = {(1, 2), (2, 3), (3, 4)} under 0.25-neighbourhood, and
thus the sensitivity of A is 1; whereas the sensitivity un-
der the standard neighbourhood is 3, as ‖a1 − a4‖1 = 3.

Solving the optimization problem in general is difficult for
standard neighbourhood, partly due to the fact that the sen-
sitivity 4A as a function of A, is non-differentiable. Like-
wise it is difficult for δ-neighbourhood. We will show in the
next section how we can improve A for range queries by
exploiting the combinatoric structure.

5.3 Proposed Algorithm
The main idea of our proposed algorithm can be illus-

trated with a graphical representation of the bins when the
entries in A are binary, i.e. either 0 or 1. Let us treat each
bin as a vertex in the graph. Hence there are k vertices
v1, v2, . . . , vk. There is an edge between two vertices vi and
vj iff (i, j) ∈ N .

For a matrix A, since the entries are binary, each row
corresponds to a subset of bins. Hence, A can be viewed as
a collection of sets {a1,a2, . . . ,an} where each set in A is a
set of bins. For an edge (vi, vj), we say it is being cut by a
set a iff

(vi ∈ a ∧ vj 6∈ a) ∨ (vi 6∈ a ∧ vj ∈ a).

For each edge e, let us call the number of sets in A that cut
the edge e the number of cuts on e, denoted as C(e). Now,
the sensitivity of A is the maximum number of cuts over all
edges, i.e. maxe C(e).

Note that given a particular A, it may be possible to
insert a set into A without increasing its sensitivity. That
is, it may be possible to find a subset that only cuts edges
that have not been cut by subsets in A. Since sensitivity is
not increased, it would not hurt to add this set into A which
in turn publishes this extra information2. This observation
leads to a simple greedy algorithm that improves a strategy:
simply add rows to A until it is not possible to do so without
increasing the sensitivity.

For instance, consider a 2D histogram with bins {bi,j | i, j ∈
Zn}, with neighbourhood N = {((i, j), (i′, j′)) | |i − i′| +
|j − j′| ≤ 1} as shown in Figure 1 where each bin is a bul-
let(blue), and the neighbours are connected by a dotted(red)
line. Consider the set A that contains ai,j = {b2i−1,2j−1,
b2i−1,2j , b2i,2j−1, b2i,2j}, for i, j = 1, 2, . . . n

2
, that is, each

ai,j is a solid(blue) square that contains four blue vertices.
Note that the solid(blue) squares do not “cut” all the neigh-
bouring edges, and therefore, if we add a′i,j = {b2i,2j , b2i,2j+1,
b2i+1,2j , b2i+1,2j+1} to A, for i, j = 1, 2, . . . n

2
− 1, (i.e. the

dash(black) squares containing 4 vertices each), the sensi-
tivity remains the same.

On the other hand, for some A, inserting any additional
a′ into A will increase the sensitivity of A. Therefore, the
key question lies on whether the noise reduced by the addi-
tional a′s is more significant than the noise introduced by
the increment of sensitivity. Such comparison is application
dependent, i.e. it depends on the queries Q.

For 2D spatial data, we consider random range queries
and propose publishing a series of equi-width histograms,
similar to the construction illustrated in Figure 1. We con-
sider datasets whose elements are in the normalized domain
[0, 1)2. Our construction is build on publishing equi-width
histograms. An equi-width histogram in 2D corresponds to
the partition B = {b1,1, b1,2, . . . , bk,k}, where each bin bi,j is
a square region [ i−1

k
, i
k

)× [ j−1
k
, j
k

).

2
One may see this from expression (5), where adding a row to A

without increasing 4A will not increase the variance.



We propose publishing a series of overlapping histograms
where each histogram is shifted by an offset δ from the previ-
ous histogram in the series. Specifically, let B0, B1 . . . Bm−1

be a sequence of partitions, where m = d 1
kδ
e and Bx is a

partition {bx1,1, bx1,2, . . . , bxk+1,k+1} with each bxi,j is a square

region [ i−2
k

+ xδ, i−1
k

+ xδ)× [ j−2
k

+ δ, y + j−1
k

+ xδ).
Note that the sensitivity of A constructed in this way is

4, instead of 2 as demonstrated in Figure 1. This is because
in 2D spatial data, there are edges connected the vertices
bi,j and bi+1,j+1. However, we will show in the next section
that, when δ is relatively small, the insertion of additional
a′ can overcome the increment of the sensitivity.

