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ABSTRACT
While cloud storage services offer manifold benefits such as
cost-effectiveness or elasticity, there also exist various secu-
rity and privacy concerns. Among such concerns, we pay our
primary attention to data residency – a notion that requires
outsourced data to be retrievable in its entirety from local
drives of a storage server in-question. We formulate such no-
tion under a security model called Proofs of Data Residency
(PoDR). PoDR can be employed to check whether the
data are replicated across different storage servers, or com-
bined with storage server geolocation to “locate” the data
in the cloud. We make key observations that the data resi-
dency checking protocol should exclude all server-side com-
putation and that each challenge should ask for no more
than a single atomic fetching operation. We illustrate chal-
lenges and subtleties in protocol design by showing poten-
tial attacks to naive constructions. Next, we present a se-
cure PoDR scheme structured as a timed challenge-response
protocol. Two implementation variants of the proposed so-
lution, namely N-ResCheck and E-ResCheck, describe an
interesting use-case of trusted computing, in particular the
use of Intel SGX, in cryptographic timed challenge-response
protocols whereby having the verifier co-locating with the
prover offers security enhancement. Finally, we conduct ex-
tensive experiments to exhibit potential attacks to insecure
constructions and validate the performance as well as the
security of our solution.

1. INTRODUCTION
The growth of information has made data-generation out-

pace storage availability [39]. This has given rise to cloud
data storage models, as offered by various well-known cloud
service providers [4]. Cloud storage models have gained
significant popularity, and offer manifold benefits including
cost-effectiveness and elasticity. They present data owners
with a simple view of the outsourced files, abstracting away
underlying file-layout and storage mechanisms. While the
abstraction is appealing, the lack of understanding of the
underlying mechanisms adds to various security concerns on
whether the service providers are upholding the service level
agreement contract (SLA).
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Various real-world incidents and application scenarios
have demonstrated that those security concerns are realistic.
A cloud crash disaster could permanently destroy the out-
sourced data [2]. Such a threat prompts the needs of testing
for fault tolerance of the storage system [17]. In addition,
various legislation and directives regulating the possessing
and storage of data across national borders advocate paying
attention to locations at which the files are maintained [30,
1, 3]. In view of these concerns, it is desired to have technical
means that verify whether the files are indeed maintained in
accordance with the agreements.

Existing works have discussed technical means to audit
cloud storage providers on how the outsourced data are
maintained. Bowers et al. tested fault tolerance of the stor-
age system by checking if files are replicated across different
drives. Gondree et al. [22] and Benson et al. [15] attempted
to“geolocate”the data in the cloud. Nevertheless, due to the
noisy network environment, it is still technically challenging
to attain accurate and reliable assurances.

In this paper, we take a different approach to address
these problems, focusing on a more modest goal of verifying
residency of the outsourced data in a server. We ask for a
proof asserting the fact that an outsourced file F is indeed
maintained in its entirety on the local drives of the server in-
question. It is worth noting that the proof of data residency
provides more assurance on the data’s maintenance than
just the retrievability of the data, which has been exten-
sively studied under the notions of Proofs of Retrievability
(PoR) and Provable Data Possession (PDP) [26, 13]. Fur-
ther, attesting data residency can be an integral component
in auditing contractual assurances, for which existing tech-
nical means appear insufficient. For instances, one can first
geographically locate a storage server in-question [29, 24],
and then attest the residency of the outsourced file on such
server to affirm geolocation of the data. Moreover, one can
also assess replications of the data at different geographi-
cally separate servers by checking the residency of the file
on each of the servers simultaneously.

We formulate the notion of data residency under a security
model called Proof of Data Residency, taking into consider-
ation behaviours of storage devices and capabilities of dis-
honest storage providers (i.e. adversaries). The adversaries
could potentially derive accurate estimation of the network
noise, and exploit parallelism, data compression techniques
or hardware accelerations to influence the challenge-response
latencies, which are the main sources of information to be re-
lied on in residency checking. In view of these challenges, we
introduce a notion of atomic fetching operation – which the
prover must invoke in every challenge-response interaction –
and consider a powerful adversary that can reduce process-
ing time of any challenge to the equivalent of a single atomic
fetching, and fully aware of the network noise.
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We propose techniques to attest data residency. A
data residency checking is structured as a timed challenge-
response protocol. Our solutions adopt an authenticator-
based PoR [28, 26] as an underlying cryptographic prim-
itive to attest the file’s retrievability, and assess the re-
sponse latencies to establish the data residency. To this
end, we discuss two implementation variants. The first
variant, namely N-ResCheck, conducts the data residency
checking over the network, while the second variant, dubbed
E-ResCheck, necessitates the presence of a trusted unit on
the server in-question. With recent initiatives on trusted
computing primitives, especially Intel SGX technology be-
ing available on commodity systems [6], it is interesting to
investigate the security of a timed challenge-response proto-
col wherein the verifier resides in the protected enclave on
the prover’s physical server.

Our study suggests two general guidelines in the design
of an efficient and secure PoDR protocol. First, it is neces-
sary to minimise the computation carried out by the prover.
Preferably, during the verification process, the prover should
only fetch and send data to the verifier. Previous works
[22, 15] also advocated no server-side computation. Interest-
ingly, their arguments are motivated by practical concerns
on usability (since the cloud storage’s API may not be ex-
tensive enough to support the required computation) and
cost-savings. In contrast, our observations are motivated by
the security requirements. This guideline explains our choice
of the authenticator-based PoR scheme as the underlying
cryptographic primitive. Secondly, it is crucial to lower the
response latencies incurred by an honest prover. This sug-
gests that each challenge should only ask for one data block
and that the size of data blocks in use should be small (say
64 bytes). We empirically demonstrate that protocols which
fail to adhere to these suggestions are likely susceptible to
evasion. The requirement on small block size further entails
the use of short authentication tags (say 16 bits) so as to
keep the storage expansion factor reasonable. Readers may
wonder if this will raise security concerns wherein short au-
thentication tags are vulnerable to chosen-message attacks.
We argue that these attacks are irrelevant in our applica-
tion settings, for the adversary has only limited access to
the verification oracle. Moreover, one can always reduce the
probability of successful attacks by increasing the number
of challenges (see Section 7.5). We elaborate on effects of
block size and authentication tag length in Section 7.

Our empirical studies show that for insecure construc-
tions, the adversary can evade detection. The experiment
results on our proposed solution support the need of small
block size (e.g., 64 bytes in all of our settings). Very low
false acceptance rate and storage overhead can be achieved
with authentication tags that are as small as 16 bits. The ex-
periments also demonstrate significant security improvement
obtained by incorporating trusted computing. In particular,
for the same performance requirements of 24% storage ex-
pansion (among which 21% due to error-erasure code and
another 3% due to authentication tags) and audit with 300
challenges, E-ResCheck achieves an order of magnitude
lower false acceptance rate (3.9 × 10−10 vs. 6.7 × 10−09)
and several orders of magnitude lower false rejection rate
(2.6×10−22 vs. 7.3×10−08) in comparison to N-ResCheck.
This illustrates an interesting use-case of trusted computing
where having the verifier of a cryptographic protocol co-
locating with the prover enhances security.

In summary, our paper makes the following contributions:

• We present the security definition of Proofs of Data
Residency in a presence of a powerful adversary who
is able to reduce the time taken for processing any
challenge down to the equivalent of an atomic fetching
operation and fully aware of the network noise.

• We discuss and empirically show potential attacks on
insecure PoDR constructions.

• We propose a secure and efficient PoDR protocol and
analyse its security. We describe two implementation
variants of the proposed protocol: N-ResCheck and
E-ResCheck, illustrating an interesting use-case of
trusted computing, in particular the use of Intel SGX,
in cryptographic timed challenge-response protocols.

• We conduct extensive experiments to evaluate our so-
lution, and show that the proposed PoDR protocol
obtains negligible false acceptance and false rejection
rates with reasonable storage overhead and audit size.

