
M2R:	Enabling	Stronger	Privacy	
in	MapReduce Computation

Anh Dinh,	Prateek Saxena,	
Ee-Chien Chang,	Beng Chin	Ooi,	Chunwang Zhang

School	of	Computing	
National	University	of	Singapore

1.	Motivation
• Distributed	computation	(MapReduce)	on	large	
dataset	with	Trusted	computing.		

• Integrity	+	Confidentiality.
• Applicable	in	private		or	public	cloud	setting.

St
or
ag
e

T

T

T

Background:	MapReduce

• Computation	&	“shuffling”	of		<key,	value>		tuples.
• Phases:		Map	à Shuffle	à Reduce.
• “map”	outputs	a	set	of	tuples.
• During	Shuffling,	tuples	are	grouped		according	to	their	key.
• Each	“reduce”	instance	corresponds	to	an	unique	key	k.	It	takes	all	tuples	

with	the	key	k	 and	output	a	set	of	tuples.		

map

map

map

reduce

shuffling

reduce

reduce

reduce

Background:	Hadoop
• Hadoop:	software	framework	written	in	Java
• ≈	190K	LOC			(Hadoop 0.21.0)
• Consists	of	MapReduce modules,	Hadoop
Distributed	File	System	(HDFS),		etc.	

Usensix	Security	2015 M2R:	Enabling	Stronger	Privacy	in	MapReduce	
Computation

Challenge	1:		Keep	Trusted	Code	Base	small

Operating	
Systems

Hypervisor

Application	
Frameworks

Affected	many	hypervisors	
(e.g Xen /	KVM)	[CS	Report]

CVEs	in	Linux	[CVE-DB]

Challenge	1:	Keep	TCB	small

Protected
Code	/	Data

TCB

(e.g.	SGX	enclave)

MapReduce/Hadoop
Framework

Operating	System

Hypervisor

S	
t	o

	r	
a	
g	
e

Trusted
CPU

• All	data	outside	trusted	environment	is	encrypted
• Software-only	attack.

Identify		small	essential	components	of	MapReduce	to	be	
included	in	the	TCB.

Challenge	2:	Interactions	Leaks	Info

Usensix	Security	2015 M2R:	Enabling	Stronger	Privacy	in	MapReduce	
Computation

St
or
ag
e

T

T

T

Example	of	leakage:	wordcount
• Map	Phase:		each	mapT generates	the	tuples.

w1	
w2

w1		w2	
w4

w3	
w4

mapT

mapT

mapT

reduceT (key:	w1)

reduceT (key:	w2)

reduceT (key:	w3)	

reduceT (key:w4)

shuffling
F1

F2

F3

w1 w2

w1 w2

w3 w4

w4

Example	of	leakage:	wordcount
• Shuffling	Phase:	The	tuples	are	grouped	w.r.t the	“words”.

w1	
w2

w1		w2	
w4

w3	
w4

mapT

mapT

mapT

reduceT (key:	w1)

reduceT (key:	w2)

reduceT (key:	w3)	

reduceT (key:w4)

shuffling
F1

F2

F3

• Reduce	Phase:	reduceT counts	and	outputs	the	number	of	tuples	
it	received.

Example	of	leakage:	word	counts		
• By	observing	the	flow	of	tuples,	one	can	infer	relationships	

among	the	input	files.

w1	
w2

w1		w2	
w4

w3	
w4

mapT

mapT

mapT

reduceT (key:	w1)

reduceT (key:	w2)

reduceT (key:	w3)	

reduceT (key:w4)

shuffling
F1

F2

F3

F3	contains	a	unique	
word

Example	of	leakage:	word	counts		
• By	observing	the	flow	of	tuples,	one	can	infer	relationships	

among	the	input	files.

w1	
w2

w1		w2	
w4

w3	
w4

mapT

mapT

mapT

reduceT (key:	w1)

reduceT (key:	w2)

reduceT (key:	w3)	

reduceT (key:w4)

shuffling
F1

F2

F3

Possible	solution:	Oblivious	RAM
• Very	high	overhead.	

