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Abstract

The coupon subset collection is a generalization of the classical coupon collec-

tion, where instead of selecting (with replacement) a single coupon, a subset

of at most k coupons (known as a “package”) is selected in each round. In

this paper, we study how to design the collection of packages and assign prob-

abilities to the packages, so as to minimize the expected number of rounds to

collect all n distinct coupons. When k divides n, a seemingly optimal strat-

egy is to choose a collection of non-intersecting packages, and assign equal

probability to each package in the collection. We prove the optimality of this

strategy when the size of the package is half the number coupons, that is,

n = 2k.

Keywords: Coupon Subset Collection, Probabilistic Method, Distribute

Algorithms, Experimental Design

1. Introduction

Coupon subset collection is a generalization of the classical coupon col-

lection. Let us represent a set of n distinct coupons as C

n

= {1, 2, . . . , n},
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and let P = {P1, . . . , Pm

} be a pool of subsets of C
n

, where |P
i

|  k for each

i, and [
i

P

i

= C

n

. Let us call an element in P a package. The package P

i

is assigned a positive real number p

i

for each i where
P

i

p

i

= 1. During

the process of coupon subset collection [1], a package is selected with replace-

ment in a round, where the package P

i

is selected with probability p

i

for

each i. The selection process ceases when all the n distinct coupons have

been collected. Coupon subset collection is a generalization of the classical

coupon collection [2]. In the classical case, each package contains only a s-

ingle coupon, whereas here, we allow packages with multiple but at most k

coupons.

We want to find a strategy, which is a set P and the associated prob-

abilities, that minimizes the expected number of rounds. There are many

potential applications, for instances, in distributed computing [3] and exper-

imental design[4]. To illustrate the subtlety of this problem, let us consider

the following two strategies shown in Figure 1 for n = 4 and k = 2. Strat-

egy 1 consists of two non-intersecting packages P1 = {1, 2} and P2 = {3, 4}

with equal probability; whereas Strategy 2 consists of all 6 possible pairs of

coupons, and each with equal probability. We can calculate that with Strat-

egy 1, the coupon subset collection process is expected to cease in 3 rounds,

whereas 3.8 rounds is expected with Strategy 2. It seems that Strategy 1 is

optimal, and in general, when k divides n, the optimal strategy is to choose a

pool of n/k non-intersecting packages of size k, and assign equal probability

to the packages.

Although the strategy is simple, proving its optimality is challenging,

even for special cases. When k = 1, (i.e. the classical coupon collection
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Figure 1: Two possible Strategies.

problem), it was suggested by Boneh et al. [5] that the global minimum to

the process occurs only in the equally likely case, that is, the probability of a

coupon being collected is 1/n. The conjecture was proven many years later

by Boneh et al. [6]. When k > 1, the problem has an interesting twist. It was

conjectured [7] that when k = 2 and n is even, a global minimum occurs in a

pairing case, i.e. equal probabilities are assigned to a pool of non-intersecting

packages of size 2. Caron et al. [8] proved special cases of the conjecture for

n = 4, k = 2 and n = 6, k = 2. To the best of our knowledge, the above two

cases are the only cases known to be optimal. One might be tempted to prove

the optimality using convexity argument, however, this is not at all clear as

pointed out by Boneh et al. [6], page 5: “The di�culty was that the common

expressions for E[T (p)] (the expected time to collect all coupons) are not

convex in the components of p (the probabilities assigned to the coupons)”.

We refer the readers to Section 3 for more works on this problem and its

variants.

3



In this paper, we study cases when n = 2k for any k, and prove that

the strategy of assigning equal probability to two non-intersecting packages

is optimal, and it is the unique optimal up to permutation of the coupons

(Corollary 3). Our main result (Theorem 2) in fact gives a stronger re-

sult, showing that the strategy of having 2 non-intersecting packages has

“stochastic dominance” over any strategy with intersecting packages, with

respect to the outcome that all the coupons are collected within t rounds

for any t. Our intermediate result (Lemma 1) gives an optimality property

of non-intersecting packages for any k,n where k divides n, which could be

useful in other works.

2. Main Result

Notations. Given n and k, let us define a strategy S to be a set of tuple

{hP1, p1i . . . , hPm

, p

m

i}, where the package P
i

is a subset of C
n

= {1, 2, . . . , n}

of size at most k, and the non-zero p

i

is the probability that P

i

is select-

ed. When the packages in a strategy form a partition of C
n

, i.e. there is

no common coupon in any two packages, we say that the strategy is non-

intersecting; otherwise we say that it is intersecting. When n = 2k, let us

denote S2 be the strategy {hP1, 0.5i, hP2, 0.5i} where P1 = {1, 2, . . . , k}, and

P2 = {k + 1, . . . , n}. Note that a non-intersecting strategy that consists of

two packages with equal probability can always be written as S2, after ap-

plying some permutation of the coupons. In general, when n = rk, let us

denote S
r

be the strategy containing r non-intersecting packages, each with

equal probability.
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Outline of proof. We first show that when k divides n, i.e. n = rk for

some r, the strategy S
r

is optimal with respect to the expected number of

distinct coupons collected during the first t rounds for any t (Lemma 1).