The rest of this paper is organized as follows. We pro-
vide background on pertinent notions of PoR, geolocation
and Intel SGX in Section 2 before stating our problem in
Section 3. Next, we present our definition of Proofs of Data
Residency in Section 4. We discuss potential attacks on inse-
cure constructions in Section 5 and propose a secure protocol
in Section 6. Experimental evaluation is presented in Sec-
tion 7 while related works are surveyed in Section 8. Finally,
we conclude our work in Section 9.

2. PRELIMINARIES
In this section, we briefly provide background on the re-

lated notions of PoR and host geolocation, as well as sum-
marize key characteristics of Intel SGX technology. We defer
more detailed discussion of these notions to Appendix B.

Proof of retrievability [26] enables data owners to audit
the storage server on the intactness of their outsourced files.
Prior to outsourcing the data to the cloud, the data owner
encodes her original data using a redundant encoding (such
as the error-erasure Reed-Solomon code [33]), and authenti-
cates all the blocks of the encoded data. In order to assert
the retrievability of her data, the data owner engages the
storage provider in a challenge-response protocol, checking
for the authenticity of λ blocks, where λ is a security param-
eter. Due to the redundant encoding, the storage provider
has to discard or tamper with a considerable portion of the
blocks to cause data loss. Should such incident happen, it
will be detected by the verifier’s “spot-checking” with over-
whelming probability.

The notion of data residency implicitly requires knowl-
edge of the storage server’s geographic location. Host geolo-
cation techniques [29, 24, 18] enable the verifier to obtain
such information. One approach is to match the interme-
diary nodes in the routing information of a packet against
those of the backbone Internet providers (whose geolocation
is known) to locate a target host (the destination of the
packet in question) [18]. Other approaches rely on latencies
in transmitting a packet between a pair of hosts to approx-
imate geographical distance among them, or a combination
of partial IP-to-location and BGP prefix information to de-
rive the target host’s location [29].
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Intel SGX [6] is a set of extensions that provision pro-
tected execution environments (aka trusted environments or
enclaves). The trusted processor preserves the confidential-
ity and integrity of the code and data loaded into the enclave
against the untrusted OS or any other processes/software by
blocking any non-enclave code’s attempt to read or write the
enclave’s memory.

3. THE PROBLEM

3.1 Overview
We consider a model comprising of two entities. The data

owner wishes to outsource a file F to a storage server and
insists that her data are maintained locally at the storage
server. A dishonest storage server has various economic in-
centives to violate the agreement and may move some of the
data to other remote servers. Hence, the data owner would
like to periodically verify that the file F can be retrieved in
its entirety from data maintained on the server’s local drives.
We refer to such verification as a data residency checking
protocol. In data residency checking, the data owner plays
a role of a verifier V, while the storage server plays a role of
a prover P. Hereafter, we shall refer to the data owner as
verifier, and storage provider as prover.

A data residency checking is structured as a timed
challenge-response protocol. It consists of several challenge-
response exchanges and for each response, V also captures
the response latency (i.e. round trip time between the chal-
lenge and response). At the end of the protocol, V relies on
the validity of the responses, as well as their latencies, to
decide on accepting or rejecting the verification.

The retrievability of F can be checked using techniques
in PoR [26, 36], whereas the assurance of storage locality
relies on the response latency. Nevertheless, simply adopt-
ing a secure PoR scheme together with latency assessment
does not necessarily provide the assurance on data residency,
since a dishonest server (i.e. adversary) could, through par-
allelism or over-clocking the processor, distort the latency
measurements. Fortunately, the desired assurance is still
possible, based on a premise that P has to invoke some
atomic operations to prepare for each response, and such
operations would take longer time when the data are stored
remotely. The goal of our security model is to capture the
above-mentioned factors.

3.2 Timing measurements
The response latency of a challenge is the round-trip-time

of the challenge and response (i.e., the elapsed time between
the moment the challenge is sent and the moment when the
corresponding response is received). The latency consists of
the following three portions:

• Challenge-response transmission time, which is in-
curred by transmission of the challenge and response
between V and P. In the trusted computing setting
where both V and P reside in the same physical sys-
tem, such transmission time is short. In the setting
where V and P are connected in a networked environ-
ment, the time is significantly larger and subject to
higher level of noise.

• Fetching time, which is incurred when P fetches the
required data from the storage. In cases where the
prover fetches the data from another remote server,

the fetching time includes the transmission time be-
tween the prover and the remote server, and the time
incurred by the remote server in loading the data from
its storage device.

• Computation time, which is the total time taken by P
in producing the response from the data fetched.

All these timings are probabilistic, and we call their distri-
butions the environment profile E .

3.3 Threats Model: Adversary’s capability
We consider an adversary that is a dishonest prover,

having complete control over the storage, server and
network within its premises. That is, the adversary is able
to reduce the response latency in various fashions:

Computation time. The adversary could speedup the com-
putation time, for example via over-clocking or parallelism.
Since it is difficult to bound the speedup factor which the
adversary can possibly achieve, we consider an adversarial
model wherein the computation time is not included in the
response latency for worst-case analysis. Note that this does
not imply arbitrary computation speedup by the adver-
sary, and we still require the prover P to be polynomial time.

Fetching time. When the data are stored on the prover’s
local drives, the fetching time is simply that of a read
from the local storage hardware. On the other hand, if
the data to be fetched is stored remotely, the fetching time
comprises the time taken to execute a read on the remote
storage device, and the time required to transmit the data
from the remote storage to the prover. A dishonest prover
could apply various techniques such as data compression
or distributed file system to reduce the storage loading, or
the network transmission time, which in-turn reduces the
fetching time. To account for this flexibility, we consider the
fetching of a single byte as atomic, and give the adversary
the capability of reducing the time taken to fetch any
amount of data to the equivalent of fetching a single byte.

Noise Measurement. Due to the noisy environment, all the
timing measurements are probabilistic. Nevertheless, the
adversary may be able to get a good estimate of the actual
measurements. Such knowledge can help the adversary
in increasing the chance of evasion. For example, let us
consider an adversary who keeps half of the data blocks
in local drives, and stores the rest of the data blocks in
a remote storage. If a challenge asks for a block stored
in a remote storage, he could either retrieve it from the
remote storage or forge the response. The knowledge of
the actual response latency incurred by fetching the block
from remote storage and that by reading it from local
drives would benefit the adversary. In particular, if the
former is faster than the latter (perhaps due to network
congestion), the adversary will retrieve the correct block
from remote storage; otherwise, he may choose to forge the
block to meet the timing measurement constraint. In our
adversarial model, to acknowledge the adversary’s ability to
accurately estimate the timing measurements, we assume
the adversary knows the actual measurements of all timings
right in the beginning of the verification session.
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3.4 Threats Model: Adversary’s limitations
Limited access to verification oracle. The adversary at-
tempting to forge the authentication tags could exploit the
verifier as the verification oracle. We assume that the data
owner could tolerate a few delayed or missing responses to,
she would not accept invalid responses whose authentica-
tion tags do not checkout. While the adversary may argue
that a response is not valid due to hardware failure, such
event is highly unlikely, for most storage and networking
system have error detection/recovery mechanisms in-place.
Therefore, the adversary has few chances of providing in-
valid responses. In other words, it has limited access to a
verification oracle.