Usensix	Security	2015 M2R:	Enabling	Stronger	Privacy	in	MapReduce	
Computation

mapT

mapT

mapT

reduceT

reduceT

reduceT

reduceT

ORAM

2.	Our	solution
• Randomly	permutes	the	tuples.
• Group	the	tuples	according	to	their	keys.

mapT

mapT

mapT

reduceT

reduceT

reduceT

reduceTSe
cu
re
	M

ix
in
g	
(M

ix
T)

Gr
ou

pi
ng

2.	Our	solution
• For	execution	integrity,	addition	step	of	verification	is	
required.

mapT

mapT

mapT

reduceT

reduceT

reduceT

reduceTSe
cu
re
	M

ix
in
g	
(M

ix
T)

Gr
ou

pi
ng

Ve
rif
y	
gr
ou

pi
ng
s	(
Gr
ou

pT
)

2.	Our	solution

mapT

mapT

mapT

reduceT

reduceT

reduceT

reduceTSe
cu
re
	M

ix
in
g	
(M

ix
T)

Gr
ou

pi
ng

Ve
rif
y	
gr
ou

pi
ng
s	(
Gr
ou

pT
)

Original	untrusted	
Shuffling		processRandomly	permutes

the	tuples
Verifies	grouping	
is	correctly	done

Cascaded	Mixing
A	cascaded	mixing	is	employed	to	randomly	permute	the	tuples	
distributedly.

m
ix
T

m
ix
T

m
ix
T

m
ix
T

m
ix
T

m
ix
T

m
ix
T

m
ix
T

m
ix
T

round	1 round	2 round	3

Remarks	
• Key	management,	handling	of	the	random	
nonce	and	initial	value	is	not	straightforward.		

• In	Hadoop,	multiple	reduce	instances	are	
carried	out	by	a	single	reducer.			Likewise	
mapper.

Usensix	Security	2015 M2R:	Enabling	Stronger	Privacy	in	MapReduce	
Computation

ORAM	vs Our	solution

• M2R	exploits	the	fact	that,	reads	and	writes	can	be	
“batched”	into	2	phases,		whereas	ORAM	caters	for	single	
read/write	and	thus	incurs	higher	overhead.

• Many	constructions	of	ORAM	need	to	permute	or	o-sort	
the	data.

Usensix	Security	2015 M2R:	Enabling	Stronger	Privacy	in	MapReduce	
Computation

mapT

mapT

mapT

reduceT

reduceT

reduceT

reduceT

O
RA

M

mapT

mapT

mapT

reduceT

reduceT

reduceT

reduceT

Se
cu
re
	M

ix
in
g	
(M

ix
T)

Gr
ou

pi
ng

Ve
rif
y	
gr
ou

pi
ng
s	(
Gr
ou

pT
)

3.	Security	Model
Adversary	can	observe	the	following:
• Input/output	size	of	each	trusted	instance.
• Source/destination	of	the	input/output.
• Time	of	invocation/return	of	each	trusted	
instance.

Active	adversary	can:
• Arbitrary	Invoke	trusted	instances.
• Halt	instances.
• Drop/duplicate	ciphertext (encrypted	tuples).
• Add	delays.

Usensix	Security	2015 M2R:	Enabling	Stronger	Privacy	in	MapReduce	
Computation

Modulo- private
Based	on	formulation	by	Canetti	(FOCS	01).

Let			 be	the	permissible	data		that	can	be	
revealed		during	honest	execution.

A	provisioning	protocol	is		modulo- private	if,	
for	any	adversary		A executing	the	protocol,	
there	is	an	algorithm B with	access	only	to					,	
such	that	the	output	of	A and	B are	
indistinguishable.	