This is shown using linearity of expectation and Jensen’s inequality, together

with the classical result by Boneh et al. when k = 1 [6]. However, note

that Lemma 1 does not immediately imply the minimality on the expected

number of rounds required to collect all n distinct coupons. Theorem 2

closes the gap. We prove by contradiction that, when r = 2, if an strategy is

intersecting, the probability that we collect all the coupons at round t with

the strategy is strictly less than that with S2 (Theorem 2). In other words,

S2 has stochastic dominance over any intersecting strategy. From Theorem

2, it is easy to show that the S2 must be the unique optimal in minimizing

the expected number of rounds required (Corollary 3).

Let NeS,t denotes the number of distinct coupons collected within the first

t rounds with a strategy eS. We have the following Lemma:

Lemma 1. When n = rk the non-intersecting strategy S
r

has the maximum

expected number of distinct coupons at any round t, that is,

E[NSr,t] � E[NeS,t],

for any strategy eS and any t.

Proof of Lemma 1. Note that if eS contains a package with size less than

k, we can always construct another eS0 by adding more coupons to that pack-

age, and yet E[NeS0,t] � E[NeS,t]. Therefore, Without loss of generality, we can

assume that the packages in eS are of size exactly k.
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Let us consider the given eS, and let E
t,i

= 1 if the coupon i is collected

within t rounds, and E

t,i

= 0 otherwise. Let e
i

be the probability that the

coupon i is collected in a round (since the selections in di↵erent rounds are

independent, hence the probability e

i

is the same in every round).

Note that NeS,t = E

t,1 + . . .+ E

t,n

. By linearity of expectation, we have

E[NeS,t] = E[E
t,1 + . . .+ E

t,n

]

= E[E
t,1] + . . .+ E[E

t,n

]

=
nX

i=1

�
1� (1� e

i

)t
�
.

Recall that all packages are of size k, hence it must be the case that
P

i

e

i

= k. In addition, the polynomial f(x) = (1 � x)t is convex on [0, 1]

when t = 0 or t � 1. Therefore, by Jensen’s inequality, we have

nX

i=1

�
1� (1� e

i

)t
�


nX

i=1

 
1�

✓
1� k

n

◆
t

!
= E[NSr,t],

where the inequality holds with equality if and only if e
i

= k/n for all i.

Therefore, we have

E[NSr,t] � E[NeS,t], (1)

for any strategy eS as required.

Theorem 2. When n = 2k the non-intersecting strategy S
r

has strictly high-

er probability of collecting all n distinct coupons within t round than an in-

tersecting strategy eS, that is,

Pr(NSr,t = n) > Pr(NeS,t = n),
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for any intersecting strategy and any t � 2.

Proof of Theorem 2. Similar to Lemma 1, if eS contains a package with

size less than k, we can always construct another eS0 by adding more coupon-

s to that package, and yet eS0 is intersecting and the expected number of

rounds to collect all n coupons does not increase. Therefore, without loss of

generality, we can assume that all packages in eS are of size exactly k.

Let us consider any strategy eS that is intersecting and has only size k

packages. Since eS is intersecting, there exists two packages P

i

and P

j

in eS

and a positive integer x0, such that x0 = |P
i

[ P

j

| and n/2 < x0 < n. Recall

that the probability assigned to a package is non-zero by definition, hence,

Pr(NfS,t = x0) > 0 for t � 2.

By the definition of expectation, we have

E[NeS,t] =
nX

x=1

xPr
⇣
NeS,t = x

⌘
.

Since the packages in eS have size k, Pr(NeS,t < k) = 0 for t � 1. In

other words, after one round, it is not possible to collect strictly less than k

di↵erent coupons. Therefore,

E[NeS,t] =
n

2
Pr
⇣
NeS,t =

n

2

⌘
+ . . .+ nPr

⇣
NeS,t = n

⌘
.

With Strategy S2, the number of distinct coupons collected can only be

n/2 or n. Thus,

E[NS2,t] =
n

2
Pr
⇣
NS2,t =

n

2

⌘
+ nPr (NS2,t = n) .
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As the sum of probabilities over all possible outcomes of NeS,t is 1, we have

Pr
⇣
NeS,t =

n

2

⌘
+ . . .+ Pr

⇣
NeS,t = n� 1

⌘
=

Pr
⇣
NS2,t =

n

2

⌘
+ Pr (NS2,t = n)� Pr

⇣
NeS,t = n

⌘
.

