Proofs of Data Residency Checking whether Your Cloud Files Have Been Relocated

Hung Dang, Erick Purwanto, Ee-Chien Chang School of Computing National University of Singapore

Data Geolocation

> A file **F** is **stored at** a particular location **L**.

Is It Relevant?

- Various *legislations* and *directives* regulate possessing and storage of data *across national borders*.
 - Australian Privacy Act
 - EU Data Protection Directive
- *Fault tolerance* of storage system relies on *replicating* the data *across geographically* separated drives.

Data Geolocation - The Breakdown

- Check if the file *F* is stored at a particular location *L*.
- Check if the file *F* is **stored on** a server S which is located **at** a particular location *L*.

Host Geolocation

- Triangulation: Executing *distance bounding protocols* from various landmarks
- Key assumption: There exists a correlation between *distance* and *round-trip-time*

Data Residency

- *F* is stored on a server *S*.
- *F* is *retrievable from local drives* of the server *S*.
 - **Retrievability** attested with Proof of Retrievability.
 - Storage locality checked by timings the POR response latencies.

POR - A Brief Review

- F can be reconstructed from any *n* valid encoded blocks
 - Data lost if more than cn blocks *deleted* or *corrupted*
 - Each encoded block e_i is authenticated by a tag o_i
- Audit of size v detects data loss w.h.p (1 - 1/(1+c)^v).

Why Timed POR Complicated?

The timing measurements consist of:

- Challenge-response transmission time
- Fetching time
- Computation time

(a bit) noisy, malleable

noisy

malleable

Vulnerable Construction (timing SW-PoR)

e, 01 t consists of: Ρ V e_2 **0**₂ Transmission time \bigcirc $Q = \{1, 2, 3\}$ e₃ **0**₃ Fetching time Ο Computation time Ο \bigcirc Accept if: e 0 е 0 t < threshold \bigcirc Response is valid Ο

Vulnerable Construction (timing SW-PoR)

Vulnerable Construction (timing JK-PoR)

t consists of: Ρ V Transmission time \bigcirc $Q = \{1, 2, 3\}$ Fetching time Ο \bigcirc Accept if: t e, 0, e_2 **0**₂ e_3 **0**₃ t < threshold \bigcirc Responses are valid Ο

e,

 e_2

e₃

01

0₂

0₃

Vulnerable Construction (timing JK-PoR)

And the attention goes to...

Computation Time

 Eliminated

Fetching Time

 Minimal + Consistent

Authenticator-based PoR

Atomic Operation

Transmission Time

 Minimizing the noise

The Construction - Setup Phase

The Construction - Residency Checking

- Audit Initialisation
 - Audit size *v*
 - Latency threshold *d*
 - Late delivery threshold *l*
- Query Initiation
 - Pick *v* challenges at random
- Challenge-Response
 - Measures latency of *each* query and its response
- Verification*
 - Decision is made based on $< f_{\gamma},...,f_{v}>, < t_{\gamma},...,t_{v}>, d$ and l
- *Invalid response leads to immediate failure

Implementations

- N-ResCheck: Verifier and Prover communicate over the network
 - Employs TCP for transmission of challenges and responses
 - Subject to high level of noise
- E-ResCheck: Entrust a trusted unit on the storage server
 - Verifier and Prover co-locate on the same physical system, minimizing noisy factor (i.e., transmission time)
 - Implemented with SGX-enabled processor

SGX: Hardware-root of Trust

Atomic Operation - The Block Size

- A block may span across multiple non-contiguous sector
- ⇒ high variance in fetching time
- Small blocks *fitting entirely* in one disk sector (w.h.p) make timings more reliable.

Atomic Operation - The Block Size

(g) 256-byte blocks (h) 512-byte blocks (i) 1024-byte blocks

Atomic Operation - The MAC Length

- Small blocks entail short authentication
- With limited access to verification oracle, short authentication tags do not compromise security
 - E.g., c = 40%, v = 300 and 16 bits MAC, probability of detection is [1 -2^{-145}]

Proofs of Retrievability

Timed Challenge-Response Protocols

Locality of Storage

Protected Execution Environment

Conclusion and Extension

- Residency of the data demands attention.
- PoDR provides a mechanism to establish data residency.
- Extensions
 - Finer granularity (e.g., different machines in the same data warehouse)
 - Dynamic PoDR supporting data updates

Hung Dang

hungdang@comp.nus.edu.sg

False Acceptance Rate

- Hit is the number of challenges certainly arrive "late"
- I is the late delivery threshold
- v is the audit size
- b is the authentication tag length

$$\Pr(Hit \le l) + \sum_{x=1}^{v-l} \Pr(Hit = x+l) \cdot (2^{-bx} + \mu(\lambda))$$