Figure 1: Demonstration of adding a′ to A without
increasing sensitivity.

5.4 Evaluation

5.4.1 1D range query
The earlier example described in Section 5.1 can be gen-

eralized to publish linear transformation of histograms with
n bins. The transformation A is a lower triangular matrix
of size n × n and the entries on and below diagonal are 1.
Essentially, row i of A cumulates the counts for bin 1 to
bin i. Let us call this strategy Cn. The answer to a range
query that covers bin i to j can be obtained by subtracting
the j-th row and (i − 1)-th row. We are interested in how
accurate Cn performs in answering 1D range queries, i.e. in
answering the set of all range queries, Q.

Li et al. [15] consider the maximum error and total error
of three strategies: Hn which queries a series of equi-width
histograms [11], Yn which is a Haar wavelet transformation
matrix [24] and the identity matrix In. Figure 2 shows H4,
Y4, I4 and C4. The maximum error refers to the maximum
variance among all row vectors of Q, and total error refers
to the sum of the variance. The asymptotic bounds on the
errors of Hn, Yn and In are as shown in Table 4. The con-
structions do not exploit δ-neighbourhood, and the errors of
Hn, Yn and In are the same under either standard neigh-
bourhood or δ-neighbourhood.
Cn benefits from δ-neighbourhood, in the sense that the

sensitivity 4Cn is lower for smaller δ. The corresponding
maximum error and total error of Cn,δ is also shown in Table



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 0 1 1
1 1 1 1




0 0 1 -1
1 -1 0 0
1 1 -1 -1
1 1 1 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1



H4 Y4 I4 C4

Figure 2: Strategy H4, Y4, I4 and C4.

4. When δ = n, it performs similar to identity matrix, but
when δ is small, we can reduce the errors by exploiting the
δ-neighbours.

Table 4: Max and total errors.

Hn Yn In Cn,δ

max error Θ( log
3n
ε2

) Θ( log
3n
ε2

) Θ( n
ε2

) Θ( δ
ε2

)

total error Θ(n
2log3n
ε2

) Θ(n
2log3n
ε2

) Θ(n
3

ε2
) Θ(n

2δ
ε2

)

5.4.2 2D range query
We consider mechanisms that answer 2D range queries

with fixed range size in [0, 1)2. A 2D range query of size
s asks for the number of points in the region [x − s

2
, x +

s
2
) × [y − s

2
, y + s

2
). We compare the algorithm described

in Section 5.3 with the equi-width histogram method as a
baseline.

Recall that an equi-width histogram is the partition B =
{b1,1, b1,2, . . . , bk,k}. Let c̃x be the published frequency counts
in bin bx.

Given a range query q, we estimate the answer to q as:∑
bx∈B

(
|bx ∩ q|
|bx|

cx

)
. (8)

where |bx| is the area of bx. Note that if the query partially
intersects with a bin, that bin contributes proportionally to
the answer. Our proposed method answers a range query
in a similar way, but using the average of the series of equi-
width histograms.

We conduct experiments on three 2D datasets. Dataset
1 contains locations of Twitter users in the world [12]. The
dataset contains over 193,841 Twitter users’ data from the
period of March 2006 to March 2010. Dataset 2 contains the
locations of users in dataset 1 cropped at the North Amer-
ican region. It contains locations of 183,072 users. Dataset
3 [13] contains 164,860 tuples collected from tags that con-
tinuously record the location information of 5 individuals.
The data points are normalized to the space M = [0, 1]2,
and Figure 3(a), 3(b) and 3(c) illustrate the distributions
of the data points for dataset 1, 2, and 3 respectively. To
avoid clogging, only 5% of the points (randomly selected)
are plotted for each dataset.

For the first two datasets, we consider two cases where
δ = 0.001 and δ = 0.0001, which translate to a bound of
approximately 40 and 4 kilometers for dataset 1, and 5 and
0.5 kilometers for dataset 2 respectively. For dataset 3, we
consider δ = 0.01 and δ = 0.001, which translate to 500
and 50 meters. We evaluate the construction described in
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Figure 3: The 2D location datasets.
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(a) Dataset 1.
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(b) Dataset 2.
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(c) Dataset 3.

Figure 4: The mean square error of range queries in linear-logarithmic scale.

Table 5: Query range and corresponding best bin-
width for the Dataset 1.