(2)

We now show by contradiction that Pr(NS2,t = n) > Pr(NeS,t = n) when

t � 2. Suppose this is not the case, i.e. Pr(NeS,t = n) = Pr(NS2,t = n) + � for

some non-negative number �, then we have

E[NeS,t] =
n

2
Pr
⇣
NeS,t =

n

2

⌘
+ . . .+ (n� 1) Pr

⇣
NeS,t = n� 1

⌘
+ n (Pr (NS2,t = n) + �) .

Since all Pr
⇣
NeS,t = i

⌘
are non-negative for i = 1, . . . , n, and Pr

⇣
NeS,t = x0

⌘
>

0, we have the following strict inequality:

E[NeS,t] >
n

2

⇣
Pr
⇣
NeS,t =

n

2

⌘
+ . . .+ Pr

⇣
NeS,t = n� 1

⌘
+ �

⌘
+nPr (NS2,t = n) .

(3)

Substituting equation (2) into inequality (3), we have

E[NeS,t] >
n

2
Pr
⇣
NS2,t =

n

2

⌘
+ nPr (NS2,t = n) = E[NS2,t].

However, this contradicts the result from Lemma 1 (i.e. inequality (1)).

Thus we have Pr(NS2,t = n) > Pr(NeS,t = n), and Theorem 2 holds as desired.

Theorem 2 implies that any strategy that minimizes the expected number

of rounds must be non-intersecting. For any non-intersecting strategy, we can

treat each package as a new single coupon, and reduce the collection process
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essentially to the classical coupon collection. Applying the well-known results

by Boneh et al. [6, p. 12] which dictates that the optimal (with respect to the

classical coupon collection) strategy occurs only in the equal likely cases, we

can see that the number of packages must be 2, and the assigned probability

must be 1/2. Thus, we have the following Corollary:

Corollary 3. When n = 2k the strategy S2 is the unique optimal solution,

up to permutation of C
n

.

3. Related Works

There are extensive amount of works on classic coupon collection (see

[6] for a survey), and coupon subset collection. Some of the works focus on

determining the expected number of rounds for a given strategy. Barton et

al. [9] considered the classic coupon collection, and gave a general expression

for it. Stadje [1] studied a special case of coupon subset collection with an

assumption that the number of coupons in a subset has a hypergeometric

distribution. Subsequently, Adler et al. [10] studied a more general setting

and gave bounds on the expected number of rounds required to complete the

collection. They also gave three simulators for estimating the numbers.

There are also e↵orts on constructing the optimal strategy. For the classi-

cal problem, it was suggested by Boneh et al. [5] that the global minimum to

the classic coupon collection problem occurs only in the equally likely case.

Caron et al. [8] proved the above statement for n = 4 and n = 6, and they

also showed that the equally likely case is a strong local minimum for any n.

Subsequently, this conjecture was proved by Boneh et al. [6].
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For coupon subset collection, it was conjectured by Caron et al. [7] that

when k = 2 and n is even, a global minimum occurs in the pairing case, i.e.

the strategy S
n,2 = {hP1, 2/ni, . . . , hPn/2, 2/ni}, where each P

i

= {2i� 1, 2i}

contains a pair of coupons. Later Caron et al. [8] proved special cases of the

conjecture for n = 4 and n = 6.

There are many applications on constructing the optimal strategy. Yu

et al. [3] showed that the coupon subset collection can be applied to ensure

the data availability with multiple backups in di↵erent machines. The goal

is to maximize the success probability of recovering all data files. In this

case, the data files are the coupons and the machines are packages. They

studied a case when each machine stores two files, and the machines have

the same failure probability. Ewens [4] considered experimental design where

each “coupon package” are a set of alleles and showed that the problem can

be formulated as coupon collection problem. He considered a case when the

sampling size is small compared to the size of the population (so it can be

approximated by sampling with replacement).

The problem Yu et al. [3] considered is a variant where the packages are

obtained without replacement, and all packages have the same probability

of being selected. They showed that in this variant, when k = 2 and when

the number of packages collected is equal to n, the optimal strategy is the

pairing case. Note that in the setting where packages are selected without

replacement, the pool P can contain repeated packages. They also showed

that the problem of calculating the exact success probability of recovering

all data files for any given strategy is #P-hard problem; and they also gave

an upper bound and a lower bound on the probability for any strategy.
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4. Discussion and Conclusion

The expected number of rounds taken by S2 is 3.

A natural question to ask next is the generalization of the proof to any

n and k where k divides n. Since Lemma 1 holds in the general cases, the

challenge is to generalize Theorem 2. Extending current proof of Theorem 2

is challenging as the common expressions for the expected time to collect all

coupons are not convex in the components of p [6].
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