As mentioned earlier, one of our key observations is the
enhancement brought by small block size, which entails the
use of short authentication tags (say 16 bits per tag) in or-
der to keep the storage expansion factor reasonable. While
short authentications are vulnerable to chosen-message
attacks wherein the adversary has unlimited accesses to
the verification oracle [36], such attacks are irrelevant in
our application settings, for the adversary has only limited
access to the verification oracle

Atomic operation. A key assumption in our work is that of
an atomic operation, which would take longer time when the
data are stored remotely compared to when they are stored
on the storage server’s local drives. This assumption in-turn
is based on a premise that there are no technically feasible
and/or economically feasible means for the dishonest servers
to reduce the time. In cases where the above mentioned
premise is not met, unfortunately, the assurance provided by
our schemes will not hold. Examples of those cases include
an adversary who claims to use rotational disks for local
drives, but employs flash storage (e.g., SSD) in a remote
server and connects to it via an out-of-band communication
channel such that the overall throughput outpaces that of
the local drives. Nevertheless, it is arguably reasonable to
assume that such out-of-band channel is not available and
that the service providers are economically rational (i.e., it
would not afford arbitrarily large and expensive resources in
evading the data residency checking) and will employ storage
devices of the same class (e.g., enterprise hard drives) on
both local and remote storage (if any).

4. PROOFS OF DATA RESIDENCY

4.1 Setup and Audit Phases
A PoDR scheme is to be carried out in two phases, Setup

and Audit:

• Setup: In the setup phase, V as a data owner gener-
ates a secret key sk based on the security parameter λ.

Next, V encodes the file F into F̃ using the secret key

sk. Finally, V sends the encoded file F̃ to P, discards

both F and F̃ , only keeps the secret key sk and some
metadata needed for conducting the audit.

• Audit: In the audit phase, V conducts a data res-
idency checking by challenging P to prove that the
original file F can be reconstructed from data main-
tained in its local drives. This phase comprises two
stages, challenge-response and verification.

– Challenge-response: The verifier first obtains an
environment profile E based on which she could
assess the response latencies.

The verifier V sends v challenges to the prover,
and P replies with the corresponding responses.
The challenges are sent one-by-one. Upon receipt
of a response or a special symbol ⊥, the verifier
V proceeds by carrying out the following:

1. Generate and send the next challenge to P.
V can choose not to send any challenge.

2. Generate and send to itself the special symbol
⊥ which will arrive at a time specified by V.
V can choose not to send the symbol ⊥1.

Let 〈q1, . . . , qv〉 be the v challenges sent,
〈f1, . . . , fv〉 the corresponding responses, and
〈t1, . . . , tv〉 their latency. We call v the audit size.

– Verification. Based on the challenges, the corre-
sponding responses and latencies 〈t1, . . . , tv〉, to-
gether with the environment profile E , V decides
whether to accept P as passing the audit.

Overall, the algorithms in a PoDR scheme consist of:
(1) the key generation and file encoding algorithms used
during the setup, together with (2) the challenge generation
algorithms, and (3) the verification algorithm used in the
audit. Implicitly, the scheme also requires an algorithm for
the prover to generate the responses.

4.2 Security and Adversarial Model
We now formalise the capabilities and constraints of

the adversary. First, let us define by Tnet, T loc and T rmt

three positive random variables, each follows a predefined
distribution. The random variable Tnet corresponds to the
challenge-response transmission time, T loc corresponds to
fetching time of an honest prover in producing the response,
and T rmt corresponds to the fetching time when the data
are loaded from the remote storage. The environment
profile E is a description of the distributions of Tnet, T loc

and T rmt. The prover also has access to, but cannot
influence, the environment profile E .

Storage preparation during setup. During the setup phase,
the prover applies a transformation on the received encoded

file F̃ , obtaining 〈D, D̃〉. The portion D is to be kept in the

local drives, whereas D̃ is to be kept in the remote storage

(D̃ could be empty). The prover initialises a cache C of
finite size.

Response generation during audit. For each challenge qi,
the prover can choose to compute the response from one of

the three probabilistic algorithms R, R̃ or R̂. All of these
algorithms have access to the cache C, but differ in their

access to D and D̃: R only reads from the local drives, R̃
reads from both local and remote storages, and R̂ does not
read from any storage.

1Recall the next challenge can only be sent upon receipt of
the response of the previous one or the special symbol ⊥,
this allows V to send the next challenge without waiting for
the response.

4



Given a challenge qi, the prover independently draws three
samples (tneti , tloci , trmt

i ) from the distributions Tnet, T loc,
T rmt respectively to obtain actual values of these three tim-
ings. Next, the prover decides to take one of the following
actions:

1. Send R(qi, D,C) as response and set

ti = tneti + tloci + δi;

2. Send R̃(qi, 〈D, D̃〉, C) as response and set

ti = tneti + trmt
i + δ̃i;

3. Send R̂(qi, C) as response and set

ti = tneti + δ̂i.

where δi, δ̃i and δ̂i are positive values chosen by the prover.
By the above definition, the prover can foresee all the
timing measurements and can influence the value of ti by
adding delays and choosing which algorithm it would use
in preparing the response. Nevertheless, it cannot speed-up
the timings further than what dictated by E . The cache C
is updated after every the response.

Remarks. The above formulation implies a strong adver-
sary that (1) has the knowledge of the actual time taken
to read and transmit the data; (2) is able to produce the
response as fast as an atomic loading operation2; and (3)
is able to arbitrarily delay the response. As discussed in
the threat model, it is necessary to consider such strong
adversary since the adversary would have full control of
both the local and remote servers.

4.3 Security definitions
Given the profile E , we say that a PoDR scheme is (E ,

ψ)-secure if, for any prover who passes the audit with prob-
ability at least ψ, there is a polynomial time algorithm to
reconstruct the original file F from D – a portion of data
that the prover stores locally (except with negligible proba-
bility of failure). The randomness is taken over the random
decisions made by the probabilistic algorithms, and the sam-
pling of the timings.

For a PoDR scheme and a profile E , we call the smallest
upper bound on ψ′ such that the scheme is (E , ψ′)-secure the
false acceptance rate (denoted by ψ). We call the probability

that the honest prover, who keeps entire F̃ in its local drives,
fails the audit the false rejection rate (denoted by γ).

5. POTENTIAL ATTACKS
In this section, we consider two data residency checking

protocols that incorporate latency measurements with well-
known PoR schemes [36, 26] in a straightforward manner,
and briefly discuss how a dishonest prover who has relocated
significant portion of the data to remote storages, to an ex-
tent that the original file cannot be reconstructed from its
local drives, can evade detection. We report detailed attacks
in Appendix C.

2We stress that the prover’s algorithms are still polynomial
time.

5.1 SW-PoR based data residency checking
The first protocol is constructed on top of the PoR scheme

by Shacham and Waters (SW-PoR) [36]. The audit asks for
v data blocks and their associated homomorphic authenti-
cation tags. The prover passes the audit if the response is
valid (with respect to the SW-PoR scheme) and the response
latency is within an expected threshold.

The protocol’s logic is based on a premise that should the
dishonest prover have located significant portion of the data
to remote storages, the extra time taken to retrieve the re-
quested data would make the overall latency exceed the ex-
pected threshold. Nevertheless, such a premise fails to con-
sider a possibility that the dishonest prover can still evade
the expected threshold by speeding up the time taken to
compute the response (i.e., aggregating the requested data
blocks). In particular, it can over-clock its processor or have
the remote servers concurrently compute the intermediate
values and then aggregate the intermediate values into the
final response. We conduct experimental studies to illus-
trate feasibility of these attacks, and report the results in
Appendix C.1.

5.2 JK-PoR based residency checking
One possible mitigation for the previous attack is to elim-

inate computation time from the response latency, adopting
the authenticator-based PoR [26, 28]. In this scheme, the
data owner encodes her file using a redundant encoding and
authenticate all the blocks of the encoded data. During the
residency checking, the verifier issues a single request that
asks for v randomly chosen data blocks (v is a security pa-
rameter) and measures the latency incurred by the storage
provider in delivering all those requested blocks.

Although the computation time is eliminated from the
response latency, an adversary can still reduce the latency
by distributing the fetching of the requested blocks. With
sufficient number of remote storage servers, the reduction
of fetching time can offset the additional latency incurred
by accessing the remote storage. We empirically study the
effectiveness of such evasion strategy and report the results
in Appendix C.2.