Query Mean Square Error

range k = 0.005 k = 0.01 k = 0.015 k = 0.02

D
a
ta

se
t

1

0.01 62.01 86.16 94.12 100.69

0.1 13218 9895.7 6726 8901.6

0.2 72161 40301 24952 20381

D
a
ta

se
t

2

0.01 4112.7 6166.4 8227.1 13105

0.1 232689 82449 86034 175203

0.2 249344 186891 115664 103929

Section 5.3, and compare its accuracy with a baseline his-
togram method. For comparison purpose, we empirically
choose the optimal bin width for the histogram method3.
That is, for each query range, we computer the mean square
error for k = 0.0025 to 0.04 with a step of 0.0025, and
choose the smallest error among them. Part of the errors
are shown in Table 5. Figure 4 shows the details of the ex-
periment result. For example, when the queries is of size

3
The step of revealing the optimal bin width could reveal more infor-

mation and thus the whole process may not be differentially private.
Nevertheless, it can serve as a baseline to compare the performance
of the purposed mechanisms.

0.1, the mean square error of the baseline method is 6726,
where as with the construction under 0.001-neighbourhood
is 543, and with 0.0001-neighbourhood is 109. By exploiting
δ-neighbourhood, we can achieve significantly higher utility.
For example, in dataset 1, the utility improves by a factor
of 100 with 4km-neighbourhood, while many existing mech-
anisms can only improve the result by a factor of 2 [25, 3].
Note that our notion is orthogonal to existing techniques,
and thus potentially could be combined to attain higher util-
ity.

5.5 Other Publishing Mechanisms
For some mechanisms, it is easier to apply the notion of

δ-neighbourhood. In this Section we analyze their perfor-
mance under δ-neighbourhood.

5.5.1 Publishing Sorted 1D Points
Fang et al. [9] propose a method of publishing 1D his-

togram by directly publishing the sorted point. The sensi-
tivity of this mechanism depends on the size of the domain,
say m.

Under δ-neighbourhood, the sensitivity of the publishing
method is reduced to δm and therefore the Laplace noise
required to achieve ε-differential privacy is reduced from
Lap(m/ε) to Lap(mδ/ε). Thus, there is significant improve-
ment when applying the publishing method as it is. Figure
5 shows the improvement for expected mean square error for
range query of 10,000 runs for each range size.



Although the error is significantly decreased (the factor of
improvement on mean square error is approximately (1/δ2)
for δ-neighbourhood), it is not clear how to generalize the
construction to higher dimensions. The method of using
locality preserving transformation as described by Fang et
al. [9] would not help since here we are required to preserve
locality in the “difficult” direction.
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Figure 5: Average error for range query.
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Figure 6: Average error for median.

5.5.2 Publishing Median
Publishing median differentially privately is technically

challenging. To publish the median of a set of 1D points
in [0,m], a noise of Lap(m/ε) is required, although for most
database instances, the “local sensitivity” is low, i.e. chang-
ing any element in that particular database instance will
not significantly change the value of the median. Nissim
et al. [18] proposed a method that adds noise proportional
to the “smooth sensitivity” (a smooth bound of the local
sensitivity) of a database instance. He showed that this
mechanism has high accuracy when the smooth sensitivity
is low.

The δ-neighbourhood can further reduce the noise require-
ment when “local sensitivity” can be still large. With δ-
neighbourhood, we can reduce the global sensitivity, and
thus bound the smooth sensitivity for some worst case sce-
narios. Figure 6 shows the noise required to publish the
median of a synthesized dataset with random 1D points gen-
erated under the exponential distribution and then scaled to
[0, 1]. For each size of the dataset, we repeat the process 300

times and the average smooth sensitivity is recorded under
different neighbourhood definitions.

6. DYNAMIC DATASETS
We now investigate dynamic datasets. Consider situations

where information on entities are collected periodically over
time, say at discrete time 1, 2 . . .. Occasionally, statistics
are to be published. Intuitively, with limited budget, it is
impossible to continuously publish meaningful information
indefinitely, in fact, Dwork et al. [7] showed a negative result
under a setting that captures this intuition. However, in
some scenarios, the entities are not required to contribute
at all collection times, and are likely to leave within a short
period. With such restriction, it should be now possible to
continuously publish with low noise indefinitely, as effect of
information contributed earlier would diminish in time.