Usensix	Security	2015 M2R:	Enabling	Stronger	Privacy	in	MapReduce	
Computation

The	permissible		 :			
• size	of	input/output,	time	of	revocation/return	
of		mapT and	reduceT under	honest	
execution.

w1	
w2

w1		w2	
w4

w3	
w4

mapT

mapT

mapT

reduceT (key:	w1)

reduceT (key:	w2)

reduceT (key:	w3)	

reduceT (key:w4)

shuffling

F1

F2

F3

M2R			is							-modulo			private.						

Usensix	Security	2015 M2R:	Enabling	Stronger	Privacy	in	MapReduce	
Computation

4.	Implementations	&	Experiments
• Use	Xen-4.3.3		as	the	trusted	hypervisor,	and	its	
Verifiable	Dynamic	Function	Executor	to	load	and	
execute	trusted	codes.	 (The	design	of	M2R	can	be	
implemented	differently	depending	on	the	underlying	architecture,	
e.g.	on	Intel	SGX).

• Ported	7	MapReduc benchmark	applications.
– KMeans :	Iterative,	Compute	intensive
– Grep :	Compute	intensive
– Pagerank :	Iterative,	Compute	intensive
– WordCount :	Shuffle	intensive
– Index :	Shuffle	intensive
– Join	 :	database	queries
– Aggregate :	database	queries

• 8	compute	nodes,		each		quad-core	Intel	CPU	1.8	GHz,	
8GB	RAM,	1GB	Ethernet	cards.	

Trusted	Code	Base
4	trusted	computation	units:	
mixT,	GroupT,	mapT,	reduceT.	

• Platform	related:		(mixT,	GroupT)	
Lines	Of	Code:		≈	300	

• Applications:	(mapT,	ReduceT)
Lines	Of	Code			≈	200			for	our	examples.

Usensix	Security	2015 M2R:	Enabling	Stronger	Privacy	in	MapReduce	
Computation

Performance
Job Input	size	

(bytes)		(vs
plaintext	
size)

Shuffled
bytes

#Applications	
hyper calls

#platform
hyper	calls

Wordcount 2.1G	(1.1×)	 4.2G	 3.3	× 106 35	

Index	 2.5G	(1.2×)	 8G	 3.3 × 106 59	
Grep 2.1G	(1.1×)	 75M	 3.3 × 106 10	
Aggregate	 2.0G	(1.2×)	 289M	 18.0	× 106 12	
Join	 2.0G	(1.2×)	 450M	 11.0	× 106 14	
Pagerank 2.5G	(4.0×)	 2.6G	 1.7	× 106 21	
KMeans 1.0G	(1.1×)	 11K	 12.0	× 106 8	

Usensix	Security	2015 M2R:	Enabling	Stronger	Privacy	in	MapReduce	
Computation

Running	time	(s)

Usensix	Security	2015 M2R:	Enabling	Stronger	Privacy	in	MapReduce	
Computation

Job Baseline	 (vs
no	

encryption)

M2R	(vs baseline)

Wordcount 570		(2.6	×) 1156 (2.0 ×)
Index 666		(1.6	×) 1549	(2.3 ×)
Grep 70			(1.5 ×) 106	(1.5	×)
Aggregate 125			(1.6 ×) 205	(1.6	×)
Join 422				(2	 ×) 510	(1.2	×)
Pagerank 521		(1.6	×) 755	(1.4	×)
KMeans 123	 (1.7 ×) 145	(1.2	×)

Conclusions
• Privacy-preserving	distributed	computation	of	
MapReduce with	trusted	computing.

• Security:
– Execution	integrity	+Data	Confidentiality
– Observation	that	simply	running	the	map/reduce	in	
trusted	environment	is	not	sufficient:	interactions	leak	
sensitive	info.

– Small	TCB

• Exploit	the	algorithmic	structure	to	outperform	a	
solution	that	employs	generic	ORAM.	

• Future	works:	other	distributed	dataflow	systems.	