6. PROPOSED CONSTRUCTION
In this section, we present our construction for PoDR.

Our construction is built on top of the authenticator-based
PoR by Juels et al. [26]. We first give an overview of the
setup and audit phases. Next, we propose two implementa-
tion variants for the residency checking, a network-based im-
plementation N-ResCheck, and a trusted computing-based
implementation E-ResCheck. E-ResCheck illustrates an
interesting use-case of trusted computing, wherein having
the verifier of a cryptographic protocol co-locating with the
prover enhances the security. Finally, we analyse the secu-
rity of our construction.

6.1 Setup
The original file F is divided into n blocks where the size

of each block is a parameter to be determined. The data
owner applies standard error-erasure code (such as the Reed-

Solomon code [33]) on F , generating F̃ . The encoded file F̃
consists of m = (1 + c)×n encoded data blocks (c > 0) such
that knowledge of any n blocks is sufficient to reconstruct

F . We refer to the ratio n/m as code rate. F̃ is identi-
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fied by an unique file handle F̃ID and each block in F̃ is
indexed by a particular integer i ∈ [1..m]. The data owner

appends to every encoded data block f̃i in F̃ a b-bit MAC
of its content, file handle and index under her secret key sk,

obtaining fi ← f̃i||HMAC(sk, f̃i||F̃ID||i), where HMAC()
is a keyed-hash function that returns b-bit output and ||
means concatenation. After entrusting the data to the stor-
age provider, the data owner can delete all local copies, keep-
ing only the secret key sk and some metadata for verification
and reconstructing F from the outsourced blocks.

Algorithm 1 Residency Checking

1: procedure ResidencyChecking(v, d, l)
2: Q← InitiateQuery(v)
3: late← 0; forged← false;
4: for each qi ∈ Q do
5: ti, fi ← Request(qi);
6: if IsValid(sk, qi, fi) then
7: if ti > d then
8: late← late+ 1;
9: end if

10: else
11: forged← true;
12: end if
13: end for
14: if forged or (late > l) then
15: Reject;
16: else
17: Accept;
18: end if
19: end procedure

6.2 Audit
To begin the residency checking, V first obtains an en-

vironment profile E (i.e. description of the distributions of

Tnet, T loc and T rmt) and decides on three parameters:

• v: The audit size, which is the number of blocks that
she would like to challenge P.

• d: The latency threshold, which is an expected latency
that a valid response should meet.

• l: The late delivery threshold, which is the number
of late responses (whose latency exceeds d) that V is
willing to tolerate.

We investigate how these parameters are to be chosen in
Section 7.

Next, V executes the residency checking procedure de-
tailed in Algorithm 1. The algorithm utilises three functions.
InitiateQuery(v) chooses v block indices at random3, each
is a challenge asking the prover for the corresponding data
block. The challenges are to be sent one-by-one. The

3This is not inconsistent with the description of the Audit
phase in Section 4. Since the block indices are chosen at
random and independent of one another, choosing them all
at once or at different times would not affect the randomness.
In addition, note that there is no sending and receiving of
the special symbol ⊥, in this residency checking procedure,
the next challenge can only be sent after response for the
previous challenge is received.

function Request(qi) is an interaction between V and P
whereby V issues the challenge qi (qi ← F̃ID||i), receives fi
from P, and at the same time measures the response latency

ti. V extracts f̃i from fi and computes HMAC(sk, f̃i||qi),
obtaining a b-bit MAC of f̃i||qi under sk. V then compares
it against fi’s authentication tag (i.e., IsValid(sk, qi, fi)),
rejecting the audit if they are inconsistent4. On the other
hand, if all of the responses are valid, the verifier will rely on
the number of late responses (w.r.t the latency threshold d)
to call the decision. If such number exceeds the late delivery
threshold l, V rejects the audit.

The parameters are chosen to meet the security and per-
formance requirements, in particular the false acceptance
rate (ψ), false rejection rate (γ) and total file expansion
factor (h). The three parameters b, c and s are to be de-
cided during the setup phase. The audit size v and the two
thresholds d, l can be determined during the audit phase,
or predetermined so that they are the same for all audit
sessions. The parameter setting also depends on the envi-
ronment profile E . In practice, V can obtain information on
E using various mechanisms, depends on the implementation
details. We shall discuss two variants in the following.

6.3 N-ResCheck Implementation
The first implementation variant, N-ResCheck, assumes

that the verifier V and the prover P communicate over the
network. In this variant, the environment profile E contains
information on network status. This information can be
obtained using various tools and techniques [10, 25]. The
latency observed by V accounts for the data fetching time
and challenge-response transmission time.

Guaranteeing the delivery of challenges and responses is
necessary, for P has to respond to every challenge. Our im-
plementation employs the reliable TCP [32] for transmission
of challenges and responses, despite its higher latency vari-
ance compared to other protocols such as UDP [31], which
suffers from packet loss. Although it is possible to design
a residency checking protocol which supports packet loss of
known rate, such variant would introduce difficulties in dif-
ferentiating dishonest prover who relocates the data from
the one who discards some of the blocks.

The communication cost of N-ResCheck is reasonable.
For a residency checking of size v on F̃ which consists
of m s-byte blocks, the overall communication cost is
(8s+ logm)× v bits. As we shall show later in Section 7, an
optimal choice of block size is 64 bytes and that of challenge
size v ranges from 250 to 400. With these parameters, the
overall communication cost for verifying the residency of a
1GB file is only a few KBs.

Limitations. The assumption that N-ResCheck makes on
the ability of V to obtain information regarding the network
status at audit time may not always be feasible. In addition,
the measured latency inevitably includes the transmission
time of the challenges and responses, adding noise to the
measurement and thus having a certain impact on the secu-
rity of the residency checking. To mitigate these limitations,

4Should the authentication tag be computed solely from f̃i,
P will be able to rightfully replace one block with another
that has the same tag and destroy the former. Since the
authentication tag in our protocol also covers the block ID,
which is chosen at random during the audit, such incident
will be detected with high probability.
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we discuss in the next section another implementation vari-
ant that relies on a trusted unit co-locating with the drives
on the storage server. Such trusted unit can be provisioned
by various implementation mechanisms, for example by uti-
lizing the recently released Intel SGX processors [9].

6.4 E-ResCheck Implementation
The second implementation – E-ResCheck – entrusts a

trusted unit on the prover’s storage server (i.e. the trusted
unit and the drives are both installed on the same server)
to carry out the residency checking. Such unit is responsi-
ble for provisioning a protected execution environment (aka
enclave), which we shall refer to as Verifying Enclave (VE).
P can neither tamper with VE operations, nor change the
code and data loaded to it without being detected by V.
However, it can supply inputs for VE.

In E-ResCheck, the environment profile E contains in-
formation on housekeeping operations at the OS level on
P ′s server, which arguably can be accurately estimated. VE,
representing the verifier, conducts a residency checking as
specified in Algorithm 1. Unlike the previous variant, the
latency measured by VE accounts only for the fetching time
of the prover, excluding altogether the network time re-
quired for transmission. Without the potentially noisy fac-
tor, E-ResCheck offers more reliable measurements, and
thus is more secure.

While we treat the trusted unit as an abstraction so that
it can be realised by various mechanisms, our implementa-
tion provisions VE using Intel Skylake processors with SGX
Enabled BIOS support [9]. Unlike special trusted unit hard-
ware such as IBM secure processor [5], these SGX-enabled
processors are now widely available in commodity systems.
The code running inside VE – the verification code – can
be written by V, or by any other party and vetted by V to
ensure its correctness. Further, remote attestation mecha-
nism [12] allows V to check if the correct code is loaded into
VE. This mechanism also allows the verifier and VE to estab-
lish shared secrets, which enables secure channel for their
communication (e.g. for V to send the secret key to VE or
for VE to send the residency checking result to V).