6.1 Example 1
One situation where publishing dynamic dataset can bene-

fit from δ-neighbourhood is when sensitive information only
last for a short period. Consider a regional flu response
organization who wants to continuously collect daily infor-
mation on the health conditions of visitors, and release the
information occasionally. Alice wants to infer whether Bob
has been to the region based on the released information.
If the publishing mechanism A is ε-differential privacy, then
Alice’s inference is bounded by:

Pr(A(D0 + {x}) ∈ R) ≤ exp(2ε)Pr(A(D0) ∈ R),

where x is Bob’s information. If all visitors must leave
within 14 days, then x must be near the source, i.e. d(x,⊥) <
14 days, otherwise the dataset is invalid. Hence, under this
constraint on the datasets, the guarantee under the standard
neighbourhood and δ-neighbourhood are equivalent.

6.2 Example 2
Let us revisit Example 1. Suppose the authority allows

some visitors to stay for a longer period, say 28 days, even
if the dataset is published under 14-neighbourhood, there is
still protection. If Bob indeed stayed for 28 days, the bound
is relaxed to exp(2ε). Hence, similar to the spatial datasets,
the protection is being redistributed with more protection
to entities with shorter stay.

6.3 Formulation
Let a sequence x1, x2, . . . be the data contributed by an

entity, where each xi ∈ U + {⊥} is the data contributed at
time i, with U being the domain of the contributed data,
and ⊥ being a special symbol indicating that the entity is
not contributing at that time. Let us call a sequence con-
taining only the symbol ⊥ a null sequence. A dataset D
is a set of the aforementioned sequences. We assume that
every entity in D has contributed a data in U at some time,
and thus D does not contain null sequence. The prefix of
a sequence x contains data contributed by the entity up to
time n, denoted x[1..n], where n is the length of the prefix.
Let us denote D[1..n] the set of such prefixes in D that are
not null sequence. In addition, denote Dn the set of all n-th
elements of the sequences in D that is not ⊥, that is, Dn
contains all data contributed at time n.

At certain time, say time t, some information on Dt is
to be published. We assume that information is published



at any time i, and let Ai be the publishing mechanism em-
ployed at time i. Hence, the data published are A1(D1),
A2(D2), . . .. Combining all the data published before time
n+1, we can treat the“effects”of mechanismsA1,A2, . . . ,An
as a single mechanism A∗n that operates on D[1..n].

6.4 δ-Neighbour on Dynamic Dataset
Given two datasets, D and D′, under the standard neigh-

bourhood, they are neighbours if, and only if they differ
by one entity. That is, there is a sequence x and y s.t.
D+{x} = D′, or D+{x} = D′+{y}. This is essentially the
same notion of neighbourhood for user-level privacy studied
by Dwork et al. [7][8].

For two sequences x = 〈x1, x2, . . .〉 and y = 〈y1, y2, . . .〉,
let us define d(x,y) to be the value is − it where is is the
smallest index s.t. xis 6= yis and it is the largest index
s.t. xit 6= yit . That is, it is the length of the smallest
consecutive subsequence that contains all the differences.
We take the null sequence as the source. Hence, D and
D′ are δ-neighbourhood if, and only if D + {x} = D′, or
D + {y} = D′ + {z}, for some y, z s.t. d(y, z) ≤ δ, or

some x s.t. d(x, ⊥̂) ≤ δ where ⊥̂ denotes the null sequence.
When δ = 1, then providing differential privacy under δ-
neighbourhood is same as the event-level privacy studied by
Dwork et al. [7].

6.5 Sustainable Differential Privacy
If each mechanism Ai is ε-differentially private under ei-

ther notions of neighbourhood, then the mechanism A∗n is
(nε)-differentially private under the respective neighbour-
hood. However, for δ-neighbourhood, we should be able to
“reuse” the budget spent on much earlier published data.
This observation is formulated in the following theorem:

Theorem 2 Let D be a dynamic dataset with the mecha-
nism A∗n, A1, A2, . . .An as defined above in Section 6.3. If
mechanism Ai is εi-differentially private under the standard
neighbourhood for each i ∈ {1, . . . , n}, and

δ∑
i=1

εk+i ≤ ε, for k ∈ {0, 1, . . . , (n− δ)},

then A∗n is ε-differentially private under δ-neighbourhood.

Proof. Consider two datasets D and D′, where D′ +
{y} = D + {x} and d(x,y) ≤ δ. Let is be the smallest
index at which x and y differ. Consider an output a =
〈a1, a2 . . . an〉 of A∗n(D), we have the probability that A∗n
gives the same output on dataset D′ as:

Pr(A∗n(D′) = r) =

n∏
i=1

Pr(Ai(D′i) = ai)

≤

(
is+δ−1∏
i=is

exp(εi)

)
·

(
n∏
i=1

Pr(Ai(Di) = ai)

)
≤ exp(ε)Pr(A∗n(D) = r)

Similarly argument holds for any pair D and D′ where D′ =
D + {x} and x is near the source. Therefore, A∗n is ε-
differentially private under δ-neighbourhood.