The Intel SGX specifications are well aligned with our
protocol and threat model. In specific, enclaves cannot di-
rectly access OS-provided services (which are not trusted in
the thread models of SGX). They need to make OCall to an
interface routine to ask the untrusted application to handle
those services. In our context, the fetching of the requested
block is performed by the prover, who is also untrusted. The
VE issues a query for a requested block by making an OCall
to the prover’s untrusted application, which then retrieves
the block and makes an ECall to pass it as input parameter
to VE. Since this ECall is invoked by the untrusted party,
the verification code needs to be written with care so that
no attack window is exposed. We refer readers to Intel SGX
programming reference for further details on coding guide-
line for programming enclave code [7].

While getting a trusted source for absolute time in SGX
is challenging, it is possible to measure relative time with
respect to a reference point [40]. We note that absolute
time is not necessary in our setting, for the response latency
measured by VE is an elapsed duration between an OCall
and the corresponding ECall passing the requested block
into VE, to which relative time with respect to the same
stable reference point is sufficient.

Effect of block size on security. We highlight the effect of
the block size on the overall security. Rotational drives, in
general, are partitioned into sectors of 512 bytes5. These sec-
tors are physically aligned on the hardware device. When a
data block is written to disk, it may span across multiple sec-
tors, which are not necessarily physically contiguous. Read-
ing such data block may require multiple seeks, depending
upon the (relative) position of the sectors on the disk. This
results in substantial variance in atomic fetching time. On
the other hand, if the data block fits entirely in one physical
sector, only a single seek is required and thus the atomic
fetching time is less varied. To eliminate noise in timing
measurements, it is desired to have blocks of small size so
that each data block fits in a physical disk sector with high
probability. We exhibit the implication of the block size on
security in greater details in Section 7. Previous works [15,
22, 17] did not take into consideration mechanisms and be-
haviours of storage hardware with respect to the block size,
resulting in an oversight of the strong effect that the block
size has on security.

6.5 Security Analysis
The level of false acceptance/rejection rate of the pro-

posed protocol depends on various parameters, including
the environment profile E , the audit size v (number of
challenges), the bit length of the MACs b, the expansion
rate of the error-erasure code c, and the two thresholds d
and l. Also recall that during the setup phase, the original

file F of n blocks is encoded into F̃ of m = (1 + c)n blocks
such that knowledge of any n encoded blocks is sufficient to
reconstruct F .

False acceptance rate. Let us consider an adversary A who

keeps n−1 blocks of F̃ on its local drives and the remaining
blocks in the remote storage. We denote the first portion by

D, and the other by D̃. Clearly, the original file F cannot be
reconstructed from D. We want to determine the acceptance
rate of this adversary, which in turn gives a bound on the
false acceptance rate.

Consider a challenge qi asking for a block fi, we say that
it is a hit if one of the following two conditions holds:

1. fi is in D̃ and the latency tneti + trmt
i > d;

2. fi is in D and the latency tneti + tloci > d,

where tneti is the transmission time of the qi and fi, t
loc
i is

the fetching time of fi if it is stored locally, and trmt
i is its

fetching time if stored remotely.
For a challenge that is a hit, the adversary has two choices.

If the adversary chooses to load the response from the stor-
age, then the response will certainly arrive late and con-
tribute one count towards the number of late responses per-
mitted by the late delivery threshold l. On the other hand, if
the adversary chooses to forge the response, then the prob-
ability that the response is valid is 2−b + µ(λ) where µ() is
some negligible function on the security parameter λ. Note

5Although hard drives with Advanced Format (AF) are di-
vided into sectors exceeding 512 bytes, we shall rely on the
512-byte sector format. The security of our model is not
affected when the storage devices use the advanced format.
However, if the protocols is designed with AF sector size, the
security becomes malleable on system equipped with legacy
512-byte sector-based HDDs.
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that it is possible that the transmission time tneti already ex-
ceeds the threshold d, and thus the response will definitely
be late even if the adversary chooses to forge the response.

Let Hit be the number of hits among the v random chal-
lenges. Given the set of hits, A chooses l challenges to which
it will respond by reading data from the storage. These
l challenges are chosen with priority given to those whose
transmission time already exceeds d. For the remaining
Hit − l challenges, A forges the responses. Such A is op-
timal in the sense that all other choices lead to a lower or
equal probability of acceptance.

The probability that a challenge is hit can be derived from
the environment profile E , the latency threshold d and the
expansion rate c. Clearly Hit follows binomial distribution.
Furthermore, the probability that all x forged responses are
valid is 2−bx + µ(λ). Hence, the probability that A being
accepted is at most

Pr(Hit ≤ l) +

v−l∑
x=1

Pr(Hit = x+ l) · (2−bx + µ(λ))

The above is not an equality because we omit the cases
wherein more than l challenges have transmission time ex-
ceeding d. Although the derivation is based on a specific
adversary A, it serves as an upper bound of the false accep-
tance rate. There is no loss of generality, for the fact that the
original file F cannot be constructed from D implies there
must be less than n− 1 blocks in D.

Recall that the challenges are randomly generated, it
follows that the number of challenge collisions (i.e. those
that ask for the same block) would be very small, thus
the cache C (see Section 4.2) kept by P only has minor
effects on the false acceptance rate. Hence, in this security
analysis, we can safely ignore the effect of the cache and
consider the setting where the cache size is zero.

False rejection rate. Let γ denote the probability that the
honest prover keeping all the data locally fails to pass the
verification. Let α be the probability the requested block
arrives later than the threshold d (i.e. tneti + tloci > d). The
false rejection rate of an audit with v challenges is:

γ =

v∑
j=l+1

(
v

j

)
αj(1− α)v−j

False acceptance rate of PoR. For comparison, we consider
the false acceptance rate εDL of an adversary who keeps only
n− 1 blocks in local storage and discards the rest:

εDL ≤
(

2b + c

(1 + c)2b

)v

+ µ(λ)

Hence, if the integrity of the data are compromised, it will
be detected with an overwhelming probability 1− εDL.

7. EVALUATIONS
We conduct experimental studies to evaluate the perfor-

mance and security of our residency checking construction.
In details, we investigate the effect of block size s, the MAC
length b, the audit size v and choice of the late delivery
threshold l on the false acceptance and false rejection rates
ψ and γ, respectively.
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Figure 1: Histograms of the response latencies in-
curred by honest prover P and dishonest prover A in
E-ResCheck with respect to different block sizes. P stores
the blocks as-is in its local drives, whereas A splits large
blocks into 64-byte segments and stores all the data at re-
mote storages.

7.1 Setup
In our experiments, the honest prover P stores the data as

a whole in its local drives, while the dishonest prover A relo-
cates the data blocks by splitting large blocks whose size are
larger than 64 bytes into 64-byte segments and distributing
them to remote storage servers6, and retrieves them (simul-
taneously if possible) upon V’s requests.

All experiments are conducted on Ubuntu 14.04 commod-
ity systems equipped with quad-core Intel Skylake proces-
sors with SGX Enabled BIOS support, 1TB hard drives with
I/O latency ranging from 12-15ms on average and 1GB Eth-
ernet cards. P and A are represented by different programs
running on the same physical system. In N-ResCheck, the
provers and the verifier are located across countries7, while
in E-ResCheck, the verification enclave VE resides on the
very physical system which hosts P and A. VE is provisioned
using Intel SGX SDK for Linux [8]. Unless stated otherwise,
all experiments are repeated for 100 times and the average
results are reported.