For instance, if εi = δ−1 for all i, under standard neigh-
bourhood, A∗n is a n/δ-differentially private, but it is a

1-differentially private mechanism under δ-neighbourhood.
Note that the assurance is independent of n, and thus it is
possible to continue publishing indefinitely and yet achieve
ε-differential privacy. In general, we say that a mechanism
achieves sustainable differential privacy when the factor in
the assurance is bounded by a constant independent of n.

7. PUBLISHING DYNAMIC DATASET: AL-
LOCATING BUDGET

The privacy requirement ε is often called the privacy bud-
get as it can be divided between and allocated to a group
of mechanisms. As shown in section 6.5, sustainable ε-
differential privacy can be achieved by ensuring budget spent
in any sliding window is bounded by ε (Theorem 2). There
are many ways to allocate the budget over the time window
and yet achieving sustainable privacy. An interesting ques-
tion is on how to allocate the budget εi to the mechanism
Ai at each time i, so as to minimize the “total error”.

We consider total error of the form
∑n

1 (wiErri(εi)), where
Err(·) is a non-negative function quantifying the error in-
curred by the mechanism Ai in term of the budget, and the
non-negative weight wi gives the weightage of the query at
time i. A zero weight at time i, i.e. wi = 0, corresponds
to the event that no publishing is required at time i. Now,
given a weightage w = 〈w1, . . . , wn〉 and the privacy require-
ment, we want to find an allocation of the budget εi so as
to minimize the total error.

We consider two settings. Under the offline setting, the
publisher knows all the weights at time 0, and hence the pub-
lisher can determine the allocation before publishing. This
setting could be unrealistic in scenarios where the publisher
does not know the queries in advance. Under the online set-
ting, the value of wi is only known at time i and the budget
εi has to be committed before time t+ 1.

7.1 Offline Allocation
The offline budget allocation problem can be formulated

as the following optimization problem:

Problem 1 Offline Budget Allocation

Given: δ ∈ Zn, ε,w = 〈w1 . . . wn〉 ∈ Rn≥0

Find: 〈ε1, ε2, . . . , εn〉

Minimize:

n∑
i=1

wiErri(εi)

Subject to:

δ∑
i=1

εk+i ≤ ε, for k = 1, 2, . . . , (n− δ).

In general, solving the above optimization problem is diffi-
cult. However, when the objective function is quadratic, it is
a convex optimization problem whose solution can be found
using existing optimization solvers, for example, a SDPT3
solver [22][23]. In this section, we study error function of the
form Erri(ε) = ciε

−2 for some constant ci. This form of er-
ror function corresponds to mechanisms such as the Laplace
mechanism, whereby the variance of the error is a quadratic
function w.r.t. ε−1

i . Since the constant ci can be captured by
the weight vector w, Without loss of generality, we assume
ci = 1 for all i.
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Figure 7: Improvement of offline version for δ = 4.

Let eI = 〈 ε
δ
, . . . , ε

δ
〉, which corresponds to an allocation

that divides the budget equally across time; and let eO to
be the optimal allocation. Note that eI is in the feasible
region of the problem and could be a good initial solution
for a solver.

Figure 7 shows the comparison of errors between eI and
the optimal budget allocation eO, where w is a binary vector
and each wi ∈ {0, 1} is independently randomly chosen to
be 1 with probability p = 0.5 and p = 0.75, respectively.

7.2 Online Allocation
Under online setting, only w1, . . . , wi are available at time

i, and the allocating algorithm has to commit the budget
for ei which may later turn out to be sub-optimal. Indeed,
it is easy to construct a counter example to show that for
any deterministic algorithm, in the worst case, there is an
instance where the error incurred is twice as large than the
offline optimal. In this section, we focus on average case
performance where the w is drawn from some distribution
known to the publisher.

We propose an online algorithm as follow. At time i, given
the committed budget allocation e1, . . . , ei−1 and w1, . . . , wi,
the following steps are carried out:

1. N (in our experiment, N =1,000) samples of weights
w1, . . . ,wN are drawn from the distribution on condi-
tion that the first i values are w1, . . . , wi.

2. For each candidate of ei (in our experiment, we try
0.01, 0.02, . . . , 1) and each w among the N weight sam-
ples, compute the “optimal” error by solving the con-
strained offline allocation problem given below (Prob-
lem 2). After the errors by theN samples are obtained,
the average error is computed.