7.2 Effect of block size (s)
As discussed earlier, a large block may be scattered across

physical disk sectors, leading to higher and more varied
fetching time. Even worse, this potentially exposes an at-
tack vector whereby the adversary splits a large block into
several smaller segments so that it can retrieve them simul-

6Average round-trip time of transmitting a 64-byte packet
between A and these servers is 6.5ms.
7Average round-trip time of transmitting a 64-byte packet
between them is 12.7ms.
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Figure 2: CDFs of response latencies incurred by P and A
in E-ResCheck with respect to different block sizes.

taneously in an attempt to speed up the fetching time, evad-
ing the latency threshold. On the other hand, unnecessarily
small block size implies more blocks to be handled, resulting
in more involved housekeeping operations and extra storage
overhead incurred by the authentication tags. In this first
set of experiments, we would like to confirm the effect of
block size on security of our constructions, and investigate
the optimal block size for efficiency.

We vary the block size from one to 1024 bytes and measure
the response latencies incurred by an honest prover P and
an adversary A. We report the results in Figures 1, 2 for
E-ResCheck and 3, 4 for N-ResCheck.

Figure 1 shows histograms of 1000 response latencies in-
curred by P andA in E-ResCheck, with respect to different
block sizes. As can be seen, the block size has great implica-
tion on fetching time. To be more specific, when the block
size ranges from one to 32 bytes, the fetching times of P fol-
low a normal distribution with mean 12.93ms and standard
deviation of 0.73. As the block size increases, blocks are
more likely to span across physical sectors, increasing the
variance in fetching time. Figure 1f, 1g and 1h suggest that
the fetching times for blocks of sizes 128 to 512 bytes can be
classified into two groups, each follows a normal distribution
with different mean (12.93ms and 19.03ms where block size
varies from 64 to 256 bytes, and 12.93ms and 21.52ms with
512-byte blocks). This is even worse when the block size is
increased to 1024-bytes. The fetching times for 1024-byte
blocks are divided into three different groups (Figure 1i).
Recall that the fetching times are desired to be uniform, so
as to have a reliable latency assessment. Given such require-
ment, large block sizes (e.g. larger than 64 bytes) are clearly
not suitable for security in our protocol.

The response latencies of A follow a normal distribution,
with mean 19.58ms and standard deviation 2.71ms. For
blocks that are larger than 64 bytes, A splits them to 64 byte
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Figure 3: Histograms of response latencies incurred by hon-
est prover P and dishonest prover A in N-ResCheck with
respect to different block size. P stores the blocks as-is in
its local drives, while A splits large blocks into 64-byte seg-
ments and stores all the data at remote storages.

segments and retrieves them in parallel in order to speed up
the fetching time. This explains why A’s fetching times for
large blocks are not divided into different groups as those
of P. Comparing across figures, one can see that as the
block size increases, differentiating latencies incurred by P
and A becomes more problematic, potentially resulting in
higher false acceptance and rejection rates. It even seems
impossible when 1024-byte blocks are used.

To get a better intuition on the effect of the block size
on the ability to distinguish P and A based on response
latencies, we show in Figure 2 CDFs of their response la-
tencies in E-ResCheck, also with respect to different block
sizes. As the block size approaches 512 bytes, CDFs of P ′s
response latencies stop dominating those of A, suggesting
complications in distinguishing the latencies of the honest
prover from those of the adversary.

The effect of the block size on the response latency in
N-ResCheck (depicted in Figure 3) is noticeable, but not
as evident as in E-ResCheck, for the response latency ob-
served by V is the accumulation of the fetching time and the
challenge-response transmitting time. The latter component
is almost similar for all the block sizes considered in our ex-
periments. The response latencies of P follow normal distri-
butions, with means ranging from 24.32ms to 30.34ms and
standard deviations varying from 1.81ms to 2.52ms. The re-
sponse latencies of A follow normal distribution with mean
approximately 31.22ms and standard deviations oscillating
around 3.18ms. Similar to E-ResCheck implementation,
distinguishing response latencies incurred by honest and dis-
honest provers in N-ResCheck becomes more difficult as
the block size increases, and even impossible when the block
size reaches 512 bytes.
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Figure 4: CDFs of response latencies incurred by P and A
in N-ResCheck with respect to different block sizes.
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Figure 5: Effect of MAC length on false acceptance rate.
The audit size is set to v = 300 challenges, and late delivery
threshold (l) set to eight.

We demonstrate in Figure 4 CDFs of P and A’s response
latencies. Figures 4h and 4i especially show that CDFs of the
adversary’s response latencies dominate those of the honest
prover, implying it has significant advantage in disguising
its response latencies and thus its behaviours as honest one.

From the results of this experiment set, it is apparent
that the block size has strong impact on the security of our
protocols. A too large block size would lead to failure in
detecting adversarial behaviours. We recommend the block
size of 64 bytes for both E-ResCheck and N-ResCheck,
and use this block size in all subsequent experiments.

7.3 Effect of MAC length (b)
In the second set of experiments, we vary c from 10%

to 40% and examine the effect of MAC length on the false
acceptance rate ψ. The late delivery threshold is set to five,
and the audit size is 300 challenges.

Figure 5 shows the experiment results. ψ drops exponen-
tially – by at least an order of magnitude – when b increases
from one to four bits. To be more specific, ψ reduces from
10−7 to 10−8 when c = 10% in N-ResCheck or 3.8× 10−35
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Figure 6: Effect of the late delivery threshold l on the se-
curity in E-ResCheck. MAC length is set to 16 bits, and
audit size is v = 300 challenges.
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Figure 7: Effect of the late delivery threshold l on the se-
curity in N-ResCheck. MAC length is set to 16 bits, and
audit size is v = 300 challenges.

to 1.4 × 10−36 in E-ResCheck when c = 40%. The reduc-
tion becomes less evident as b approaches 16 bits. Further
increasing b does not result in better false acceptance rate.
With 16 bits MAC and the block size is set to 64 bytes as
suggested in the previous set of experiments, the expansion
rate due to authentications tags is as small as 3%.

Comparing across figures, it is evident that larger c leads
to lower false acceptance rate and hence better security.
Moreover, the false acceptance rate of E-ResCheck is con-
sistently smaller than that of N-ResCheck, suggesting
E-ResCheck offers better security guarantee.

We note that the use of short authentication tags (e.g.
16 bits MAC) does not compromise the ability to detect
an adversary who incurs data loss (i.e. keeping less than n
data blocks). For example, with parameter setting of c =
40%, v = 300 and 16 bits MAC, the probability that such
adversary escapes the detection is less than 2−145.

7.4 Effect of late delivery threshold (l)
In the third set of experiments, we fix the MAC length at

16 bits, the audit size at v at 300 challenges, and investigate
the effect of late delivery threshold l on the false acceptance
rate ψ and the false rejection rate γ.

Figure 6 shows the results for E-ResCheck, and Figure 7
for N-ResCheck. As l increases from two to 32, the false
rejection rate γ drops exponentially – by upto 22 orders of
magnitude for N-ResCheck and almost 50 orders of magni-
tude for E-ResCheck. This suggests it is possible to make
the scheme more tolerable to environment noise.

However, increasing l leads to the growth of the false ac-
ceptance rate ψ. For both implementations, ψ grows by
eight to 16 orders of magnitude when l increases from two
to 16, depending on the code rate of the error-erasure code
in use. In particular, when c = 10% and the late delivery
threshold is set to 32, ψ raises upto 0.7.

We suggest the late delivery threshold l to be set to eight,
attaining γ as small as 5×10−10, while still keeping ψ smaller
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Figure 8: Effect of audit size v on the security in
E-ResCheck. MAC length is set to 16 bits, and late deliv-
ery threshold is set to eight.
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Figure 9: Effect of audit size v on the security in
N-ResCheck. MAC length is set to 16 bits, and late deliv-
ery threshold is set to eight.

than 10−6 even for c = 10%. We note that for the same
parameter setting, ψ drops exponentially when c increases.
For examples, in E-ResCheck, ψ reduces by upto 30 orders
of magnitude when c increases from 10% to 40%.

7.5 Effect of audit size (v)
In the last set of experiments, we study the effect of audit

size v on the overall security. We fix the MAC length at
16 bits, late delivery threshold at eight and examine how v
effects ψ and γ. The results are reported in Figure 8 (for
E-ResCheck) and 9 (for N-ResCheck). For E-ResCheck,
ψ reduces by eight to 26 orders of magnitude when v varies
from 200 to 400. Likewise, the reduction in N-ResCheck is
similar. This suggests that we can make the false acceptance
rate ψ arbitrarily small by increasing the audit size (i.e. is-
suing more challenges). Though expanding the audit size
leads to larger communication costs in N-ResCheck, the
actual increase is only in KBs, which is reasonable. Note
that E-ResCheck does not require transferring the chal-
lenges and responses over the network, thus incurring no
network communication overhead.

Nevertheless, we observe that as v expands from 200 to
400 challenges, γ increases from 1.3 × 10−11 to 6.1 × 10−9

(almost 450×) in E-ResCheck and from 4.6 × 10−4 to
3.7 × 10−2 (by 80×) in N-ResCheck. While the incre-
ment of γ in E-ResCheck is much larger than that in
N-ResCheck, the former witnesses the false rejection rate
of only 6.1× 10−9, several orders of magnitude smaller than
the corresponding value of the latter. The reason for such
increases is because larger audit size leads to greater ex-
posure to the environment noise; and the noise introduced
by network transmission is much greater than that of the
housekeeping operations at OS level in the E-ResCheck.

It is evident across all experiments that E-ResCheck is
superior to N-ResCheck. It offers better false acceptance
and rejection rates, incurs no network communication over-
head, and is less exposed to the environment noise.

8. RELATED WORKS
Proofs of Retrievability. Proofs of retrievability were

first proposed by Juels and Kaliski [26], and have been fol-
lowed by various works [36, 16, 38]. While these works ad-
dress similar problems – auditing a remote and untrusted
storage server on data preservation – they differ in their se-
curity models. A closely related technique is PDP, initially
discussed by Ateniese et al. [13], assuring that most (but not
necessarily all) of the data are stored. Later on, the notions
of PoR and PDP are also extended to dynamic settings [37,
21]. While there are various efficient constructions in the lit-
erature [26, 36], none of them has taken the location of data
into consideration. PoDR attains a proof that the original
file F is retrievable in its entirety from data stored locally
at the storage provider’s server.

Timed Challenge-Response Protocols. Timed
challenge-response protocols have been studied in various
application scenarios. Bowers et al. [17] presented a remote
assessment of fault tolerance based on measuring the re-
sponse latency of read request for a collection of file blocks.
In such an assessment, it is assumed that network latency
can be accurately estimated and deemed as a constant. Our
model assumes that the network latency is probabilistic,
only its distribution can be determined.

Gondree et al.[22] proposed a framework that employs a
set of known landmarks to verify the storage geolocation.
Benson et al. [15] investigated the correlation of network
latency and geographical distance, and suggested the use of
such technique in verifying replications of the data across
geographically separated datacenters. Our construction, on
the other hand, focuses on verifying residency of the data on
the server-in-question. Moreover, while those proposals ad-
vocate minimising server-side computation due to practical
concerns on usability and for cost-saving, we discuss such re-
quirement from security perspective. Further, we stress the
impact of block size on the security of the protocol, which
has not been studied in previous works.

Locality of Storage. Incentives for storing data locally
have also been discussed by recent new cryptocurrency pro-
posals [27, 35]. These proposals require constructing a proof
of retrievability during the mining, which in turn is designed
to encourage miners to store data locally as opposed to out-
sourcing them to a remote storage. While these works share
with ours a concern on storage location, they only incentivise
local preservation of the data instead of enforcing such re-
quirement. PoDR, on the other hand, imposes local preser-
vation of the data and offers an auditing mechanism to de-
tect storage providers who do not follow the stipulation.

Protected Execution Environment. Various works
have relied on trusted computing to provision the protected
execution environment for secure services [19, 34, 14]. By
making a realistic assumption on the presence of the trusted
environment, these works are able to offer security with ef-
ficiency and at scale. Besides the trusted execution envi-
ronment, our construction employs a co-location of verifier
and the prover, which is made feasible by trusted computing
primitives, to enhance security.

9. CONCLUSION
We have defined the security definition of Proofs of Data

Residency. PoDR enables the data owner to obtain a proof
that the file F is retrievable in its entirety from local drives of
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a storage server in-question. PoDR can be an integral com-
ponent in auditing contractual assurances. In particular, it
can be combined with host geolocating to affirm geolocation
of the data, or utilised to access fault tolerance of a storage
system, by checking the residency of the files at different
separate storage servers. We show potential attacks on inse-
cure constructions and propose a secure PoDR scheme. The
two implementations of the proposed construction, namely
N-ResCheck and E-ResCheck, illustrate an interesting
use-case of trusted computing, wherein having the verifier
of a cryptographic protocol co-locating with the prover en-
hances the security.

The focus of this work has been on a static setting where
the data owner does not frequently update F . It would
be an interesting future work to extend our construction to
support dynamic data updates.
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APPENDIX
A. NOTATION TABLE

A table of notations that are used throughout the paper
is shown in Table 1.

Table 1: Summary and descriptions of the notations that
are used throughout the paper. Group I are parameters to
be decided in the setup phase. Group II are parameters
and variables involved in the audit phase. Group III are the
security metrics of our construction.

Notation Description
n number of blocks in the original file F
s0 F ’s block size
c expansion rate due to error-erasure code
m number of encoded blocks; m = (1 + c)× n
s authenticated block size; s = s0 + b
b bit length of authentication tags (MACs)

I

h total file expansion factor; h = (m× s)/(n× s0)
v audit size (i.e. number of challenge-responses)
d latency threshold
l late delivery threshold
qi ith challenge
fi ith response

II

ti measured latency of ith response
ψ false acceptance rate

III
γ false rejection rate

B. RELATED NOTIONS

B.1 Proofs of Retrievability
Proof of retrievability [26] enables the data owner to audit

the storage server on the data preservation. In PoR proto-
cols, the data owner encodes the original data using a re-
dundant encoding (such as the error-erasure Reed-Solomon
code [33]), authenticates all the blocks of the encoded data
before sending them to the storage server. Due to the redun-
dant encoding, the storage provider has to discard a consid-
erable portion of the blocks to cause data loss. However, if
a considerable portion of the blocks is lost, the verifier can
detect this incident with overwhelming probability.

A PoR scheme is executed in a challenge-response fashion.
The verifier V may issue a random challenge (which may con-
tain one or various queries) at any time, and to which the
prover P has to respond correctly to assert for its posses-
sion and the retrievability of the file. The first construction
by Juels and Kaliski [26] has been followed by various vari-
ants [20, 38] and is also extended to the dynamic setting [37].
A similar notion known as Provable Data Possession (PDP)
is proposed by Ateniese et al. [13]. It is commonly believed
that PDP provides weaker security guarantees than PoR in
a sense that even if the prover passes the PDP audit, there
is still a non-negligible probability that the verifier cannot
fully recover the original outsourced file [37].

B.2 Host Geolocation
While the notion of data residency concerns over the fact

that the data are kept intact on local drives of a storage
server, it implicitly assumes that the geographic location
of the storage server is known to the verifier. Thus, also
of interest are techniques to geographically locate an on-
line party. Since machines/systems on the Internet can be
uniquely identified by IP addresses, this problem asks for a

mapping from an IP address to a geographic location. It
would have been trivial if the IP address system was de-
signed to incorporate geographic information, unfortunately,
it was not the case. Several proposals have been presented to
address this problem [29, 24, 18]. Common among them are
observations that major backbone Internet providers usually
associate their host names with geographical clues, and that
data travelling across the Internet are often routed via these
backbone Internet providers’ nodes. Moreover, a route that
a data packet travels through can be identified using trace
engines such as Traceroute utility [11]. When matching the
intermediary computer nodes in the routing information of
a packet against those of the backbone Internet providers, a
target host (the destination of the packet in question) can
be roughly located [18]. However, this technique alone does
not offer fine granularity. When the packet is approaching its
destination, it will be transferred using smaller networks to
which geographical clues are not associated. At that gran-
ularity, the WHOIS servers [23] are queried to infer more
precise location of the host. Other approaches rely on a
premise that the latency in transmitting a packet between a
pair of hosts is a function of the geographical distance among
them, or a combination of partial IP-to-location and BGP
prefix information to derive the target host’s location [29].