3. The candidate that attains the smallest average error
is committed to be the budget of ei.

7.3 Evaluations
We evaluate the performance of the online algorithm, com-

paring to the offline optimal solution and eI . We consider
ε = 1, and δ = 4 or 7. For each setting, we repeat the ex-
periment for 1,000 times and record the average error of the
three solutions.

We consider a w where each wi ∈ {0, 1} is taken to be
1 with probability p = 0.5. Figure 8(a) shows the errors of
eO, eX and eI for δ = 4, and Figure 8(b) shows errors when
δ = 7. Figure 8(c) consider a w where each wi ∈ {0, 1} is
taken to be 1 with probability p = 0.75.

Problem 2 Constrained Offline Allocation

Given: δ ∈ Zn, ε, e′ = 〈ε′1, ε′2, . . . , ε′m〉 ∈ Rm≥0,

w = 〈w1 . . . wn〉 ∈ Rn≥0

Find: 〈ε1, ε2, . . . , εn〉

Minimize:

n∑
i=1

wiErri(εi)

Subject to:

δ∑
i=1

εk+i ≤ ε, for k = 1, 2, . . . , (n− δ);

εk = ε′k, for k = 1, 2, . . . ,m.

8. RELATED WORK
There are extensive works on privacy-preserving data pub-

lishing. The recent survey by Fung et al. [10] gives a com-
prehensive overview on various notions, for example, k-anon-
ymity [20], `-diversity [16], and differential privacy [4].

In practice, ε-differential privacy can be too strong to be
achieved in some scenarios. Many relaxations capture alter-
native notions of“indistinguishability”, in particular, on how
the two conditional probabilities in the bound are compared.
For example, (ε, δ)-differential privacy [5] relaxes the bound
with an additive factor δ, and (ε, τ)-probabilistic differential
privacy [17] allows the bound to be violated with a probabil-
ity τ . Similar to our work, Konstantinos et al.[2] proposed
broadening the differential privacy definition by considering
different underlying metrics.

Alternative relaxations include attribute differential pri-
vacy and bit differential privacy considered by Kifer et al. [14],
where two datasets are neighbours if they differ at only one
attribute value or one bit. Blocki et al. [1] consider differ-
entially private graph algorithms, with restriction that the
maximum degree of any node in a social network graph is
bounded. They consider the restricted datasets and show
that such restricted sensitivity can be significantly lower
than the smooth sensitivity for subgraph counting queries
and local profile queries.

There are many mechanisms designed for histogram pub-
lishing. Xiao et al. [24] proposed a mechanism of adding
Laplace noise to the coefficients of a wavelet transformation
of an equi-width histogram, whereby range query can be
answer with different combination of the published trans-
formation. Hay et al. [11] proposed a method that a series
of equi-width histograms for different bin-widths is to be
published, and a range query can then be decomposed and
answered from the histograms series different scales. Li et
al. [15] gave an analysis on linear transformations to answer
to a query workload. Machanavajjhala et al. [17] proposed
a 2D dataset publishing method that can handle the sparse
data in 2D equi-width histogram. However, it is not clear
how to adapt the above-mentioned mechanisms to exploit
δ-neighbourhood. One exception is the method by Fang et
al. [9] as demonstrated in Section 5.5.

Dwork et al. [7] consider applications that involve repeated
computations on dynamic datasets, such as monitoring data
or searching thread. They gave a general transformation
that converts mechanisms on static dataset to mechanisms
under dynamic dataset. The idea of processing dynamic
datasets also lead to a concept of pan-privacy [8], which
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(a) δ = 4, p = 0.5.
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(b) δ = 7, p = 0.5.
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Figure 8: Comparison of offline and online algorithms.

require each datum to be discarded immediately after pro-
cessing, and therefore guarantee that the internal state be
differentially private as well.

9. CONCLUSION
In this paper, we propose to relax differential privacy by

adopting an alternative definition of neighbourhood which
“redistributes” the assurances based on the underlying dis-
tance of the entities. Although the idea is simple, for some
applications, it is not clear how to exploit the relaxation to
achieve higher utility. We consider two types of datasets,
spatial datasets and dynamic datasets, and show that the
noise level can be further reduced by constructions that ex-
ploit the δ-neighbourhood. We give a few scenarios where
δ-neighbourhood would be more appropriate, and we believe
the notion provides a good trade-off for better utility.
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