B.3 Intel SGX
Intel SGX [6] is a set of extensions that provision the pro-

tected execution environments (aka trusted environments or
enclaves). The TCB of such enclaves comprises solely the
processors and the code that the enclaves’ owner places in-
side them, which is arguably minimal. Each enclave is as-
sociated with a region on physical memory, which we shall
call enclave memory. All accesses to enclave memory are
protected by the processor. In another word, code and data
loaded to the enclave cannot be disclosed or modified by the
untrusted OS or any other processes/software; any attempt
to read or write the enclave’s memory by a non-enclave code
will be blocked. On the other hand, enclave code may access
enclave memory as well as memory outside of the enclave re-
gion (if the OS permits). Originally, memory pages can only
be added to the enclave during its creation; however since
revision 2 of the SGX specification, enclave pages can be
added via a cooperation of the enclave and the (untrusted)
OS [6] at any time during its lifetime. We note that the
enclave code has to be loaded into the enclave during its
creation.

Enclaves cannot directly execute OS-provided services
such as I/O. In order to access those services, enclaves have
to employ OCalls (calls executed by the enclave code to
transfer the control to non-enclave code) and ECalls (API
for untrusted applications to call in). These ECalls and
OCalls constitute the enclave boundary interface, enabling a
communication between the enclave code and the untrusted
application to service OS-provided functions. Care should
be taken on each and every ECall exposed to the untrusted
application, as it may open up an attack surface to the pro-
tected execution environment.

SGX enables CPU-based attestation, enabling a remote
verifier to check if a specific software has been loaded within
the enclave by means of cryptography. Via such mecha-
nism, the verifier can establish shared secrets with the en-
clave, thus bootstrapping an end-to-end encrypted channel
via which sensitive data can be communicated.
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Figure 10: Response latencies incurred P, AOC and ADQ in
SW-PoR based residency checking. The error bars represent
one standard deviation.
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Figure 11: CDF of the response latencies incurred by P,
AOC and ADQ in SW-PoR based residency checking.

C. VULNERABLE CONSTRUCTIONS
AND POTENTIAL ATTACKS

We investigate an ability to evade detection of an adver-
sary A by comparing the two distributions: TP , the distri-
bution of response latencies incurred by an honest prover P,
and TA - that of the response latencies incurred by A. If the
cumulative distribution function (CDF) of TA stochastically
dominates that of TP , that is,

Pr(TA ≤ t) ≥ Pr(TP ≤ t) ∀t

then A could intentionally add delays so that these two dis-
tributions are identical, thus successfully evading detection.

C.1 SW-PoR based data residency checking
Protocol. We first consider a data residency checking
constructed on top of the PoR scheme by Shacham and
Waters (SW-PoR) [36]. In this PoR scheme, the audit
asks for v data blocks and their associated homomorphic
authentication tags. The response is aggregated from the
requested data blocks, resulting in a much smaller size. In
a SW-PoR based residency checking protocol, the verifier
V measures the response latency, and accepts the prover as
passing the audit if the response is valid (with respect to
the SW-PoR scheme) and the response latency is within an
expected threshold.

Dishonest Prover. We consider two adversaries who re-
locate the data to three remote storage servers and attempt
to reduce response latency by speeding up the computation
time required to generating the response. The first adver-
sary – denoted by AOC – over-clocks its processor in order
to evade the detection. AOC carries out the following steps
upon receiving the challenge from the verifier:

1. The local server redirects the challenge to the three
remote servers.

2. The three remote servers concurrently load the data,
and send them to the local server.

3. The local server over-clocks its processor to aggregate
the data.

The second adversary – denoted by ADQ – parallelises the
aggregation in the following steps:

1. The local server redirects the challenge to the three
remote servers.

2. The three remote servers concurrently load the data,
aggregate them and send the intermediate results to
the local server.

3. The local server aggregates the received intermediate
results.

We conduct experimental studies to inspect the response
latencies of the honest prover in comparison with those of
the two adversaries. In these experiments, provers compute
the responses using a vCPU Intel Xeon Family running at
base clock speed of 2.5GHz, except for AOC who over-clocks
its processor, running at Turbo Boost speed of 3.3GHz.

Empirical results. We vary the block size (number of group
elements in each data block) as well as the number of data
blocks requested (i.e., audit size) in each challenge. We ob-
serve that the response latencies of the three provers gen-
erally follow normal distributions, each with different mean
and standard deviation. We depict these distributions in
Figure 10 by showing their means and standard deviations.
To give a better intuition on the adversaries’ ability to evade
latency measurements, we show in Figure 11 CDFs of their
response latencies in experiments where audit size are 700
blocks, with block size of 160 and 320 group elements. As
can be seen from the figure, the CDFs of ADQ’s latency
measurements stochastically dominate those of the honest
prover. Hence, ADQ can evade the detection by intention-
ally introducing delays to the response times. Although the
CDFs of AOC ’s latency measurements do not stochastically
dominate P’s, they are similar and thus it requires challenges
of significant size in order to detect AOC ’s violation of the
SLA.

C.2 JK-PoR based residency checking
Protocol. One possible mitigation for the previous attack
is to adopt a PoR scheme in which the prover performs
virtually no computation in executing the residency check-
ing, such as the authenticator-based PoR [26, 28]. In this
scheme, the data owner pre-processes the file F using an

error-erasure code to create F̃ , partitions F̃ into m blocks,
and appends a MAC under secret key sk to each of them
before outsourcing them to the storage server. During the
residency checking, the verifier issues a single request that
asks for v � m randomly chosen data blocks (the value of
v is determined by the security setting of the scheme) and
measures the latency incurred by the storage provider in
delivering all those requested blocks.

Dishonest Prover. Although it is no longer possible to
speedup the response latency by over-clocking its processor
or employing parallelism, a dishonest storage provider can
still reduce the latency by distributing the fetching of the
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Figure 12: Response latencies incurred by P and A in in
JK-PoR based residency checking. The error bars represent
one standard deviation.
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Figure 13: CDF of the response latencies incurred by P and
A in JK-PoR based residency checking.

requested blocks. With sufficient number of remote storage
servers, the reduction of fetching time can offset the addi-
tional latency incurred by accessing the remote storage.

We empirically study the effectiveness of the dishonest
prover. In our experiments, the honest prover P follows the
protocol and keeps the user’s data in its own local drives,
while the dishonest prover A distributes the data blocks to
five different remote servers8, and pulls data blocks from
these servers in parallel to the local server upon requested.
Each data block is appended with a 160-bit MAC. The
storage servers are equipped with commodity storage hard-
ware whose read latency ranges from 12 to 15ms on average.

Empirical results. We vary the number of blocks requested
in each audit from 80 to 160, as well as the block size (512
and 1024 bytes), and observe that the response latencies of
P and A generally follow normal distributions, each with
different mean and standard variation. We show the means
and standard deviations of these distributions in Figure 12.
We also depict in Figure 13 their CDFs for audits of size
160 blocks. When the block size is 1024 bytes, although
we do not have stochastic dominances, the two CDFs are
similar. With block size of 512 bytes, the CDF of A’s s
latency measurements stochastically dominates that of P,
implying it can always evade the detection.

8Average round-trip time of transmitting a 64-byte packet
between A and these servers is 6.5m.
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